hey Everyone,
I'm working on my project and facing this issue it would be great if anyone can help.
Error occured when finalizing generatorDataset iterator: FAILED PRECONDITION: Python interpreter state is not initialized. the process may be terminated.
Error screenshot is also attached.
Here is code:
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(64,64,3)))
model.add(MaxPool2D(pool_size=(2, 2), strides=2))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding = 'same'))
model.add(MaxPool2D(pool_size=(2, 2), strides=2))
model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding = 'valid'))
model.add(MaxPool2D(pool_size=(2, 2), strides=2))
model.add(Flatten())
model.add(Dense(64,activation ="relu"))
model.add(Dense(128,activation ="relu"))
#model.add(Dropout(0.2))
model.add(Dense(128,activation ="relu"))
#model.add(Dropout(0.3))
model.add(Dense(10,activation ="softmax"))
# In[23]:
model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=1, min_lr=0.0001)
early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=0, mode='auto')
model.compile(optimizer=SGD(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=1, min_lr=0.0005)
early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=0, mode='auto')
history2 = model.fit(train_batches, epochs=10, callbacks=[reduce_lr, early_stop], validation_data = test_batches)#, checkpoint])
imgs, labels = next(train_batches) # For getting next batch of imgs...
imgs, labels = next(test_batches) # For getting next batch of imgs...
scores = model.evaluate(imgs, labels, verbose=0)
print(f'{model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1]*100}%')
#model.save('best_model_dataflair.h5')
model.save('best_model_dataflair3.h5')
print(history2.history)
