Dear all,
I have fitted a type 4 interaction model with covariates with nbinomial likelihood. INLA after successfully completing the model fit showed the following error.
"rsession-arm64(12604) MallocStackLogging: can't turn off malloc stack logging because it was not enabled"
What does it mean? whether the r-inal stopped prematurely? how to turn on "malloc stock logging".
Further, checking the model summary output shows that the Deviance Information Criterion (DIC, saturated) .is "NA" (please see below):
Why "DIC saturated" results in "NA". is it Ian ndication of over fitting. Please clarify.
Thanks and regards
S. Subramanian
>summary(models$bym2.rw1.t4)
Call:
c("inla.core(formula = formula, family = family, contrasts = contrasts, ", " data = data,
quantiles = quantiles, E = E, offset = offset, ", " scale = scale, weights = weights,
Ntrials = Ntrials, strata = strata, ", " lp.scale = lp.scale, link.covariates =
link.covariates, verbose = verbose, ", " lincomb = lincomb, selection = selection,
control.compute = control.compute, ", " control.predictor = control.predictor,
control.family = control.family, ", " control.inla = control.inla, control.fixed =
control.fixed, ", " control.mode = control.mode, control.expert = control.expert, ", "
control.hazard = control.hazard, control.lincomb = control.lincomb, ", " control.update =
control.update, control.lp.scale = control.lp.scale, ", " control.pardiso =
control.pardiso, only.hyperparam = only.hyperparam, ", " inla.call = inla.call, inla.arg
= inla.arg, num.threads = num.threads, ", " keep = keep, working.directory =
working.directory, silent = silent, ", " inla.mode = inla.mode, safe = FALSE, debug =
debug, .parent.frame = .parent.frame)" )
Time used:
Pre = 4.79, Running = 30372, Post = 5.22, Total = 30382
Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -1.637 0.351 -2.326 -1.637 -0.949 -1.637 0
X1 -0.274 0.355 -0.969 -0.274 0.420 -0.274 0
X2 -0.079 0.073 -0.221 -0.079 0.063 -0.079 0
X3 0.038 0.026 -0.014 0.038 0.089 0.038 0
X4 0.321 0.191 -0.053 0.321 0.695 0.321 0
X5 0.067 0.254 -0.431 0.067 0.565 0.067 0
X6 -0.048 0.028 -0.102 -0.048 0.006 -0.048 0
X7 -0.236 0.055 -0.344 -0.236 -0.129 -0.236 0
X8 -0.002 0.010 -0.022 -0.002 0.017 -0.002 0
X9 -0.041 0.020 -0.081 -0.041 -0.001 -0.041 0
Random effects:
Name Model
ID.area BYM2 model
ID.month RW1 model
ID.area.month Generic0 model
Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant
size for the nbinomial observations (1/overdispersion) 7.809 0.433 7.008 7.792 8.712
Precision for ID.area 0.387 0.034 0.322 0.386 0.456
Phi for ID.area 0.981 0.014 0.948 0.984 0.998
Precision for ID.month 1.642 0.430 0.979 1.582 2.662
Precision for ID.area.month 13.287 0.821 11.644 13.296 14.866
mode
size for the nbinomial observations (1/overdispersion) 7.744
Precision for ID.area 0.387
Phi for ID.area 0.993
Precision for ID.month 1.458
Precision for ID.area.month 13.404
Deviance Information Criterion (DIC) ...............: 75182.30
Deviance Information Criterion (DIC, saturated) ....: NA
Effective number of parameters .....................: 2213.43
Watanabe-Akaike information criterion (WAIC) ...: 75270.70
Effective number of parameters .................: 2102.74
Marginal log-Likelihood: -89703.16
, GCPO is computed
Posterior summaries for the linear predictor and the fitted values are computed
(Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
I am not clear, what does this error means. Is there I