Hi everyone,
I am Abhishek Verma, and I will be applying for GSoC this year.
I have trouble while calculating the Indefinite Integration.
I have a Expr=X^(log(x^log(x))) ,while Solving this by integrate() function i get the result -
>>> integrate(x**log(x**log(x)),x)
⌠
⎮ 3
⎮ log (x)
⎮ ℯ dx
⌡
But for Expr=X^(log(x^log(x^log(x))))
>>> integrate(x**log(x**log(x**log(x))),x)
Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 365, in from_expr
poly = self._rebuild_expr(expr, mapping)
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 359, in _rebuild_expr
return _rebuild(sympify(expr))
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 351, in _rebuild
return reduce(add, list(map(_rebuild, expr.args)))
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 353, in _rebuild
return reduce(mul, list(map(_rebuild, expr.args)))
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 351, in _rebuild
return reduce(add, list(map(_rebuild, expr.args)))
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 353, in _rebuild
return reduce(mul, list(map(_rebuild, expr.args)))
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 351, in _rebuild
return reduce(add, list(map(_rebuild, expr.args)))
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 353, in _rebuild
return reduce(mul, list(map(_rebuild, expr.args)))
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 357, in _rebuild
return domain.convert(expr)
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/domains/domain.py", line 146, in convert
raise CoercionFailed("can't convert %s of type %s to %s" % (element, type(element), self))
sympy.polys.polyerrors.CoercionFailed: can't convert _x0**_x1 of type <class 'sympy.core.power.Pow'> to QQ[_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7,_A8,_A9,_A10,_A11,_A12,_A13,_A14,_A15,_A16,_A17,_A18,_A19,_A20,_A21,_A22,_A23,_A24,_A25,_A26,_A27,_A28,_A29,_A30,_A31,_A32,_A33,_A34,_A35,_A36,_A37,_A38,_A39,_A40,_A41,_A42,_A43,_A44,_A45,_A46,_A47,_A48,_A49,_A50,_A51,_A52,_A53,_A54,_A55,_A56,_A57,_A58,_A59,_A60,_A61,_A62,_A63,_A64,_A65,_A66,_A67,_A68,_A69,_A70,_A71,_A72,_A73,_A74,_A75,_A76,_A77,_A78,_A79,_A80,_A81,_A82,_A83,_A84,_A85,_A86,_A87,_A88,_A89,_A90,_A91,_A92,_A93,_A94,_A95,_A96,_A97,_A98,_A99,_A100,_A101,_A102,_A103,_A104,_A105,_A106,_A107,_A108,_A109,_A110,_A111,_A112,_A113,_A114,_A115,_A116,_A117,_A118,_A119,_B0]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python3.4/dist-packages/sympy/utilities/decorator.py", line 35, in threaded_func
return func(expr, *args, **kwargs)
File "/usr/local/lib/python3.4/dist-packages/sympy/integrals/integrals.py", line 1232, in integrate
risch=risch, manual=manual)
File "/usr/local/lib/python3.4/dist-packages/sympy/integrals/integrals.py", line 487, in doit
conds=conds)
File "/usr/local/lib/python3.4/dist-packages/sympy/integrals/integrals.py", line 862, in _eval_integral
h = heurisch_wrapper(g, x, hints=[])
File "/usr/local/lib/python3.4/dist-packages/sympy/integrals/heurisch.py", line 128, in heurisch_wrapper
unnecessary_permutations)
File "/usr/local/lib/python3.4/dist-packages/sympy/integrals/heurisch.py", line 566, in heurisch
solution = _integrate('Q')
File "/usr/local/lib/python3.4/dist-packages/sympy/integrals/heurisch.py", line 555, in _integrate
numer = ring.from_expr(raw_numer)
File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 367, in from_expr
raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
ValueError: expected an expression convertible to a polynomial in Polynomial ring in _x0, _x1, _x2, _x3, _x4, _x5, _x6 over QQ[_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7,_A8,_A9,_A10,_A11,_A12,_A13,_A14,_A15,_A16,_A17,_A18,_A19,_A20,_A21,_A22,_A23,_A24,_A25,_A26,_A27,_A28,_A29,_A30,_A31,_A32,_A33,_A34,_A35,_A36,_A37,_A38,_A39,_A40,_A41,_A42,_A43,_A44,_A45,_A46,_A47,_A48,_A49,_A50,_A51,_A52,_A53,_A54,_A55,_A56,_A57,_A58,_A59,_A60,_A61,_A62,_A63,_A64,_A65,_A66,_A67,_A68,_A69,_A70,_A71,_A72,_A73,_A74,_A75,_A76,_A77,_A78,_A79,_A80,_A81,_A82,_A83,_A84,_A85,_A86,_A87,_A88,_A89,_A90,_A91,_A92,_A93,_A94,_A95,_A96,_A97,_A98,_A99,_A100,_A101,_A102,_A103,_A104,_A105,_A106,_A107,_A108,_A109,_A110,_A111,_A112,_A113,_A114,_A115,_A116,_A117,_A118,_A119,_B0] with lex order, got _x0**5*_x5 - _x0**3*(2*_x0**_x2*_x2*(2*_A103*_x2*_x6 + _A106*_x4*_x5 + _x4**2*_A107 + _A108*_x1*_x2 + _A110*_x4 + _A116*_x0*_x1 + 2*_A12*_x1*_x6 + 2*_A19*_x4*_x6 + _A2 + _A20*_x2*_x3 + _A21*_x1*_x3 + _A23*_x3*_x4 + _A26*_x0*_x3 + _A3*_x2 + _x5**2*_A32 + _A35*_x0*_x2 + _A39*_x1 + _x2**2*_A41 + _A50*_x3 + 3*_x6**2*_A52 + 2*_A58*_x6 + _A6*_x0*_x4 + _A62*_x0*_x5 + _x1**2*_A69 + _A72*_x2*_x5 + _A74*_x2*_x4 + 2*_A77*_x0*_x6 + _x0**2*_A78 + _A8*_x5 + _x3**2*_A81 + 2*_A83*_x3*_x6 + _A89*_x0 + 2*_A90*_x5*_x6 + _A95*_x1*_x4 + _A96*_x1*_x5 + _A99*_x3*_x5) + _A101*_x0*_x1 + _A102*_x0*_x4 + _x6**2*_A103 + _A105*_x0*_x3 + _A108*_x1*_x6 + _A109*_x0*_x5 + _A11*_x3*_x5 + _A14*_x3 + 2*_A15*_x2*_x3 + _A18*_x4 + _A20*_x3*_x6 + 2*_A24*_x1*_x2 + 2*_A27*_x2*_x5 + _A3*_x6 + _A31*_x1*_x4 + _x5**2*_A33 + _A35*_x0*_x6 + 2*_A36*_x2 + 3*_x2**2*_A38 + _A40*_x3*_x4 + 2*_A41*_x2*_x6 + _A42*_x1*_x5 + _A61*_x1 + _A70*_x0 + _x0**2*_A71 + _A72*_x5*_x6 + _A74*_x4*_x6 + _A75*_x5 + 2*_A76*_x0*_x2 + 2*_A80*_x2*_x4 + _x1**2*_A82 + _A86*_x4*_x5 + _A87*_x1*_x3 + _x4**2*_A9 + _x3**2*_A93 + _A94 + 2*_x2*(2*_A1*_x1*_x5 + _A10 + _A101*_x0*_x2 + _A108*_x2*_x6 + _x5**2*_A112 + _A113*_x3*_x4 + _A116*_x0*_x6 + 2*_A117*_x0*_x1 + _x6**2*_A12 + 2*_A13*_x1 + _A21*_x3*_x6 + _x4**2*_A22 + _x2**2*_A24 + _A31*_x2*_x4 + _A34*_x0*_x5 + _A37*_x3 + _A39*_x6 + _A4*_x3*_x5 + _A42*_x2*_x5 + _A45*_x5 + _A47*_x0*_x4 + 3*_x1**2*_A5 + _A51*_x0*_x3 + _x0**2*_A53 + _A56*_x0 + 2*_A59*_x1*_x4 + _A60*_x4*_x5 + _A61*_x2 + _x3**2*_A64 + 2*_A66*_x1*_x3 + 2*_A69*_x1*_x6 + 2*_A82*_x1*_x2 + _A87*_x2*_x3 + _A95*_x4*_x6 + _A96*_x5*_x6 + _A98*_x4) + (_x1 + 2*_x2**2)*(_A100*_x0*_x3 + _A102*_x0*_x2 + _A106*_x5*_x6 + 2*_A107*_x4*_x6 + _A110*_x6 + _A113*_x1*_x3 + _x5**2*_A115 + _A16*_x0*_x5 + 2*_A17*_x3*_x4 + _A18*_x2 + _x6**2*_A19 + 2*_A22*_x1*_x4 + _A23*_x3*_x6 + _A31*_x1*_x2 + _A40*_x2*_x3 + 2*_A46*_x0*_x4 + _A47*_x0*_x1 + _x0**2*_A48 + _x3**2*_A55 + _x1**2*_A59 + _A6*_x0*_x6 + _A60*_x1*_x5 + _A63 + _A65*_x0 + _A7*_x3*_x5 + _A74*_x2*_x6 + 2*_A79*_x4*_x5 + _x2**2*_A80 + _A84*_x3 + _A85*_x5 + _A86*_x2*_x5 + 2*_A88*_x4 + 2*_A9*_x2*_x4 + 3*_x4**2*_A91 + _A95*_x1*_x6 + _A98*_x1) + (_x0**_x1*_x1 + 2*_x0**_x1*_x2**2)*(_A100*_x0*_x4 + 2*_A104*_x3*_x5 + _A105*_x0*_x2 + _A11*_x2*_x5 + _A113*_x1*_x4 + 2*_A118*_x0*_x3 + _A119*_x0*_x5 + _A14*_x2 + _x2**2*_A15 + _x4**2*_A17 + _A20*_x2*_x6 + _A21*_x1*_x6 + _A23*_x4*_x6 + _A26*_x0*_x6 + _A29 + _A30*_x5 + _A37*_x1 + _A4*_x1*_x5 + _A40*_x2*_x4 + _x0**2*_A43 + _A50*_x6 + _A51*_x0*_x1 + _x5**2*_A54 + 2*_A55*_x3*_x4 + _A57*_x0 + 2*_A64*_x1*_x3 + _x1**2*_A66 + _A7*_x4*_x5 + 2*_A81*_x3*_x6 + _x6**2*_A83 + _A84*_x4 + _A87*_x1*_x2 + 2*_A92*_x3 + 2*_A93*_x2*_x3 + 3*_x3**2*_A97 + _A99*_x5*_x6) + (_x1*_x2*_x5 + 2*_x2**3*_x5 + _x4*_x5)*(_x1**2*_A1 + _x3**2*_A104 + _A106*_x4*_x6 + _A109*_x0*_x2 + _A11*_x2*_x3 + _A111*_x0 + 2*_A112*_x1*_x5 + _x0**2*_A114 + 2*_A115*_x4*_x5 + _A119*_x0*_x3 + _A16*_x0*_x4 + _x2**2*_A27 + _A30*_x3 + 2*_A32*_x5*_x6 + 2*_A33*_x2*_x5 + _A34*_x0*_x1 + _A4*_x1*_x3 + _A42*_x1*_x2 + 3*_x5**2*_A44 + _A45*_x1 + 2*_A49*_x5 + 2*_A54*_x3*_x5 + _A60*_x1*_x4 + _A62*_x0*_x6 + 2*_A68*_x0*_x5 + _A7*_x3*_x4 + _A72*_x2*_x6 + _A73 + _A75*_x2 + _x4**2*_A79 + _A8*_x6 + _A85*_x4 + _A86*_x2*_x4 + _x6**2*_A90 + _A96*_x1*_x6 + _A99*_x3*_x6)) - _x0**2*(_x0**2*(_A100*_x3*_x4 + _A101*_x1*_x2 + _A102*_x2*_x4 + _A105*_x2*_x3 + _A109*_x2*_x5 + _A111*_x5 + 2*_A114*_x0*_x5 + _A116*_x1*_x6 + _x1**2*_A117 + _x3**2*_A118 + _A119*_x3*_x5 + _A16*_x4*_x5 + 3*_x0**2*_A25 + _A26*_x3*_x6 + 2*_A28*_x0 + _A34*_x1*_x5 + _A35*_x2*_x6 + 2*_A43*_x0*_x3 + _x4**2*_A46 + _A47*_x1*_x4 + 2*_A48*_x0*_x4 + _A51*_x1*_x3 + 2*_A53*_x0*_x1 + _A56*_x1 + _A57*_x3 + _A6*_x4*_x6 + _A62*_x5*_x6 + _A65*_x4 + _A67 + _x5**2*_A68 + _A70*_x2 + 2*_A71*_x0*_x2 + _x2**2*_A76 + _x6**2*_A77 + 2*_A78*_x0*_x6 + _A89*_x6 + _B0) + _x0*(-_A0 - _x1**2*_A1*_x5 - _A10*_x1 - _A100*_x0*_x3*_x4 - _A101*_x0*_x1*_x2 - _A102*_x0*_x2*_x4 - _x6**2*_A103*_x2 - _x3**2*_A104*_x5 - _A105*_x0*_x2*_x3 - _A106*_x4*_x5*_x6 - _x4**2*_A107*_x6 - _A108*_x1*_x2*_x6 - _A109*_x0*_x2*_x5 - _A11*_x2*_x3*_x5 - _A110*_x4*_x6 - _A111*_x0*_x5 - _x5**2*_A112*_x1 - _A113*_x1*_x3*_x4 - _x0**2*_A114*_x5 - _x5**2*_A115*_x4 - _A116*_x0*_x1*_x6 - _x1**2*_A117*_x0 - _x3**2*_A118*_x0 - _A119*_x0*_x3*_x5 - _x6**2*_A12*_x1 - _x1**2*_A13 - _A14*_x2*_x3 - _x2**2*_A15*_x3 - _A16*_x0*_x4*_x5 - _x4**2*_A17*_x3 - _A18*_x2*_x4 - _x6**2*_A19*_x4 - _A2*_x6 - _A20*_x2*_x3*_x6 - _A21*_x1*_x3*_x6 - _x4**2*_A22*_x1 - _A23*_x3*_x4*_x6 - _x2**2*_A24*_x1 - _x0**3*_A25 - _A26*_x0*_x3*_x6 - _x2**2*_A27*_x5 - _x0**2*_A28 - _A29*_x3 - _A3*_x2*_x6 - _A30*_x3*_x5 - _A31*_x1*_x2*_x4 - _x5**2*_A32*_x6 - _x5**2*_A33*_x2 - _A34*_x0*_x1*_x5 - _A35*_x0*_x2*_x6 - _x2**2*_A36 - _A37*_x1*_x3 - _x2**3*_A38 - _A39*_x1*_x6 - _A4*_x1*_x3*_x5 - _A40*_x2*_x3*_x4 - _x2**2*_A41*_x6 - _A42*_x1*_x2*_x5 - _x0**2*_A43*_x3 - _x5**3*_A44 - _A45*_x1*_x5 - _x4**2*_A46*_x0 - _A47*_x0*_x1*_x4 - _x0**2*_A48*_x4 - _x5**2*_A49 - _x1**3*_A5 - _A50*_x3*_x6 - _A51*_x0*_x1*_x3 - _x6**3*_A52 - _x0**2*_A53*_x1 - _x5**2*_A54*_x3 - _x3**2*_A55*_x4 - _A56*_x0*_x1 - _A57*_x0*_x3 - _x6**2*_A58 - _x1**2*_A59*_x4 - _A6*_x0*_x4*_x6 - _A60*_x1*_x4*_x5 - _A61*_x1*_x2 - _A62*_x0*_x5*_x6 - _A63*_x4 - _x3**2*_A64*_x1 - _A65*_x0*_x4 - _x1**2*_A66*_x3 - _A67*_x0 - _x5**2*_A68*_x0 - _x1**2*_A69*_x6 - _A7*_x3*_x4*_x5 - _A70*_x0*_x2 - _x0**2*_A71*_x2 - _A72*_x2*_x5*_x6 - _A73*_x5 - _A74*_x2*_x4*_x6 - _A75*_x2*_x5 - _x2**2*_A76*_x0 - _x6**2*_A77*_x0 - _x0**2*_A78*_x6 - _x4**2*_A79*_x5 - _A8*_x5*_x6 - _x2**2*_A80*_x4 - _x3**2*_A81*_x6 - _x1**2*_A82*_x2 - _x6**2*_A83*_x3 - _A84*_x3*_x4 - _A85*_x4*_x5 - _A86*_x2*_x4*_x5 - _A87*_x1*_x2*_x3 - _x4**2*_A88 - _A89*_x0*_x6 - _x4**2*_A9*_x2 - _x6**2*_A90*_x5 - _x4**3*_A91 - _x3**2*_A92 - _x3**2*_A93*_x2 - _A94*_x2 - _A95*_x1*_x4*_x6 - _A96*_x1*_x5*_x6 - _x3**3*_A97 - _A98*_x1*_x4 - _A99*_x3*_x5*_x6))
I get this error message but as we know from Documentation that If integrate is unable to compute an integral, it returns an unevaluated
Integral object.
What's happening ,unable to figure out .Can anyone tell me ????