Presently getting more Ss would not be possible. One possible way the model could be respecified, would be to reconsider Flow => as 'Flow + WordFlow' with fewer regressions, +1 df, and parsimony. Output shows SRMR rose by a fraction, other indices unremarkable, but one previously negative covariance (P ~~ S) is now positive.
lavaan (0.5-22) converged normally after 105 iterations
Number of observations 169
Estimator DWLS Robust
Minimum Function Test Statistic 668.634 814.000
Degrees of freedom 551 551
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.393
Shift parameter 334.128
for simple second-order correction (Mplus variant)
Model test baseline model:
Minimum Function Test Statistic 5393.949 1729.473
Degrees of freedom 595 595
P-value 0.000 0.000
User model versus baseline model:
Comparative Fit Index (CFI) 0.975 0.768
Tucker-Lewis Index (TLI) 0.974 0.750
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Root Mean Square Error of Approximation:
RMSEA 0.036 0.053
90 Percent Confidence Interval 0.025 0.045 0.045 0.061
P-value RMSEA <= 0.05 0.996 0.239
Robust RMSEA NA
90 Percent Confidence Interval NA NA
Standardized Root Mean Square Residual:
SRMR 0.082 0.082
Weighted Root Mean Square Residual:
WRMR 1.004 1.004
Parameter Estimates:
Information Expected
Standard Errors Robust.sem
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Intrinsic =~
INTRINSIC 1.000 1.657 1.000
Performance =~
GPA 1.000 0.333 0.855
HON 3.411 0.515 6.630 0.000 1.136 0.875
ACAH 0.862 0.162 5.335 0.000 0.287 0.622
Satisfaction =~
SCHOOL 1.000 1.192 1.040
LIFE 0.733 0.095 7.746 0.000 0.874 0.700
HEALTH 0.462 0.103 4.489 0.000 0.551 0.414
SSA =~
PHONE 1.000 0.423 0.366
STUDY 0.989 0.248 3.988 0.000 0.418 0.402
DISTRACT 0.944 0.236 4.009 0.000 0.399 0.432
FUN 1.111 0.313 3.550 0.000 0.470 0.408
MISTAKE 1.370 0.335 4.083 0.000 0.579 0.591
OFFICE 0.884 0.286 3.095 0.002 0.374 0.365
PART 1.161 0.295 3.936 0.000 0.491 0.510
REVIEW 1.032 0.246 4.197 0.000 0.436 0.474
DUE 1.472 0.442 3.328 0.001 0.622 0.396
CREATE 1.114 0.286 3.900 0.000 0.471 0.530
CLASS 0.622 0.176 3.539 0.000 0.263 0.495
MENTAL 0.980 0.231 4.240 0.000 0.414 0.630
INVOLVE 0.605 0.332 1.825 0.068 0.256 0.204
OPPORT 1.069 0.379 2.818 0.005 0.452 0.388
BOOKS 1.070 0.347 3.079 0.002 0.452 0.435
Flow =~
CONT 1.000 0.434 0.526
STAND 1.029 0.157 6.568 0.000 0.446 0.528
NEW 1.143 0.181 6.308 0.000 0.496 0.545
ATTEND 1.787 0.344 5.193 0.000 0.775 0.500
SKILLS 1.134 0.173 6.567 0.000 0.492 0.475
SUCCESS 1.408 0.266 5.289 0.000 0.611 0.567
ELSE 1.681 0.301 5.591 0.000 0.729 0.529
RELATION 0.923 0.248 3.724 0.000 0.400 0.360
ASSIGN 1.594 0.266 5.987 0.000 0.692 0.604
ESCAPE 1.363 0.353 3.858 0.000 0.591 0.334
TRAVEL 1.990 0.297 6.698 0.000 0.863 0.607
WordFlow 0.808 0.251 3.219 0.001 0.112 0.112
WordFlow =~
binwf 1.000 3.131 3.131
binDT2 0.056 0.282 0.198 0.843 0.175 0.175
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Performance ~~
.Satisfaction 0.009 0.025 0.364 0.716 0.036 0.036
...again the negative large variance estimate for binwp
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.binwf -8.801 -8.801 -8.801
.binDT2 0.969 0.969 0.969
Intrinsic 2.747 0.297 9.247 0.000 1.000 1.000
.Performance 0.078 0.017 4.716 0.000 0.708 0.708
.Satisfaction 0.801 0.167 4.806 0.000 0.564 0.564
.SSA 0.128 0.056 2.276 0.023 0.719 0.719
.Flow 0.045 0.015 2.954 0.003 0.237 0.237
WordFlow 9.678 49.074 0.197 0.844 0.987 0.987
The other predicted regressions are unchanged. I'm going to assume any simplification in the model is an appropriate tactic for re-specification and aim towards it by generating some test models.
RM