
brief communications

nature methods  |  VOL.15  NO.2  |  FEBRUARY 2018  |  119

in part because of the paucity of methods for sensitive and accu-
rate detection of sub-Mb-scale domains. Two recent comparative
analyses reported that existing domain-calling methods accu-
rately identify TADs but show poor ability to capture the full
nested hierarchy of partially overlapping subTADs11,12. Thus,
there is a great need for computational tools that accurately and
sensitively detect the full nested hierarchy of chromatin domains
across length scales.

Here, we hypothesize that nested, partially overlapping TADs
and subTADs can be identified with a community detection
method based on the maximization of network modularity13. We
abstracted Hi-C data as a square, symmetric adjacency matrix,
A, of size N × N with N adjacent, equally spaced bins represent-
ing nodes and interaction frequencies between nodes represent-
ing edges (Supplementary Fig. 1). To identify communities, we
maximized the modularity quality index, Q (equation (1)):

Q
m

A
k k
m

g gi j
i j

i ji j= −

∑1 1, ,, () ()g d

where Ai,j is the edge weight representing interaction frequency
between nodes i and j, ki is the sum of all edge weights for node
i, m is the sum of all nondiagonal edge weights in the network
A, and γ is the resolution parameter (discussed below). Nodes
i and j are assigned to communities gi and gj, respectively.
The Kronecker delta, δ(gi,gj), is 1 if gi = gj and 0 otherwise.
A modularity value close to 1 indicates strong community struc-
ture and a high-quality division of the network into communi-
ties, whereas a Q value close to 0 indicates that the strength of
within-community connections is no higher than would be
expected by chance.

To identify the optimal division of the network into commu-
nities, we employed a Louvain-like, locally greedy algorithm to
maximize network modularity14 (3DNetMod-modularity maxi-
mization (MM); see Online Methods). The 3DNetMod-MM
algorithm was chosen because it does not require a priori knowl-
edge of the number of communities that will be detected15, and
it offers the critical capability of identifying nested communities
through the variation of a resolution parameter. The output from
a single run of 3DNetMod-MM is an ‘optimal’ partition of nodes
into communities.

We first assessed the performance of 3DNetMod-MM in
40-kb-binned Hi-C data from human embryonic cortical plate tis-
sue16 (Fig. 1a and Supplementary Table 1). To address boundary
variation due to 3DNetMod-MM convergence on local maxima,
we sampled the landscape of community partition solutions by

(1)(1)

detecting hierarchical
genome folding with
network modularity
Heidi K Norton1,6, Daniel J Emerson1,6,
Harvey Huang1, Jesi Kim1, Katelyn R Titus1,
Shi Gu1,2 , Danielle S Bassett1,3 &
Jennifer E Phillips-Cremins1,4,5

mammalian genomes are folded in a hierarchy of compartments,
topologically associating domains (tads), subtads and looping
interactions. here, we describe 3dnetmod, a graph theory-
based method for sensitive and accurate detection of chromatin
domains across length scales in hi-c data. We identify nested,
partially overlapping tads and subtads genome wide by
optimizing network modularity and varying a single resolution
parameter. 3dnetmod can be applied broadly to understand
genome reconfiguration in development and disease.

Principles from the field of mathematics known as graph theory
have emerged as powerful tools for quantifying connectivity pat-
terns within complex systems1. Networks are graphs consisting of
nodes connected by edges that can be used to represent the under-
lying structure of biological, social, physical and information sys-
tems. Complex networks often exhibit hierarchical patterns of
connectivity across length scales2. Interacting nodes can form
small subnetworks arranged in distinct recurrent configurations
termed motifs. Subnetworks can in turn hierarchically aggregate
into higher-order modules (or communities)2. Communities are
important functionally because they can promote resilience to
individual node failure within a network.

A complex system exhibiting hierarchical structure is the higher-
order folding of chromatin in the 3D nucleus. The approximately
two-meter-long genome is arranged in complex higher-order con-
figurations to fit inside a mammalian nucleus that is 5–10 µm in
diameter3,4. Individual chromosomes aggregate into higher-order
‘A’ and ‘B’ compartments5, which are further partitioned into
Megabase (Mb)-sized TADs and smaller, nested subTADs6–10.
Distal genomic segments connect to create long-range looping
interactions within and between TADs and subTADs7. The func-
tional role for TADs and subTADs, and the extent to which they
change across biological conditions, remains poorly understood,

1Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 2Brain Behavior Laboratory, Department of Psychiatry, University of
Pennsylvania, Philadelphia, Pennsylvania, USA. 3Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 4Epigenetics Institute,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 5Department of Genetics, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, Pennsylvania, USA. 6These authors contributed equally to this work. Correspondence should be addressed to J.E.P.-C. (jcremins@seas.upenn.edu).
Received 28 May; accepted 6 OctObeR; published Online 15 JanuaRy 2018; dOi:10.1038/nMeth.4560

http://orcid.org/0000-0003-2303-6770
http://orcid.org/0000-0002-4702-0450
http://dx.doi.org/10.1038/nmeth.4560

120  |  VOL.15  NO.2  |  FEBRUARY 2018  |  nature methods

brief communications

applying 3DNetMod-MM 20 times (hereafter referred to as a ‘par-
tition block’ with dimensions 20 × N) (Fig. 1b). We then identi-
fied the ‘consensus partition’ that is most similar to the other
partitions (Fig. 1c; see Online Methods). We found that up to
1,000 partitions led to nearly the same consensus, which sug-
gested that 20 partitions yields an acceptable balance of accuracy
and speed (Supplementary Fig. 2). Thus, we address fluctua-
tions in partitions due to algorithmic convergence on local versus
global maxima by computing a consensus community partition.
We hereafter refer to 3DNetMod-MM coupled with consensus
community partitioning as ‘3DNetMod-MMCP’.

We next hypothesized that communities of different sizes can
be identified with 3DNetMod-MMCP through modification of
the resolution parameter. When γ > 1, the algorithm is biased
toward detection of smaller communities, whereas the bias is
toward detection of larger communities when γ < 1. By varying
only a single resolution parameter, we detected a wide size range
of hierarchically nested chromatin domains with 3DNetMod-
MMCP (Fig. 1).

We next sought to comprehensively identify high-confidence
domains genome wide. 3DNetMod-MM is estimated to run in time
O(n)14, and the addition of 3DNetMod-MMCP and a sweep of γ
values would make the method computationally intractable for
identifying genome-wide domains. We devised a strategy in which
we split the genome into overlapping regions and called nested
domains on all regions in parallel (Supplementary Fig. 3a). Region
size is provided as a user parameter and should be tuned to the
resolution of the Hi-C library and the biological question of interest
(Supplementary Fig. 4a–c). Thus, each genomic region can be run
in parallel, significantly cutting down on the runtime and making
it feasible to explore the range of γ values required to detect TADs
and subTADs genome wide (Supplementary Table 2).

We devised a method, ‘gamma plateau sweep’ (3DNetMod-
GPS), to select γ values that lead to high-confidence domains.
To find the informative γ range, we generated random graphs
with preserved weight, degree and strength distributions17
(Supplementary Figs. 3b and 5a,b). We noticed that modularity
of the real network diverges from the random network at low γ and
converges again at high γ (Supplementary Figs. 3c and 5c). We
computed the 3DNetMod-GPS endpoint as the maximum γ across
five representative regions where modularity converges between
real and random networks. We also uncovered plateaus in which
adjacent γ values gave rise to the same consensus partition and
average number of communities (Supplementary Figs. 3d and
5d). Additionally, we noticed that some γ values did not belong to a
plateau and gave rise to low-confidence partitions (Supplementary
Fig. 6a–c). We observed that γ values resulting in a plateau size of 3
lead to robust domain calls in high-read-depth, 40-kb-binned Hi-
C data (Supplementary Fig. 5d–f). Overall, 3DNetMod-MMCP
and 3DNetMod-GPS coupled with our region-splitting strategy
(Supplementary Fig. 3e–g) result in a large, diverse set of nested
domains across length scales genome wide.

TADs and subTADs are known to interact in higher-order
structures termed compartments5. Compartments appear in
Hi-C maps as long-range, plaid patterns of alternating strong
and weak interacting segments between groups of domains.
By contrast, TADs and subTADs are thought to be structurally
and functionally distinct from compartments, and defined as
contiguous genomic intervals in which all pairs of loci exhibit

elevated contact frequency7. To dissect higher-order compart-
ments from domains, we devised a new ‘hierarchical spatial vari-
ance minimization’ (3DNetMod-HSVM) method (Supplementary
Fig. 3h–l). We noticed that domains with continuously high inter-
action signal for the majority of bin pairs exhibit highly consistent
partition blocks from 3DNetMod-MMCP (Supplementary Fig. 7a).
By contrast, communities exhibiting a nonuniform, alternating
interaction pattern characteristic of compartments tended to
exhibit greater variability in boundary assignment across the 20
partitions (Supplementary Figs. 7b and 8a–e).

We posited that community assignment degeneracies in the
partition blocks could represent (i) low-confidence boundaries
indicative of ‘soft’ community structure18 and/or (ii) longer range
compartments with nonuniform, alternating high/low signal.
We computed a spatial variance for each domain boundary (see
Online Methods). Spatial variance distributions were depend-
ent on the length scale of the domain (Supplementary Fig. 8e).
By instituting length-scale-specific spatial variance thresholds,

a

b

c

d

e

� = 1.0

� = 1.0 � = 1.1 � = 1.18

� = 1.0

0
0
Community size (Mb)

1 2 3 4 0
Community size (Mb)

1 2 3 4 0

Median: 400 kb
n = 825 (chr7)

Median: 720 kb
n = 515 (chr7)

Median: 1.2 Mb
n = 317 (chr7)

Community size (Mb)
1 2 3 4

R
el

at
iv

e
fr

eq
ue

nc
y

0.1

0.2

0 0

0.1
0.1

0.2
0.2

� = 1.1 � = 1.18

79

82

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

79 Mb

Consensus partition Consensus partition Consensus partition

82 79 Mb 82 79 Mb 82

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

*

* * *

*

*

Mb

� = 1.1 � = 1.18

chr7:79000000–82040000 chr7:79000000–82040000 chr7:79000000–82040000
High

Low

R
elative interaction

frequency
C

om
m

unity assignm
ent

figure 1 | Network modularity maximization and consensus partitioning
(3DNetMod-MMCP) identifies nested, partially overlapping chromatin
domains across length scales. (a) Hi-C heatmaps from human cortical
plate tissue16. Domains identified with 3DNetMod-MMCP at γ = 1 (left),
γ = 1.1 (center) and γ = 1.18 (right) are outlined in green. (b) Community
partitions from 20 applications of 3DNetMod-MM at γ = 1 (left), γ = 1.1
(center) and γ = 1.18 (right). (c) Consensus partitions for each γ value
from 20 partitions. (d) Spring-force diagrams representing network
communities in Hi-C data. Node proximity corresponds to the relative
interaction frequency between the two genomic bins. Node color
indicates community assignment. (e) Chromosome-wide distribution
(chr7) of domain sizes identified with γ = 1.0 (left), γ = 1.1 (center)
and γ = 1.18 (right).

nature methods  |  VOL.15  NO.2  |  FEBRUARY 2018  |  121

brief communications

we removed many communities exhibiting alternating interaction
patterns indicative of compartments (Supplementary Fig. 8f–i).
High-confidence domain boundaries passing the spatial variance
thresholds exhibited enrichment for occupancy of the architectural
protein CTCF, whereas communities with high spatial variance did
not show enrichment (Supplementary Table 3 and Supplementary
Fig. 9). Spatial variance distributions are widely variable among
data sets (Supplementary Table 1); thus, we recommend tun-
ing thresholds on a Hi-C-library-specific basis (Supplementary
Figs. 10–12). These results indicate that 3DNetMod-HSVM has
utility in dissecting high-confidence domains with corroborative
enrichment of known epigenetic marks from low-confidence
communities and higher-order compartments.

To compare the performance of 3DNetMod to other leading
domain-calling methods, we generated TAD and subTAD simula-
tions. We first simulated a network of nonoverlapping, nonhierar-
chical domains. We observed that 3DNetMod, TADtree19 and the
Directionality Index-Hidden Markov Model (DI-HMM) method8
accurately identify nonoverlapping domains (Supplementary

Fig. 13a,b). Next, to simulate a network with partially overlap-
ping domains resembling subTADs, we created a construct of
nested subtriangles derived from a Sierpinski triangle (Fig. 2a and
Supplementary Fig. 13c,d). 3DNetMod outperformed DI-HMM
and TADtree in capturing simulated domains with nested, par-
tially overlapping structure, even when we added a full sweep of
DI windows to the DI-HMM method (Fig. 2b). Finally, we com-
pared the performance of 3DNetMod to Arrowhead7, TADtree
and the full DI-HMM parameter sweep on Hi-C data from human
cortical plate tissue (Fig. 2c–e). 3DNetMod outperformed cur-
rent leading genome-wide domain-calling methods for sensitive
and accurate detection of nested, partially-overlapping subTADs
within TADs.

3DNetMod’s ability to sensitively and accurately quantify chro-
matin domains may shed new light into how genome structure
governs function across development and during the onset and
progression of disease. Code, sample input data and usage instruc-
tions are freely available at https://bitbucket.org/creminslab/
3dnetmod_method_v1.0_10_06_17.

a

b c d

eExpected Arrowhead
High

Low

R
elative interaction frequency

High

Low

R
elative interaction frequency

High

Low

R
elative interaction frequency

High

Low

R
elative interaction frequency

12
Mb

18

12
Mb

18

Expected
domains

Called
domains

Called
domains

Called
domains

0

50

100

150

150
chr7:12000000–18040000

chr7:12000000–18040000

100500

B
in

 u
ni

ts

0

50

100

150

B
in

 u
ni

ts

Bin units

DI-HMM + DI Sweep DI-HMM + DI Sweep

TADtree

3DNetMod 3DNetMod

TADtree

150100500
Bin units

12
Mb

18
chr7:12000000–18040000

0

50

100

150
B

in
 u

ni
ts

150100500
Bin units

12
Mb

18
chr7:12000000–18040000

0

50

100

150

B
in

 u
ni

ts

150100500
Bin units

ROC Domain size
distributions

Number of
domains

1.0

1.0

False positive rate

3DNetMod AUC = 0.95
DI-HMM* AUC = 0.81
TADtree AUC = 0.69

T
ru

e
po

si
tiv

e
ra

te

0.8

0.8

0.6

0.6

3DNetMod
DI-HMM*
TADtree

0.4

0.4

0.2

0.2
0.0 0 0

200

N
um

be
r

of
 d

om
ai

ns
400

600

DI-HMM* = DI-HMM + DI sweep

Arro
whe

ad

Arro
whe

ad

DI-H
M

M
*

DI-H
M

M
*

TADtre
e

TADtre
e

DI-H
M

M

3D
Net

M
od

3D
Net

M
od

S
iz

e
(M

b)

1
2
3
4
5

0.0

figure 2 | 3DNetMod outperforms leading domain-calling methods in real and simulated Hi-C data. (a) Simulated Hi-C data with nested, partially
overlapping domain structure. Expected domains (top), DI-HMM + DI sweep domains (center top), TADtree domains (center bottom) and 3DNetMod
domains (bottom) are shown. The maps shown are a zoomed-in view of the full simulations shown in supplementary figure 13d. (b) Receiver operating
characteristic (ROC) curves showing the true positive rate and false positive rate of 3DNetMod (magenta), DI-HMM + DI Sweep (teal) and TADtree (blue)
domain detection performance in the simulated Hi-C network with nested, partially overlapping domains. (c,d) Distribution of (c) domain sizes and (d)
number of domains identified in chromosome 7 of human cortical plate tissue Hi-C16 by Arrowhead, DI-HMM + DI sweep, TADtree and 3DNetMod.
(e) Heatmap of a 6-Mb region from human cortical plate tissue Hi-C16. Domains identified by Arrowhead (top), DI-HMM + DI sweep (center top), TADtree
(center bottom) and 3DNetMod (bottom) are outlined in colors corresponding to their sizes: ≤400 kb (magenta), 401–800 kb (green), 801–1.6 Mb (cyan),
1.6–3 Mb (indigo), >3 Mb (orange).

https://bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17
https://bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17

122  |  VOL.15  NO.2  |  FEBRUARY 2018  |  nature methods

brief communications

methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.

acknoWledgments
J.E.P.-C. is a New York Stem Cell Foundation (NYSCF) Robertson Investigator and
an Alfred P. Sloan Foundation Fellow. This work was funded by The New York Stem
Cell Foundation (J.E.P.-C.), the Alfred P. Sloan Foundation (J.E.P.-C.), the NIH
Director’s New Innovator Award (1DP2MH11024701; J.E.P.-C.), a 4D Nucleome
Common Fund grant (1U01HL12999801; J.E.P.-C.) and a joint NSF-NIGMS grant
to support research at the interface of the biological and mathematical sciences
(1562665; J.E.P.-C.). This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under DGE-1321851 (H.N.).
D.S.B. would also like to acknowledge support from the John D. and Catherine T.
MacArthur Foundation.

author contributions
J.E.P.-C., D.S.B. and H.K.N. conceived of the study. H.K.N., D.J.E., S.G., H.H.,
K.R.T. and J.K. implemented the computational pipeline. J.E.P.-C., H.K.N., D.J.E.
and D.S.B. wrote the manuscript.

comPeting financial interests
The authors declare no competing financial interests.

reprints and permissions information is available online at http://www.nature.
com/reprints/index.html. Publisher’s note: springer nature remains neutral
with regard to jurisdictional claims in published maps and institutional
affiliations.

1. Bullmore, E. & Sporns, O. Nat. Rev. Neurosci. 10, 186–198 (2009).
2. Girvan, M. & Newman, M.E. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002).
3. Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Nat. Rev.

Genet. 8, 104–115 (2007).
4. Dekker, J., Marti-Renom, M.A. & Mirny, L.A. Nat. Rev. Genet. 14, 390–403

(2013).
5. Lieberman-Aiden, E. et al. Science 326, 289–293 (2009).
6. Phillips-Cremins, J.E. et al. Cell 153, 1281–1295 (2013).
7. Rao, S.S. et al. Cell 159, 1665–1680 (2014).
8. Dixon, J.R. et al. Nature 485, 376–380 (2012).
9. Nora, E.P. et al. Nature 485, 381–385 (2012).
10. Sexton, T. et al. Cell 148, 458–472 (2012).
11. Dali, R. & Blanchette, M. Nucleic Acids Res. 45, 2994–3005 (2017).
12. Forcato, M. et al. Nat. Methods 14, 679–685 (2017).
13. Newman, M.E. Proc. Natl. Acad. Sci. USA 103, 8577–8582 (2006).
14. Blondel, V.D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. J. Stat. Mech.

Theory. E. 2008, P10008 (2008).
15. Newman, M.E.J. Nat. Phys. 8, 25–31 (2012).
16. Won, H. et al. Nature 538, 523–527 (2016).
17. Rubinov, M. & Sporns, O. Neuroimage 56, 2068–2079 (2011).
18. Ball, B., Karrer, B. & Newman, M.E.J. Phys. Rev. E 84, 036103 (2011).
19. Weinreb, C. & Raphael, B.J. Bioinformatics 32, 1601–1609 (2016).

http://dx.doi.org/10.1038/nmeth.4560
http://dx.doi.org/10.1038/nmeth.4560
http://dx.doi.org/10.1038/nmeth.4560
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html

doi:10.1038/nmeth.4560 nature methods

online methods
Hi-C mapping, normalization and binning. Mapped, normalized
and 40-kb-binned Hi-C matrices from human fetal cortical plate
and germinal zone tissue generated in Won et al.16 were down-
loaded because raw reads were not readily available from GEO
(Supplementary Table 1). Because the three central diagonals of
the normalized data were all zero, we filled in these pixels with val-
ues drawn from the first off-diagonal of bins containing nonzero
values. Mapped and 20-kb-binned Hi-C data from wild-type and
Setdb1-deficient mouse neural cells generated in Jiang et al.20 were
downloaded from GEO (Supplementary Table 1). Raw sequencing
reads from two mouse embryonic stem (ES) cell replicates and
two mouse cortical tissue replicates from Dixon et al.8 were down-
loaded from GEO (Supplementary Table 1). Dixon et al.8 paired-
end reads were aligned independently to the mm9 mouse genome
using bowtie2 (global parameters:–very-sensitive −L 30 −score-
min L, -0.6, -0.2 −end-to-end–reorder; local parameters:–very-
sensitive −L 20 −score-min L, -0.6, -0.2 −end-to-end–reorder)
through HiC-Pro21. Unmapped reads, nonuniquely mapped reads
and PCR duplicates were filtered, and uniquely aligned reads were
paired. Hi-C maps were generated at 40 kb matrix resolution and
balanced using the iterative correction and eigenvector decompo-
sition (ICED) technique22. The resulting genome-wide Hi-C data
is represented in a matrix of the format Aij, where the ijth element
represents the interaction frequency between bins i and j. For all
data, counts ≥1 were log transformed.

Hi-C data network construction. Hi-C data at 40 kb matrix reso-
lution from mouse ES cells and cortical tissue8 and human cortical
plate germinal zone tissue16 were parsed into 6-Mb regions with
4 Mb of overlap between adjacent regions. Hi-C data at 20 kb
matrix resolution from Jiang et al.20 were parsed into 3-Mb
regions with 2 Mb of overlap. Regions overlapping centromeres or
telomeres were discarded. Additionally, low-information-content
regions were discarded if they exhibited either (i) severe count
sparsity, as indicated by a high percentage of pixels with zero
values along the diagonal of the counts matrix (>5%) or (ii) >3
consecutive bins along the diagonal with zero counts.

Community detection with network modularity maximiza-
tion and consensus partitioning. To partition genome-folding
networks into communities, we employed a Louvain-like, locally
greedy algorithm14 to maximize modularity. We first computed
the modularity matrix, M, according to equation (2):

M A
k k

m
mxy xy

x y= −()/ ()g 2

where M is a C × C matrix, C is the total number of communities,
Mx,y is the normalized interaction frequency between x and y
communities, kx is the sum of all edge weights for community x,
γ is the resolution parameter (discussed below), and m is the total
sum of all edge weights in network A (i.e., the sum of all interac-
tion counts in the matrix excluding the i = j diagonal). For the
first iteration of the algorithm (discussed in detail below), each
individual node is an independent community; thus, indices for
communities x and y correspond to the indices for nodes i and j.
For any given γ, Axy/m is the normalized edge strength connecting
communities x and y, and k k mx y / 2 is the expected normalized

(2)(2)

strength of edges at communities x and y if edges are placed at
random. From the modularity matrix, M, the modularity, Q, is
computed according to equation (3):

Q Mx y x yx y= ∑ [] (), ,, d 3

where Mx,y is the interaction frequency between x and y commu-
nities normalized to the expected interaction probability (equa-
tion (2)). To ensure that only edges within communities are added
to the summation, δx,y is 1 if x and y are assigned to the same
community (i.e., x = y) and 0 otherwise (i.e., x ≠ y).

The assumption of the Louvain-like algorithm is that the opti-
mal community structure can be resolved by maximizing Q. The
algorithm relies on an iterative, dynamic programming approach
to rapidly converge on a local maximum in Q without compre-
hensively examining the entire search space. For each iteration
t, individual nodes are given the opportunity to move into a new
community placement that yields a locally maximal gain in Q,
∆Q, for the M network according to equation (4):

∆Q Q Q M Mt t x yx y x y
t t

x yx y x y
t t

= − =() − ()−
= = −

∑ ∑1
1

4[] [] (),, , ,, ,d d

In the first iteration, t = 0, matrix M has the same dimensions as
matrix A such that every node is assigned to its own community
(i.e., C = N and x = i). Each node is given the chance to merge; and
at the end of the iteration, if ∆Q ≤ 10−10, the algorithm terminates
based on the assumption that no further moves will lead to a nota-
ble increase in Q. If ∆Q > 10−10, then the algorithm proceeds to
the next iteration and resizes the modularity matrix, M, to C × C
dimensions (where C is the number of communities computed in
the previous t = t −1 iteration, and (Mx,y)t=t is the sum of all previ-
ous (Mx,y)t=t−1 constituent edges that are merged into (Mx,y)t=t).
The intuition for the iterations is that with increasing t the average
size of communities increases with the gain in modularity. The
algorithm terminates when no further single community merge
leads to an improvement in modularity. Because modularity-maxi-
mization algorithms can converge on local maxima23, the Louvain-
like algorithm was applied 20 times to sample the landscape of
local maxima for each resolution parameter value (Supplementary
Fig. 3e). To ensure random sampling of the landscape of possible
maximum Q values, a randomized node selection with a unique
seed value was used to run each of the 20 partitions.

To determine a consensus partition among the set of 20 parti-
tions (Supplementary Fig. 3f), we identified the partition most
similar to the 19 other partitions through use of a similarity metric:
the adjusted RAND (aRAND) index24,25 from the sklearn toolbox
sklearn.metrics.adjusted_rand_score. For perfectly matched par-
titions, aRAND is equal to unity. For partitions that are no more
similar than would be expected by random chance, aRAND is close
to 0 or slightly negative. The aRand was computed between all
pairs of partitions within the set, and the partition with the highest
average aRand, representing the partition that is most similar to all
other partitions, was selected as the consensus partition26,27.

3DNetMod splitting and stitching approach to improve
genome-wide Hi-C runtimes. A critical challenge in the appli-
cation of 3DNetMod-MMCP to genome-wide Hi-C data is the

(3)(3)

(4)(4)

doi:10.1038/nmeth.4560nature methods

runtimes. Although the Louvain-like locally greedy algorithm
for modularity maximization scales linearly with network size14,
computing the consensus partition with the aRAND index is
a pairwise combinatorial algorithm that is nonpolynomial in
scaling. Therefore, using chromosome-wide networks would
give computationally intractable runtimes on Hi-C data binned
at 40 kb matrix resolution in a genome-wide network of more
than 75,000 nodes. High-resolution Hi-C data binned at
1–20 kb resolution would be computationally infeasible on a chro-
mosome-wide network. Moreover, to find the optimal γ range
(see below), 3DNetMod requires the random rewiring of genome-
folding networks. The computational time to randomly rewire a
network scales nonlinearly in time with network size, which also
makes chromosome-wide 3DNetMod computationally intracta-
ble. We solved the time scaling issue by splitting the genome into
defined 3-or-6 Mb regions and performing all domain-calling
computations on each region in parallel.

Determining structural resolution parameter values with a g
plateau sweep. We developed 3DNetMod-GPS to determine the
γ values that provide high-confidence domain calls across a range
of length scales. To determine the maximum γ value for a given
chromosome of a given Hi-C sample of interest, we first selected
a representative subset of five evenly spaced regions of sufficient
counts across a given chromosome. We constructed a randomly
rewired network for each representative region by reshuffling the
edge weights in a manner that preserves the symmetric nature
of the adjacency matrix as well as preserving node degree while
approximately preserving node strength17,28 (Supplementary
Fig. 3b). To create randomly rewired networks, we implemented
a python version of null_model_und_sign.m from the Brain
Connectivity Toolbox (https://sites.google.com/site/bctnet/).
Briefly, the expected weight, Ei,j, for all edges is computed as ki * kj,
where ki is the degree of node i, and kj is the degree of node j.
Observed (Ai,j) and expected (Ei,j) edge weights are then rank
ordered in two independent lists. We then proceed with the fol-
lowing randomization steps: (i) a specific edge i,j (where i ≠ j)
is randomly selected, (ii) the rank of that edge in the expected
list is noted, (iii) the observed edge weight at the noted expected
rank is then assigned to edge Ai,j, and (iv) the expected and
observed values are then removed from their respective lists.
New sets of remaining expected values and remaining observed
values are computed and then ranked to reflect edge removal,
and (v) steps i–iv are repeated until all observed edge values
have been assigned. For each selected representative region and
its accompanying randomly rewired network, modularity, Q,
was computed beginning at γ = 0 and increasing in increments
of 0.1 until the curves of Q versus γ for the real and randomly
rewired networks converged (Supplementary Fig. 3a). The
maximum γ value was selected as the largest γ value from the
five regions at the convergence point between real and random
networks. Max γ values were determined for all Hi-C data sets
and all chromosomes.

To determine the subset of γ values that lead to high-
confidence domain calls in a region-specific manner, we devel-
oped a gamma plateau selection method. First, the number of
communities detected with a single application of the Louvain-
like locally greedy algorithm for each γ value between 0 and the
computed maximum value in increments of 0.01 was determined

(Supplementary Fig. 3d). Next, ≥ n consecutive γ values with
the same number of communities detected were grouped into
‘plateaus’, where n is a user-defined parameter. Notably, n = 3
was used for Won et al.16 Hi-C (Supplementary Fig. 6), n = 3
was used for Jiang et al.20 Hi-C, and n = 8 was used for Dixon
et al.8 with lower sequencing depth. The median γ value in
each plateau was then used for all subsequent domain-calling com-
putations. Finally, 3DNetMod-MMCP (Supplementary Fig. 3e,f)
was then applied for each selected γ value for each region to
detect the nested hierarchy of domains (Supplementary Fig. 3g).

Processing filters for initial domain call set from 3DNetMod-
GPS and 3DNetMod-MMCP. The initial full set of domains
detected through 3DNetMod-GPS and 3DNetMod-MMCP
was then processed to remove small communities and edge
cases. Domains smaller than a user-defined size based on the
resolution limit of the HiC data were removed. For all data sets,
domains smaller than five genomic bins were removed. Thus,
for 40-kb-binned Dixon et al.8 and Won et al.16 data, the mini-
mum domain size was 200 kb. For 20-kb-binned Jiang et al.20
data, minimum domain size was 100 kb. Second, domains with
at least one boundary within four bins of the edge of the region
were removed. Third, redundant domains with exact match start
and stop coordinates that were identified at multiple γ values
or in multiple adjacent overlapping regions were merged into one
domain. Finally, we observed that lower sequencing depth Hi-C
data from Dixon et al.8 was prone to egregiously wrong domain
calls that were driven by the high spatial noise and high number of
outlier pixels. Thus, we developed an optional ‘trash’ community
filter that identifies and discards domain calls with very sparse
counts (less than 80% of counts along the domain edge are greater
than the lowest 1% of total counts for the region). This filter was
only applied to the low-sequencing-depth Dixon et al.8 data.

Hierarchical spatial variance minimization to refine domain
calls. To identify high-confidence domains across length scales,
we developed and applied a new hierarchical spatial variance min-
imization method (3DNetMod-HSVM). We first stratified com-
munities by size: (i) minimum domain size to 400 kb (Level 1),
(ii) 401 to 800 kb (Level 2), (iii) 801 to 1,600 kb (Level 3), (iv)
1,601 kb to 3 Mb (Level 4) and (v) greater than 3 Mb (Level 5).
We then quantified the variability of a community boundary call
across the 20 partitions by computing a boundary spatial vari-
ance. Specifically, we computed the spatial variance per bound-
ary across the 20 partitions according to equation (5):

q2
2

1
5=

−

−
∑ ()

()
x x

n
ii

n

where xi is the coordinate of the boundary in partition i (in units
of nodes), x is the coordinate of the consensus boundary, and
n is the number of partitions in the set. Boundaries with per-
fect agreement across the set of 20 partitions will have a variance
of zero, whereas boundaries with large fluctuations in position
across the set of partitions will have a higher variance. Boundary
spatial variance values were then pooled for all communities of a
given size stratum across a given chromosome.

A size-stratum-specific variance threshold can be selected to
minimize false positive domain calls and inadvertent detection of

(5)(5)

https://sites.google.com/site/bctnet/

doi:10.1038/nmeth.4560 nature methods

compartments as domains (Supplementary Fig. 3h–l). For Won
et al.16 human cortical plate and human germinal zone tissue Hi-
C, we selected thresholds of L1: 70% area under the curve (AUC),
L2: 100% AUC, L3: 100% AUC, L4: 60% AUC, L5: 0 variance
(Supplementary Fig. 10). For Dixon et al.8 mouse cortical tissue,
we selected thresholds of L1: 0 variance, L2: 70% AUC, L3: 60%
AUC, L4: 100% AUC, L5: 0 variance (Supplementary Fig. 11).
For Jiang et al.20 wild-type mouse neural cells, we selected thresh-
olds of L1: 0 variance, L2: 35% AUC, L3: 30% AUC, L4: 100%
AUC, L5: 0 variance (Supplementary Fig. 12). Communities with
a boundary that did not pass their size-stratum-specific variance
threshold were considered low confidence and were removed
from the list of domain calls. The resulting communities repre-
sent the high-confidence list of domains identified for a given cell
type and replicate (Supplementary Fig. 3l).

Postprocessing chaos filter to remove domains called in
regions with minimal substructure. To allow users to remove
domains called in regions where there is minimal structure, we
developed and implemented an optional ‘chaos filter’. This fil-
ter is based on the observation that segments of the genome
with nested substructure have greater maximum counts and
variance in the band 2–10 bins from the diagonal compared
to regions with no nested substructure (or regions of ‘chaos’).
To identify regions with minimal structure, each chromosome
(excluding regions that were previously discarded for having low
counts or being at centromeres or telomeres) is evaluated in a
sliding window of 20 bins with a one-bin increment. For each
20-bin window, Wi, the maximum count and variance of each n
off-diagonal, where n ranges from 2 to 10, is computed. These
metrics are then compared to the corresponding off-diagonal
chromosome-wide average of maximum and variance across all
W. If none of the metrics for window Wi exceed a user-defined
percentage of the corresponding chromosome-wide average,
Wi is considered to have no nested substructure, and domains
identified within Wi are discarded after variance thresholding.
For Won et al.16 and Jiang et al.20 Hi-C data, we used a chaos
filter percentage of 85%. For Dixon et al.8 Hi-C data, we used
a more stringent chaos filter percentage of 92%. Domain calls
post-chaos filter for Won et al.16 and Jiang et al.20 were used
for comparison of methods in Figure 2 and Supplementary
Figures 14 and 15.

Assembly of final domain calls. To assemble the list of final
domain calls, highly similar domains identified within the same
sample were merged together. Two domains were considered
‘highly similar’ if the distance between their start coordinates
was less than or equal to a user-defined allowance (typically
equivalent to one genomic bin), and the distance between their
stop coordinates also fell within the user-defined allowance. The
new merged domain has boundary coordinates that encompass
the constituent domains (i.e., the upstream boundary extends
from the first upstream boundary coordinate to the last bound-
ary coordinate of the constituent domains). For data sets without
biological replicates for a given cellular condition (Won et al.16),
the merged domain calls (post-chaos filter if chaos filter is used)
represent the final 3DNetMod domain calls. For data sets with
two biological replicates of a given cellular condition (Dixon
et al.8, Jiang et al.20), an additional set of consistent domains was

made containing calls that were identified in both biological
replicates within the user-defined tolerance window (i.e., the dis-
tance between the start coordinate of a given domain in replicate
one and replicate two must be less than or equal to the user-
defined allowance, and the distance between their stop coordi-
nates must also fall within the allowance).

Final 3DNetMod domain calls for human cortical plate Hi-C
data16 as well as mouse neural cell Hi-C data20 can be found in the
bitbucket repository. Genomic regions that were removed from
consideration because of count sparsity or gaps in counts can also
be found within the bitbucket repository.

3DNetMod runtimes. Using a local machine (2.5 GHz Intel
Core i7) across four processors, the runtime for chromosome
7 of 40 kb binned data from Won et al.16 was 52 min (3,096 s).
Genome-wide runtime was approximately 22 h (80,640 s) for a
quadcore. With access to a high-performance computing clus-
ter, all chromosomes and regions can be run in parallel, and
genome-wide domain calls can be identified in ~1 h for 40-kb-
binned data.

We found that average runtimes were consistent for regions
with the same number of nodes but different matrix resolutions
(data not shown) when using the same plateau size. For small
region sizes (i.e., split regions up to 300 nodes instead of chromo-
some-wide networks), we observed that the runtime per region
scales linearly with region size. For region sizes larger than 300
nodes, 3DNetMod has nonlinear scaling that makes the method
computationally intractable. The critical aspects of 3DNetMod
contributing to the nonlinear scaling are: (i) region size (i.e.,
number of nodes) during 3DNetMod-MMCP, (ii) region size
during the random wiring step of 3DNetMod-GPS, and (iii)
plateau size during 3DNetMod-GPS (smaller plateaus take
significantly longer time to process because of more γ values).
Thus, we recommend that users split the genome into regions
of ~75–300 nodes.

Comparison of domain calls in 3-Mb, 6-Mb and 12-Mb regions.
To assess the effect of region size on the quality of domains identi-
fied (Supplementary Fig. 4), Hi-C data from human cortical plate
tissue16 were split into 3-Mb regions with 2 Mb overlap, 6-Mb
regions with 4 Mb overlap and 12-Mb regions with 8 Mb overlap.
3DNetMod-GPS and 3DNetMod-MMCP were performed with
a plateau size of 3 and all other default parameters. 3DNetMod-
HSVM was performed with L1: 70% area under the curve (AUC),
L2: 100% AUC, L3: 100% AUC, L4: 60% AUC, L5: 0 variance.
Chaos filtering was not performed.

Benchmarking 3DNetMod against leading domain-calling
methods in Hi-C. To qualitatively assess the performance of
3DNetMod compared with that of three leading domain-call-
ing methods, we identified domains in one or more Hi-C data
sets using DI-HMM8, Arrowhead7 and TADtree19. Across the
methods, domains identified in regions with low counts or
regions overlapping centromeres and telomeres (i.e., regions
excluded from 3DNetMod domain calling) were excluded from
further analysis.

To identify domains using the Directionality Index and
Hidden Markov Model (DI-HMM) method detailed in Dixon
et al.8, we created a python implementation of the method.

doi:10.1038/nmeth.4560nature methods

Briefly, the DI test statistic used to measure upstream and
downstream portions of a topological domain was computed
according to equation (6):

DI B A
B A

A E
E

B E
E

= −
−

∗ − + −

| |
() () ()

2 2
6

where B is the total summation of counts within a 1D horizon-
tal array of length L (a user-adjustable number of genomic bins)
upstream of the diagonal, A is the total summation of counts
within a 1D horizontal array of length L downstream of the
diagonal, and E is the mean of A and B. For 40 kb Hi-C, the
standard DI A/B length L is 50 bins (2 Mb). DI computation
was then followed by a mixed Hidden Markov Model (mHMM)
using Gaussian mixtures to predict ‘upstream bias’, ‘downstream
bias’ and ‘no bias’ states using the procedure of Dixon et al.8.
We used the Baum–Welch expectation-maximization algorithm
and the Forward–Backward algorithm to estimate posterior
marginals and compute the maximum likelihood estimate. The
mixture with best goodness of fit was chosen by AIC criterion
(equation (7)):

AIC k L= −2 2 7ln() ()

where k is the number of parameters in the model, and L is the
maximum likelihood estimate. mHMM was then followed by a
postprocessing step where only regions with median posterior
probabilities ≥99% or a region comprised of at least 2 bins were
selected. Domains were initiated at the beginning of a down-
stream-biased mHMM state and continued throughout con-
secutive downstream states. Domains ended when the last of the
upstream-biased states was reached.

To identify a nested hierarchy of domains in human cortical
plate cells16 using the DI-HMM method (Fig. 2e), we used a
range of Directionality Index lengths8: 7 bins, 8 bins, 20 bins,
35 bins and 50 bins. We determined 7 bins to be the lower limit
on account of the narrow distribution of DI values relative to the
number of bins genome wide, resulting in rank deficiency during
matrix inversion within HMM.

To call domains using the TADtree method19, we down-
loaded the TADtree python tool from http://compbio.cs.brown.
edu/projects/tadtree. TADtree recursively maximizes a bound-
ary index that looks for shifts in interaction frequency at TAD
boundaries to form an optimal set of nested TAD trees19.
We kept the default or recommended parameters to identify
domains in Won et al.16 cortical plate chromosome 7 (Fig. 2e
and Supplementary Fig. 14c). For 40 kb resolution data, these
parameters are: s = 50, m = 10, P = 3, q = 12, gamma = 500 and n
= 40019. The TADtree authors recommend 2 Mb as the maximal
detected TAD size, which translates to s = 50 for 40-kb-binned
data. The reported ~O(s5) scaling of the TADtree method19
leads to computationally intractable run times for Hi-C data
binned lower than 40 kb matrix resolution. Because Jiang et al.20
wild-type neuron Hi-C is binned at 20 kb resolution, we could
only run the method on a small individual chromosome (chr
18) with s = 50 (1 MB maximal detected TAD size) and default
n, m, p, q and gamma values (Supplementary Fig. 15b). To detect
domains with standard s = 100 (2 Mb maximal detected TAD
size), we could only run half of chromosome 18 with n scaled

(6)(6)

(7)(7)

to 200 and default m, p, q and gamma values (Supplementary
Fig. 15c). Per the recommendation of TADtree authors, a final
set of domain calls was chosen such that at most 2% of all output-
ted TADs are duplicates.

To call domains using the Arrowhead method, Juicer_tools_
0.7.0 was installed from https://github.com/theaidenlab/juicer/
wiki/Download. Arrowhead calculates the likelihood that a given
pixel corresponds to the corner of a domain and is capable of
finding a nested hierarchy of domains7. For Won et al.16 data,
the −n flag was used to indicate that data were already matrix
balanced, whereas for Jiang et al.20 data, the −n flag was omit-
ted, and default matrix normalization was performed. All other
default parameters were used to identify domains in Won et al.16
(Fig. 2e and Supplementary Fig. 14a) and Jiang et al.20 Hi-C data
(Supplementary Fig. 15a).

To more appropriately compare domains identified across
the methods, domains identified in regions with low counts
or regions overlapping centromeres and telomeres (i.e. regions
already excluded from 3DNetMod analysis) were excluded from
further analysis.

We compared the run times of 3DNetMod to TADtree on chro-
mosome 18 of Jiang et al.20 wild-type neurons and chromosome 7
of Won et al.16 cortical plate. We used these single-chromosome
runtimes in combination with the equations provided in
Weinreb et al.19 to estimate a genome-wide runtime for TADtree
(Supplementary Table 2) and compared this runtime to actual
runtimes of 3DNetMod. We estimate that a genome-wide runtime
of TADtree on 40-kb-binned data would take ~44.5 h of compu-
tation time, whereas a 3DNetMod takes ~22 h of computation
time. Furthermore, we estimate that the genome-wide computa-
tion time of TADtree on 20-kb-binned data using all processors
on a quad-core computer would take >63 d, whereas 3DNetMod
takes ~2 d of computation time.

Benchmarking 3DNetMod against leading domain-calling
methods in simulations. To quantitatively compare the per-
formance of DI-HMM, 3DNetMod and TADtree in identify-
ing domain structures, we constructed two different network
simulations with known community structure: (i) binarized
(Supplementary Fig. 13a) and (ii) nested overlapping (Fig. 2a
and Supplementary Fig. 13c,d). A 400 × 400 bin binary network
was constructed with three domain sizes of 100, 50 and 10 bins
(14 in total). Each pixel within a domain was assigned a value of
1,000, while pixels not belonging to a domain were each assigned
a value of zero. Additionally, we derived a nested overlapping
480 × 480 bin simulation from a well-ordered Sierpinski fractal
pattern. In the nested construct, the simulated counts within the
original layered triangles were randomly scrambled within the
same layer to form square domains with the corners preserved
(unscrambled). We constructed five nested layers of domains: the
first inner layer consisted of 24 total 20-bin-sized domains. The
second layer consisted of 22 total overlapping domains of size
40 bins offset midway at 20 bins. The third layer consisted of six
80-bin-sized domains, and the fourth and fifth layers contained
three 160-bin domains and one 320-bin domain, respectively. The
intensity of each layer was set to scale with the distance depend-
ence of chromosome conformation capture data. The intensity of
the domain corners was raised beyond the distance expectation
to simulate loops anchoring chromatin-folding domains.

http://compbio.cs.brown.edu/projects/tadtree
http://compbio.cs.brown.edu/projects/tadtree
https://github.com/theaidenlab/juicer/wiki/Download
https://github.com/theaidenlab/juicer/wiki/Download

doi:10.1038/nmeth.4560 nature methods

We applied DI-HMM, 3DNetMod and TADtree to find domains
in our simulated Hi-C networks (Fig. 2 and Supplementary
Fig. 13). DI A/B lengths L of 20, 30, 40, 60, 80, 120, 160, 240, 320
and 360 bins were chosen to capture as much nested structure
as possible in the nested simulation, while L of 100 and 50 bins
were chosen for the binary simulation. In 3DNetMod, we used a
convergence threshold of 0.0035 for max γ value determination,
20 partitions, a plateau size of 1 and a minimal size threshold of
two nodes. No variance thresholding at any length scale or filter-
ing was applied.

To run TADtree on the nested overlapping simulations, an s
value of 200 bins was used on account of limitations of O(s5) scal-
ing (TADtree with s = 200 required 433,862 s to detect domains in
the simulation). Thus, only one domain at the largest scale (320
bins) of the 56 known simulated domains could not be detected
and was omitted from consideration. For the other TADtree
parameters, m = 5, n = 56, P = 3, gamma = 500 and q = 12 were
selected. For binary networks, an s value of 100 bins was used and
other parameter choices included: m = 2, n = 14, P = 3, gamma =
500 and q = 12. We were unable to detect domains in our simula-
tions using the Arrowhead method, as our simulation data struc-
ture was not readily transformed into the format required for the
method’s software implementation.

A receiver operating characteristic (ROC) curve was con-
structed for DI sweep, 3DNetMod and TADtree (Fig. 2b and
Supplementary Fig. 13b) by comparing a combined test array
of all nested layers against a combined binary true array of all
layers with one at a true domain boundary and zero elsewhere.
The simulations shown in Supplementary Figure 13a were used
to construct the ROC shown in Supplementary Figure 13b. The
simulations shown in Supplementary Figure 13d were used to
construct the ROC shown in Figure 2b. To score the confidence
in the domain calls for the test array for DI sweep, boundaries of
domains were assigned the domain average probability of each
most likely hidden state. For 3DNetMod, boundaries of domains
were assigned the boundary spatial variance. For TADtree, no
metric is provided for the confidence in domain calls; thus, the
boundaries of domains were assigned a confidence of 1. If called
boundaries were within 3 bins of the actual boundary, and the
domain sizes did not differ by more than 4 bins, the call was
considered correct, and the boundary position in the test array

was assigned to the same boundary position in the true array.
Otherwise, the test boundary was tallied as a false positive.

Pileups of CTCF at domain boundaries. To assess the enrichment
of chromatin marks at domain boundaries identified in wild-type
mouse neurons at different length scales (Supplementary Fig. 9),
we computed the average number of wild-type CTCF ChIP-seq
peaks per 40-kb genomic interval at increasing distances from
boundary coordinates.

Spring force diagram visualization. We visualized networks
as spring-force diagrams using the MATLAB BGL toolbox
(Fruchterman and Reingold, Code from MatlabBGL toolbox,
David Gleich, Fig. 1). Networks were thresholded such that the
top 15% of edge weights were visualized. A threshold of 15% was
chosen because it was stringent enough to improve visualization,
but it was lenient enough for the graph to remain fully connected.
All analyses were performed on the fully weighted graphs; ad hoc
thresholds were applied to facilitate visualization.

Life Sciences Reporting Summary. Further information regard-
ing the experimental design may be found in the Life Sciences
Reporting Summary.

Data availability. Code, sample input data and usage instructions
are available at the following Bitbucket repository: https://bitbucket.
org/creminslab/3dnetmod_method_v1.0_10_06_17. The data ana-
lyzed in this study are summarized in Supplementary Tables 1 and 3.
Source data for Figures 1 and 2 are available online.

20. Jiang, Y. et al. Nat. Genet. 49, 1239–1250 (2017).
21. Servant, N. et al. Genome Biol. 16, 259 (2015).
22. Imakaev, M. et al. Nat. Methods 9, 999–1003 (2012).
23. Good, B.H., de Montjoye, Y.-A. & Clauset, A. Phys. Rev. E 81, 046106

(2010).
24. Traud, A.L., Kelsic, E.D., Mucha, P.J. & Porter, M.A. SIAM Rev. 53, 526–543

(2011).
25. Hubert, L. & Arabie, P. J. Classif. 2, 193–218 (1985).
26. Doron, K.W., Bassett, D.S. & Gazzaniga, M.S. Proc. Natl. Acad. Sci. USA

109, 18661–18668 (2012).
27. Lohse, C., Bassett, D.S., Lim, K.O. & Carlson, J.M. PLoS Comput. Biol. 10,

e1003712 (2014).
28. Maslov, S. & Sneppen, K. Science 296, 910–913 (2002).

https://bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17
https://bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17

1

nature research | life sciences reporting sum
m

ary
June 2017

Corresponding author(s): Jennifer Phillips-Cremins

Initial submission Revised version Final submission

Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list
items might not apply to an individual manuscript, but all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

 Experimental design
1. Sample size

Describe how sample size was determined. N/A

2. Data exclusions

Describe any data exclusions. N/A

3. Replication

Describe whether the experimental findings were
reliably reproduced.

N/A

4. Randomization

Describe how samples/organisms/participants were
allocated into experimental groups.

N/A

5. Blinding

Describe whether the investigators were blinded to
group allocation during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. Statistical parameters
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

Nature Methods: doi:10.1038/nmeth.4560

2

nature research | life sciences reporting sum
m

ary
June 2017

 Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this
study.

We provide the code for our method and clearly direct readers to the Git
repository to access our code.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for
providing algorithms and software for publication provides further information on this topic.

 Materials and reagents
Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of
unique materials or if these materials are only available
for distribution by a for-profit company.

N/A

9. Antibodies

Describe the antibodies used and how they were validated
for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a. State the source of each eukaryotic cell line used. N/A

b. Describe the method of cell line authentication used. N/A

c. Report whether the cell lines were tested for
mycoplasma contamination.

N/A

d. If any of the cell lines used are listed in the database
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

N/A

 Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population
characteristics of the human research participants.

N/A

Nature Methods: doi:10.1038/nmeth.4560

	Detecting hierarchical genome folding with network modularity
	Methods
	ONLINE METHODS
	Hi-C mapping, normalization and binning.
	Hi-C data network construction.
	Community detection with network modularity maximization and consensus partitioning.
	3DNetMod splitting and stitching approach to improve genome-wide Hi-C runtimes.
	Determining structural resolution parameter values with a g plateau sweep.
	Processing filters for initial domain call set from 3DNetMod-GPS and 3DNetMod-MMCP.
	Hierarchical spatial variance minimization to refine domain calls.
	Postprocessing chaos filter to remove domains called in regions with minimal substructure.
	Assembly of final domain calls.
	3DNetMod runtimes.
	Comparison of domain calls in 3-Mb, 6-Mb and 12-Mb regions.
	Benchmarking 3DNetMod against leading domain-calling methods in Hi-C.
	Benchmarking 3DNetMod against leading domain-calling methods in simulations.
	Pileups of CTCF at domain boundaries.
	Spring force diagram visualization.
	Life Sciences Reporting Summary.
	Data availability.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Network modularity maximization and consensus partitioning (3DNetMod-MMCP) identifies nested, partially overlapping chromatin domains across length scales.
	Figure 2 3DNetMod outperforms leading domain-calling methods in real and simulated Hi-C data.

