Hello all;
I am modeling lizard abundance in 1260 sq m patches across a small island. Each of 41 sites was sampled 6 times (double independent observers). I am using each observer's survey as a site visit, and we collected 12 site (environmental) and 1 survey (observer) covariate. After using the dredge function on models for abundance (~1 ~..covariates..) or detection (~.covariates.. ~1), I used the top abundance and detection covariates in a model. The model doesn't improved when I add or delete covariates on either side. I used parboot with 100 simulations and GOF was fine. The model is here:
> mAbunD
Call:
pcount(formula = ~Distance.from.Enclosure + Cover.Percent + Habitat +
AvgT.OTM + MaxT.Hobo + MaxT.OTM ~ Distance.from.Enclosure +
LLDepth + Woody.stems + AvgT.Hobo + AvgT.OTM, data = buckRM)
Abundance:
Estimate SE z P(>|z|)
(Intercept) 4.37476 2.549431 1.72 8.62e-02
Distance.from.Enclosure -0.00473 0.000373 -12.67 8.44e-37
LLDepth -0.19061 0.041985 -4.54 5.63e-06
Woody.stems -0.05090 0.016867 -3.02 2.55e-03
AvgT.Hobo -0.24658 0.102684 -2.40 1.63e-02
AvgT.OTM 0.26193 0.087816 2.98 2.86e-03
Detection:
Estimate SE z P(>|z|)
(Intercept) 3.969698 2.172067 1.83 0.067608
Distance.from.Enclosure -0.000982 0.000283 -3.48 0.000511
Cover.Percent -0.009896 0.002592 -3.82 0.000135
Habitat2 0.250099 0.113097 2.21 0.027011
Habitat3 -0.279203 0.099127 -2.82 0.004853
AvgT.OTM -0.270873 0.089419 -3.03 0.002452
MaxT.Hobo 0.021481 0.005779 3.72 0.000201
MaxT.OTM 0.037335 0.010725 3.48 0.000499
AIC: 910.0409
Then, I found site abundance using:
>abund<-ranef(mAbunD, K=500)
>EBUP<-bup(abund,stat="mode")
> sum(bup(abund)) ##get abundance estimate
>CI<-confint(abund, level=0.9)
> colSums(CI)
I am plotting curves of the individual covariates using this sort of code:
>newData2 <- data.frame(AvgT.OTM=seq(25,50,by=0.5), Cover.Percent=0, Distance.from.Enclosure=0,Habitat=factor(2,levels=c(1,2,3)), MaxT.Hobo=0,MaxT.OTM=0)
>E.p <- predict(mAbunD, type="state", newdata=newData2, appendData=TRUE)
The next step is estimating the total abundance across the island.
Based on other posts on this listserv
(e.g.) I am wondering if it would be appropriate to interpolate the covariates directly on the island (in GIS or R) and then stack those interpolated surfaces as rasters to map abundance with 'predict' (see
vignette)?
I appreciate any insights into my process here...
Please let me know if you need any further information to help.
Best,
Nicole