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in part because of the paucity of methods for sensitive and accu-
rate detection of sub-Mb-scale domains. Two recent comparative 
analyses reported that existing domain-calling methods accu-
rately identify TADs but show poor ability to capture the full 
nested hierarchy of partially overlapping subTADs11,12. Thus, 
there is a great need for computational tools that accurately and 
sensitively detect the full nested hierarchy of chromatin domains 
across length scales.

Here, we hypothesize that nested, partially overlapping TADs 
and subTADs can be identified with a community detection 
method based on the maximization of network modularity13. We 
abstracted Hi-C data as a square, symmetric adjacency matrix, 
A, of size N × N with N adjacent, equally spaced bins represent-
ing nodes and interaction frequencies between nodes represent-
ing edges (Supplementary Fig. 1). To identify communities, we 
maximized the modularity quality index, Q (equation (1)):
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where Ai,j is the edge weight representing interaction frequency 
between nodes i and j, ki is the sum of all edge weights for node 
i, m is the sum of all nondiagonal edge weights in the network  
A, and γ is the resolution parameter (discussed below). Nodes 
i and j are assigned to communities gi and gj, respectively.  
The Kronecker delta, δ(gi,gj), is 1 if gi = gj and 0 otherwise.  
A modularity value close to 1 indicates strong community struc-
ture and a high-quality division of the network into communi-
ties, whereas a Q value close to 0 indicates that the strength of  
within-community connections is no higher than would be 
expected by chance.

To identify the optimal division of the network into commu-
nities, we employed a Louvain-like, locally greedy algorithm to 
maximize network modularity14 (3DNetMod-modularity maxi-
mization (MM); see Online Methods). The 3DNetMod-MM 
algorithm was chosen because it does not require a priori knowl-
edge of the number of communities that will be detected15, and 
it offers the critical capability of identifying nested communities 
through the variation of a resolution parameter. The output from 
a single run of 3DNetMod-MM is an ‘optimal’ partition of nodes  
into communities.

We first assessed the performance of 3DNetMod-MM in  
40-kb-binned Hi-C data from human embryonic cortical plate tis-
sue16 (Fig. 1a and Supplementary Table 1). To address boundary 
variation due to 3DNetMod-MM convergence on local maxima, 
we sampled the landscape of community partition solutions by 
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mammalian genomes are folded in a hierarchy of compartments, 
topologically associating domains (tads), subtads and looping 
interactions. here, we describe 3dnetmod, a graph theory-
based method for sensitive and accurate detection of chromatin 
domains across length scales in hi-c data. We identify nested, 
partially overlapping tads and subtads genome wide by 
optimizing network modularity and varying a single resolution 
parameter. 3dnetmod can be applied broadly to understand 
genome reconfiguration in development and disease.

Principles from the field of mathematics known as graph theory 
have emerged as powerful tools for quantifying connectivity pat-
terns within complex systems1. Networks are graphs consisting of 
nodes connected by edges that can be used to represent the under-
lying structure of biological, social, physical and information sys-
tems. Complex networks often exhibit hierarchical patterns of 
connectivity across length scales2. Interacting nodes can form 
small subnetworks arranged in distinct recurrent configurations 
termed motifs. Subnetworks can in turn hierarchically aggregate 
into higher-order modules (or communities)2. Communities are 
important functionally because they can promote resilience to 
individual node failure within a network.

A complex system exhibiting hierarchical structure is the higher-
order folding of chromatin in the 3D nucleus. The approximately 
two-meter-long genome is arranged in complex higher-order con-
figurations to fit inside a mammalian nucleus that is 5–10 µm in 
diameter3,4. Individual chromosomes aggregate into higher-order 
‘A’ and ‘B’ compartments5, which are further partitioned into 
Megabase (Mb)-sized TADs and smaller, nested subTADs6–10. 
Distal genomic segments connect to create long-range looping 
interactions within and between TADs and subTADs7. The func-
tional role for TADs and subTADs, and the extent to which they 
change across biological conditions, remains poorly understood,  
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applying 3DNetMod-MM 20 times (hereafter referred to as a ‘par-
tition block’ with dimensions 20 × N) (Fig. 1b). We then identi-
fied the ‘consensus partition’ that is most similar to the other 
partitions (Fig. 1c; see Online Methods). We found that up to 
1,000 partitions led to nearly the same consensus, which sug-
gested that 20 partitions yields an acceptable balance of accuracy 
and speed (Supplementary Fig. 2). Thus, we address fluctua-
tions in partitions due to algorithmic convergence on local versus 
global maxima by computing a consensus community partition. 
We hereafter refer to 3DNetMod-MM coupled with consensus 
community partitioning as ‘3DNetMod-MMCP’.

We next hypothesized that communities of different sizes can 
be identified with 3DNetMod-MMCP through modification of 
the resolution parameter. When γ > 1, the algorithm is biased 
toward detection of smaller communities, whereas the bias is 
toward detection of larger communities when γ < 1. By varying 
only a single resolution parameter, we detected a wide size range 
of hierarchically nested chromatin domains with 3DNetMod-
MMCP (Fig. 1).

We next sought to comprehensively identify high-confidence 
domains genome wide. 3DNetMod-MM is estimated to run in time 
O(n)14, and the addition of 3DNetMod-MMCP and a sweep of γ 
values would make the method computationally intractable for 
identifying genome-wide domains. We devised a strategy in which 
we split the genome into overlapping regions and called nested 
domains on all regions in parallel (Supplementary Fig. 3a). Region 
size is provided as a user parameter and should be tuned to the 
resolution of the Hi-C library and the biological question of interest 
(Supplementary Fig. 4a–c). Thus, each genomic region can be run 
in parallel, significantly cutting down on the runtime and making 
it feasible to explore the range of γ values required to detect TADs 
and subTADs genome wide (Supplementary Table 2).

We devised a method, ‘gamma plateau sweep’ (3DNetMod-
GPS), to select γ values that lead to high-confidence domains. 
To find the informative γ range, we generated random graphs 
with preserved weight, degree and strength distributions17 
(Supplementary Figs. 3b and 5a,b). We noticed that modularity 
of the real network diverges from the random network at low γ and 
converges again at high γ (Supplementary Figs. 3c and 5c). We 
computed the 3DNetMod-GPS endpoint as the maximum γ across 
five representative regions where modularity converges between 
real and random networks. We also uncovered plateaus in which 
adjacent γ values gave rise to the same consensus partition and 
average number of communities (Supplementary Figs. 3d and 
5d). Additionally, we noticed that some γ values did not belong to a 
plateau and gave rise to low-confidence partitions (Supplementary 
Fig. 6a–c). We observed that γ values resulting in a plateau size of 3 
lead to robust domain calls in high-read-depth, 40-kb-binned Hi-
C data (Supplementary Fig. 5d–f). Overall, 3DNetMod-MMCP 
and 3DNetMod-GPS coupled with our region-splitting strategy 
(Supplementary Fig. 3e–g) result in a large, diverse set of nested 
domains across length scales genome wide.

TADs and subTADs are known to interact in higher-order 
structures termed compartments5. Compartments appear in 
Hi-C maps as long-range, plaid patterns of alternating strong 
and weak interacting segments between groups of domains. 
By contrast, TADs and subTADs are thought to be structurally 
and functionally distinct from compartments, and defined as 
contiguous genomic intervals in which all pairs of loci exhibit  

elevated contact frequency7. To dissect higher-order compart-
ments from domains, we devised a new ‘hierarchical spatial vari-
ance minimization’ (3DNetMod-HSVM) method (Supplementary  
Fig. 3h–l). We noticed that domains with continuously high inter-
action signal for the majority of bin pairs exhibit highly consistent 
partition blocks from 3DNetMod-MMCP (Supplementary Fig. 7a).  
By contrast, communities exhibiting a nonuniform, alternating 
interaction pattern characteristic of compartments tended to 
exhibit greater variability in boundary assignment across the 20 
partitions (Supplementary Figs. 7b and 8a–e).

We posited that community assignment degeneracies in the 
partition blocks could represent (i) low-confidence boundaries 
indicative of ‘soft’ community structure18 and/or (ii) longer range 
compartments with nonuniform, alternating high/low signal. 
We computed a spatial variance for each domain boundary (see 
Online Methods). Spatial variance distributions were depend-
ent on the length scale of the domain (Supplementary Fig. 8e).  
By instituting length-scale-specific spatial variance thresholds, 
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figure 1 | Network modularity maximization and consensus partitioning 
(3DNetMod-MMCP) identifies nested, partially overlapping chromatin 
domains across length scales. (a) Hi-C heatmaps from human cortical  
plate tissue16. Domains identified with 3DNetMod-MMCP at γ = 1 (left),  
γ = 1.1 (center) and γ = 1.18 (right) are outlined in green. (b) Community 
partitions from 20 applications of 3DNetMod-MM at γ = 1 (left), γ = 1.1 
(center) and γ = 1.18 (right). (c) Consensus partitions for each γ value 
from 20 partitions. (d) Spring-force diagrams representing network 
communities in Hi-C data. Node proximity corresponds to the relative 
interaction frequency between the two genomic bins. Node color  
indicates community assignment. (e) Chromosome-wide distribution 
(chr7) of domain sizes identified with γ = 1.0 (left), γ = 1.1 (center)  
and γ = 1.18 (right).
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we removed many communities exhibiting alternating interaction 
patterns indicative of compartments (Supplementary Fig. 8f–i). 
High-confidence domain boundaries passing the spatial variance 
thresholds exhibited enrichment for occupancy of the architectural 
protein CTCF, whereas communities with high spatial variance did 
not show enrichment (Supplementary Table 3 and Supplementary 
Fig. 9). Spatial variance distributions are widely variable among 
data sets (Supplementary Table 1); thus, we recommend tun-
ing thresholds on a Hi-C-library-specific basis (Supplementary  
Figs. 10–12). These results indicate that 3DNetMod-HSVM has 
utility in dissecting high-confidence domains with corroborative 
enrichment of known epigenetic marks from low-confidence 
communities and higher-order compartments.

To compare the performance of 3DNetMod to other leading 
domain-calling methods, we generated TAD and subTAD simula-
tions. We first simulated a network of nonoverlapping, nonhierar-
chical domains. We observed that 3DNetMod, TADtree19 and the 
Directionality Index-Hidden Markov Model (DI-HMM) method8 
accurately identify nonoverlapping domains (Supplementary 

Fig. 13a,b). Next, to simulate a network with partially overlap-
ping domains resembling subTADs, we created a construct of 
nested subtriangles derived from a Sierpinski triangle (Fig. 2a and 
Supplementary Fig. 13c,d). 3DNetMod outperformed DI-HMM 
and TADtree in capturing simulated domains with nested, par-
tially overlapping structure, even when we added a full sweep of 
DI windows to the DI-HMM method (Fig. 2b). Finally, we com-
pared the performance of 3DNetMod to Arrowhead7, TADtree 
and the full DI-HMM parameter sweep on Hi-C data from human 
cortical plate tissue (Fig. 2c–e). 3DNetMod outperformed cur-
rent leading genome-wide domain-calling methods for sensitive 
and accurate detection of nested, partially-overlapping subTADs 
within TADs.

3DNetMod’s ability to sensitively and accurately quantify chro-
matin domains may shed new light into how genome structure 
governs function across development and during the onset and 
progression of disease. Code, sample input data and usage instruc-
tions are freely available at https://bitbucket.org/creminslab/
3dnetmod_method_v1.0_10_06_17.
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figure 2 | 3DNetMod outperforms leading domain-calling methods in real and simulated Hi-C data. (a) Simulated Hi-C data with nested, partially 
overlapping domain structure. Expected domains (top), DI-HMM + DI sweep domains (center top), TADtree domains (center bottom) and 3DNetMod 
domains (bottom) are shown. The maps shown are a zoomed-in view of the full simulations shown in supplementary figure 13d. (b) Receiver operating 
characteristic (ROC) curves showing the true positive rate and false positive rate of 3DNetMod (magenta), DI-HMM + DI Sweep (teal) and TADtree (blue) 
domain detection performance in the simulated Hi-C network with nested, partially overlapping domains. (c,d) Distribution of (c) domain sizes and (d) 
number of domains identified in chromosome 7 of human cortical plate tissue Hi-C16 by Arrowhead, DI-HMM + DI sweep, TADtree and 3DNetMod.  
(e) Heatmap of a 6-Mb region from human cortical plate tissue Hi-C16. Domains identified by Arrowhead (top), DI-HMM + DI sweep (center top), TADtree 
(center bottom) and 3DNetMod (bottom) are outlined in colors corresponding to their sizes: ≤400 kb (magenta), 401–800 kb (green), 801–1.6 Mb (cyan), 
1.6–3 Mb (indigo), >3 Mb (orange).

https://bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17
https://bitbucket.org/creminslab/3dnetmod_method_v1.0_10_06_17


122  |  VOL.15  NO.2  |  FEBRUARY 2018  |  nature methods

brief communications

methods
Methods, including statements of data availability and any associ-
ated accession codes and references, are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Hi-C mapping, normalization and binning. Mapped, normalized 
and 40-kb-binned Hi-C matrices from human fetal cortical plate 
and germinal zone tissue generated in Won et al.16 were down-
loaded because raw reads were not readily available from GEO 
(Supplementary Table 1). Because the three central diagonals of 
the normalized data were all zero, we filled in these pixels with val-
ues drawn from the first off-diagonal of bins containing nonzero 
values. Mapped and 20-kb-binned Hi-C data from wild-type and 
Setdb1-deficient mouse neural cells generated in Jiang et al.20 were 
downloaded from GEO (Supplementary Table 1). Raw sequencing  
reads from two mouse embryonic stem (ES) cell replicates and 
two mouse cortical tissue replicates from Dixon et al.8 were down-
loaded from GEO (Supplementary Table 1). Dixon et al.8 paired-
end reads were aligned independently to the mm9 mouse genome 
using bowtie2 (global parameters:–very-sensitive −L 30 −score-
min L, -0.6, -0.2 −end-to-end–reorder; local parameters:–very-
sensitive −L 20 −score-min L, -0.6, -0.2 −end-to-end–reorder) 
through HiC-Pro21. Unmapped reads, nonuniquely mapped reads 
and PCR duplicates were filtered, and uniquely aligned reads were 
paired. Hi-C maps were generated at 40 kb matrix resolution and 
balanced using the iterative correction and eigenvector decompo-
sition (ICED) technique22. The resulting genome-wide Hi-C data 
is represented in a matrix of the format Aij, where the ijth element 
represents the interaction frequency between bins i and j. For all 
data, counts ≥1 were log transformed.

Hi-C data network construction. Hi-C data at 40 kb matrix reso-
lution from mouse ES cells and cortical tissue8 and human cortical 
plate germinal zone tissue16 were parsed into 6-Mb regions with 
4 Mb of overlap between adjacent regions. Hi-C data at 20 kb  
matrix resolution from Jiang et al.20 were parsed into 3-Mb 
regions with 2 Mb of overlap. Regions overlapping centromeres or 
telomeres were discarded. Additionally, low-information-content 
regions were discarded if they exhibited either (i) severe count 
sparsity, as indicated by a high percentage of pixels with zero 
values along the diagonal of the counts matrix (>5%) or (ii) >3 
consecutive bins along the diagonal with zero counts.

Community detection with network modularity maximiza-
tion and consensus partitioning. To partition genome-folding 
networks into communities, we employed a Louvain-like, locally 
greedy algorithm14 to maximize modularity. We first computed 
the modularity matrix, M, according to equation (2):

M A
k k

m
mxy xy

x y= −( )/ ( )g 2

where M is a C × C matrix, C is the total number of communities, 
Mx,y is the normalized interaction frequency between x and y 
communities, kx is the sum of all edge weights for community x, 
γ is the resolution parameter (discussed below), and m is the total 
sum of all edge weights in network A (i.e., the sum of all interac-
tion counts in the matrix excluding the i = j diagonal). For the 
first iteration of the algorithm (discussed in detail below), each 
individual node is an independent community; thus, indices for 
communities x and y correspond to the indices for nodes i and j. 
For any given γ, Axy/m is the normalized edge strength connecting 
communities x and y, and k k mx y / 2 is the expected normalized 

(2)(2)

strength of edges at communities x and y if edges are placed at 
random. From the modularity matrix, M, the modularity, Q, is 
computed according to equation (3):

Q Mx y x yx y= ∑ [ ] ( ), ,, d 3

where Mx,y is the interaction frequency between x and y commu-
nities normalized to the expected interaction probability (equa-
tion (2)). To ensure that only edges within communities are added 
to the summation, δx,y is 1 if x and y are assigned to the same 
community (i.e., x = y) and 0 otherwise (i.e., x ≠ y).

The assumption of the Louvain-like algorithm is that the opti-
mal community structure can be resolved by maximizing Q. The 
algorithm relies on an iterative, dynamic programming approach 
to rapidly converge on a local maximum in Q without compre-
hensively examining the entire search space. For each iteration 
t, individual nodes are given the opportunity to move into a new 
community placement that yields a locally maximal gain in Q, 
∆Q, for the M network according to equation (4):

∆Q Q Q M Mt t x yx y x y
t t

x yx y x y
t t

= − =( ) − ( )−
= = −

∑ ∑1
1

4[ ] [ ] ( ),, , ,, ,d d

In the first iteration, t = 0, matrix M has the same dimensions as 
matrix A such that every node is assigned to its own community 
(i.e., C = N and x = i). Each node is given the chance to merge; and 
at the end of the iteration, if ∆Q ≤ 10−10, the algorithm terminates 
based on the assumption that no further moves will lead to a nota-
ble increase in Q. If ∆Q > 10−10, then the algorithm proceeds to 
the next iteration and resizes the modularity matrix, M, to C × C 
dimensions (where C is the number of communities computed in 
the previous t = t −1 iteration, and (Mx,y)t=t is the sum of all previ-
ous (Mx,y)t=t−1 constituent edges that are merged into (Mx,y)t=t). 
The intuition for the iterations is that with increasing t the average 
size of communities increases with the gain in modularity. The 
algorithm terminates when no further single community merge 
leads to an improvement in modularity. Because modularity-maxi-
mization algorithms can converge on local maxima23, the Louvain-
like algorithm was applied 20 times to sample the landscape of 
local maxima for each resolution parameter value (Supplementary 
Fig. 3e). To ensure random sampling of the landscape of possible 
maximum Q values, a randomized node selection with a unique 
seed value was used to run each of the 20 partitions.

To determine a consensus partition among the set of 20 parti-
tions (Supplementary Fig. 3f), we identified the partition most 
similar to the 19 other partitions through use of a similarity metric: 
the adjusted RAND (aRAND) index24,25 from the sklearn toolbox 
sklearn.metrics.adjusted_rand_score. For perfectly matched par-
titions, aRAND is equal to unity. For partitions that are no more 
similar than would be expected by random chance, aRAND is close 
to 0 or slightly negative. The aRand was computed between all 
pairs of partitions within the set, and the partition with the highest 
average aRand, representing the partition that is most similar to all 
other partitions, was selected as the consensus partition26,27.

3DNetMod splitting and stitching approach to improve 
genome-wide Hi-C runtimes. A critical challenge in the appli-
cation of 3DNetMod-MMCP to genome-wide Hi-C data is the 

(3)(3)

(4)(4)
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runtimes. Although the Louvain-like locally greedy algorithm 
for modularity maximization scales linearly with network size14, 
computing the consensus partition with the aRAND index is 
a pairwise combinatorial algorithm that is nonpolynomial in  
scaling. Therefore, using chromosome-wide networks would 
give computationally intractable runtimes on Hi-C data binned 
at 40 kb matrix resolution in a genome-wide network of more 
than 75,000 nodes. High-resolution Hi-C data binned at  
1–20 kb resolution would be computationally infeasible on a chro-
mosome-wide network. Moreover, to find the optimal γ range 
(see below), 3DNetMod requires the random rewiring of genome-
folding networks. The computational time to randomly rewire a 
network scales nonlinearly in time with network size, which also 
makes chromosome-wide 3DNetMod computationally intracta-
ble. We solved the time scaling issue by splitting the genome into 
defined 3-or-6 Mb regions and performing all domain-calling 
computations on each region in parallel.

Determining structural resolution parameter values with a g 
plateau sweep.  We developed 3DNetMod-GPS to determine the 
γ  values that provide high-confidence domain calls across a range 
of length scales. To determine the maximum γ  value for a given 
chromosome of a given Hi-C sample of interest, we first selected 
a representative subset of five evenly spaced regions of sufficient 
counts across a given chromosome. We constructed a randomly 
rewired network for each representative region by reshuffling the 
edge weights in a manner that preserves the symmetric nature 
of the adjacency matrix as well as preserving node degree while 
approximately preserving node strength17,28 (Supplementary 
Fig. 3b). To create randomly rewired networks, we implemented 
a python version of null_model_und_sign.m from the Brain 
Connectivity Toolbox (https://sites.google.com/site/bctnet/). 
Briefly, the expected weight, Ei,j, for all edges is computed as ki * kj,  
where ki is the degree of node i, and kj is the degree of node j. 
Observed (Ai,j) and expected (Ei,j) edge weights are then rank 
ordered in two independent lists. We then proceed with the fol-
lowing randomization steps: (i) a specific edge i,j (where i ≠ j) 
is randomly selected, (ii) the rank of that edge in the expected 
list is noted, (iii) the observed edge weight at the noted expected 
rank is then assigned to edge Ai,j, and (iv) the expected and 
observed values are then removed from their respective lists. 
New sets of remaining expected values and remaining observed 
values are computed and then ranked to reflect edge removal, 
and (v) steps i–iv are repeated until all observed edge values 
have been assigned. For each selected representative region and 
its accompanying randomly rewired network, modularity, Q, 
was computed beginning at γ = 0 and increasing in increments 
of 0.1 until the curves of Q versus γ for the real and randomly 
rewired networks converged (Supplementary Fig. 3a). The 
maximum γ value was selected as the largest γ value from the 
five regions at the convergence point between real and random 
networks. Max γ values were determined for all Hi-C data sets 
and all chromosomes.

To determine the subset of γ values that lead to high- 
confidence domain calls in a region-specific manner, we devel-
oped a gamma plateau selection method. First, the number of 
communities detected with a single application of the Louvain-
like locally greedy algorithm for each γ value between 0 and the  
computed maximum value in increments of 0.01 was determined 

(Supplementary Fig. 3d). Next, ≥ n consecutive γ values with 
the same number of communities detected were grouped into 
‘plateaus’, where n is a user-defined parameter. Notably, n = 3  
was used for Won et al.16 Hi-C (Supplementary Fig. 6), n = 3  
was used for Jiang et al.20 Hi-C, and n = 8 was used for Dixon 
et al.8 with lower sequencing depth. The median γ value in  
each plateau was then used for all subsequent domain-calling com-
putations. Finally, 3DNetMod-MMCP (Supplementary Fig. 3e,f)  
was then applied for each selected γ value for each region to  
detect the nested hierarchy of domains (Supplementary Fig. 3g).

Processing filters for initial domain call set from 3DNetMod-
GPS and 3DNetMod-MMCP. The initial full set of domains 
detected through 3DNetMod-GPS and 3DNetMod-MMCP 
was then processed to remove small communities and edge 
cases. Domains smaller than a user-defined size based on the 
resolution limit of the HiC data were removed. For all data sets, 
domains smaller than five genomic bins were removed. Thus, 
for 40-kb-binned Dixon et al.8 and Won et al.16 data, the mini-
mum domain size was 200 kb. For 20-kb-binned Jiang et al.20 
data, minimum domain size was 100 kb. Second, domains with 
at least one boundary within four bins of the edge of the region 
were removed. Third, redundant domains with exact match start 
and stop coordinates that were identified at multiple γ values  
or in multiple adjacent overlapping regions were merged into one 
domain. Finally, we observed that lower sequencing depth Hi-C 
data from Dixon et al.8 was prone to egregiously wrong domain 
calls that were driven by the high spatial noise and high number of 
outlier pixels. Thus, we developed an optional ‘trash’ community 
filter that identifies and discards domain calls with very sparse 
counts (less than 80% of counts along the domain edge are greater 
than the lowest 1% of total counts for the region). This filter was 
only applied to the low-sequencing-depth Dixon et al.8 data.

Hierarchical spatial variance minimization to refine domain 
calls. To identify high-confidence domains across length scales, 
we developed and applied a new hierarchical spatial variance min-
imization method (3DNetMod-HSVM). We first stratified com-
munities by size: (i) minimum domain size to 400 kb (Level 1),  
(ii) 401 to 800 kb (Level 2), (iii) 801 to 1,600 kb (Level 3), (iv) 
1,601 kb to 3 Mb (Level 4) and (v) greater than 3 Mb (Level 5). 
We then quantified the variability of a community boundary call 
across the 20 partitions by computing a boundary spatial vari-
ance. Specifically, we computed the spatial variance per bound-
ary across the 20 partitions according to equation (5):
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−

−
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where xi is the coordinate of the boundary in partition i (in units 
of nodes), x  is the coordinate of the consensus boundary, and 
n is the number of partitions in the set. Boundaries with per-
fect agreement across the set of 20 partitions will have a variance 
of zero, whereas boundaries with large fluctuations in position 
across the set of partitions will have a higher variance. Boundary 
spatial variance values were then pooled for all communities of a 
given size stratum across a given chromosome.

A size-stratum-specific variance threshold can be selected to 
minimize false positive domain calls and inadvertent detection of 

(5)(5)
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compartments as domains (Supplementary Fig. 3h–l). For Won 
et al.16 human cortical plate and human germinal zone tissue Hi-
C, we selected thresholds of L1: 70% area under the curve (AUC), 
L2: 100% AUC, L3: 100% AUC, L4: 60% AUC, L5: 0 variance 
(Supplementary Fig. 10). For Dixon et al.8 mouse cortical tissue, 
we selected thresholds of L1: 0 variance, L2: 70% AUC, L3: 60% 
AUC, L4: 100% AUC, L5: 0 variance (Supplementary Fig. 11). 
For Jiang et al.20 wild-type mouse neural cells, we selected thresh-
olds of L1: 0 variance, L2: 35% AUC, L3: 30% AUC, L4: 100% 
AUC, L5: 0 variance (Supplementary Fig. 12). Communities with 
a boundary that did not pass their size-stratum-specific variance 
threshold were considered low confidence and were removed 
from the list of domain calls. The resulting communities repre-
sent the high-confidence list of domains identified for a given cell 
type and replicate (Supplementary Fig. 3l).

Postprocessing chaos filter to remove domains called in 
regions with minimal substructure. To allow users to remove 
domains called in regions where there is minimal structure, we 
developed and implemented an optional ‘chaos filter’. This fil-
ter is based on the observation that segments of the genome 
with nested substructure have greater maximum counts and 
variance in the band 2–10 bins from the diagonal compared 
to regions with no nested substructure (or regions of ‘chaos’). 
To identify regions with minimal structure, each chromosome 
(excluding regions that were previously discarded for having low 
counts or being at centromeres or telomeres) is evaluated in a 
sliding window of 20 bins with a one-bin increment. For each 
20-bin window, Wi, the maximum count and variance of each n 
off-diagonal, where n ranges from 2 to 10, is computed. These 
metrics are then compared to the corresponding off-diagonal 
chromosome-wide average of maximum and variance across all 
W. If none of the metrics for window Wi exceed a user-defined 
percentage of the corresponding chromosome-wide average, 
Wi is considered to have no nested substructure, and domains 
identified within Wi are discarded after variance thresholding. 
For Won et al.16 and Jiang et al.20 Hi-C data, we used a chaos 
filter percentage of 85%. For Dixon et al.8 Hi-C data, we used 
a more stringent chaos filter percentage of 92%. Domain calls 
post-chaos filter for Won et al.16 and Jiang et al.20 were used 
for comparison of methods in Figure 2 and Supplementary  
Figures 14 and 15.

Assembly of final domain calls. To assemble the list of final 
domain calls, highly similar domains identified within the same 
sample were merged together. Two domains were considered 
‘highly similar’ if the distance between their start coordinates 
was less than or equal to a user-defined allowance (typically 
equivalent to one genomic bin), and the distance between their 
stop coordinates also fell within the user-defined allowance. The 
new merged domain has boundary coordinates that encompass 
the constituent domains (i.e., the upstream boundary extends 
from the first upstream boundary coordinate to the last bound-
ary coordinate of the constituent domains). For data sets without 
biological replicates for a given cellular condition (Won et al.16), 
the merged domain calls (post-chaos filter if chaos filter is used) 
represent the final 3DNetMod domain calls. For data sets with 
two biological replicates of a given cellular condition (Dixon  
et al.8, Jiang et al.20), an additional set of consistent domains was 

made containing calls that were identified in both biological  
replicates within the user-defined tolerance window (i.e., the dis-
tance between the start coordinate of a given domain in replicate 
one and replicate two must be less than or equal to the user-
defined allowance, and the distance between their stop coordi-
nates must also fall within the allowance).

Final 3DNetMod domain calls for human cortical plate Hi-C 
data16 as well as mouse neural cell Hi-C data20 can be found in the 
bitbucket repository. Genomic regions that were removed from 
consideration because of count sparsity or gaps in counts can also 
be found within the bitbucket repository.

3DNetMod runtimes. Using a local machine (2.5 GHz Intel 
Core i7) across four processors, the runtime for chromosome 
7 of 40 kb binned data from Won et al.16 was 52 min (3,096 s).  
Genome-wide runtime was approximately 22 h (80,640 s) for a 
quadcore. With access to a high-performance computing clus-
ter, all chromosomes and regions can be run in parallel, and 
genome-wide domain calls can be identified in ~1 h for 40-kb-
binned data.

We found that average runtimes were consistent for regions 
with the same number of nodes but different matrix resolutions 
(data not shown) when using the same plateau size. For small 
region sizes (i.e., split regions up to 300 nodes instead of chromo-
some-wide networks), we observed that the runtime per region 
scales linearly with region size. For region sizes larger than 300 
nodes, 3DNetMod has nonlinear scaling that makes the method 
computationally intractable. The critical aspects of 3DNetMod 
contributing to the nonlinear scaling are: (i) region size (i.e., 
number of nodes) during 3DNetMod-MMCP, (ii) region size 
during the random wiring step of 3DNetMod-GPS, and (iii) 
plateau size during 3DNetMod-GPS (smaller plateaus take 
significantly longer time to process because of more γ values). 
Thus, we recommend that users split the genome into regions 
of ~75–300 nodes.

Comparison of domain calls in 3-Mb, 6-Mb and 12-Mb regions. 
To assess the effect of region size on the quality of domains identi-
fied (Supplementary Fig. 4), Hi-C data from human cortical plate 
tissue16 were split into 3-Mb regions with 2 Mb overlap, 6-Mb 
regions with 4 Mb overlap and 12-Mb regions with 8 Mb overlap. 
3DNetMod-GPS and 3DNetMod-MMCP were performed with 
a plateau size of 3 and all other default parameters. 3DNetMod-
HSVM was performed with L1: 70% area under the curve (AUC), 
L2: 100% AUC, L3: 100% AUC, L4: 60% AUC, L5: 0 variance. 
Chaos filtering was not performed.

Benchmarking 3DNetMod against leading domain-calling 
methods in Hi-C. To qualitatively assess the performance of 
3DNetMod compared with that of three leading domain-call-
ing methods, we identified domains in one or more Hi-C data 
sets using DI-HMM8, Arrowhead7 and TADtree19. Across the  
methods, domains identified in regions with low counts or 
regions overlapping centromeres and telomeres (i.e., regions 
excluded from 3DNetMod domain calling) were excluded from 
further analysis.

To identify domains using the Directionality Index and 
Hidden Markov Model (DI-HMM) method detailed in Dixon  
et al.8, we created a python implementation of the method. 
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Briefly, the DI test statistic used to measure upstream and 
downstream portions of a topological domain was computed  
according to equation (6):
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where B is the total summation of counts within a 1D horizon-
tal array of length L (a user-adjustable number of genomic bins) 
upstream of the diagonal, A is the total summation of counts 
within a 1D horizontal array of length L downstream of the 
diagonal, and E is the mean of A and B. For 40 kb Hi-C, the 
standard DI A/B length L is 50 bins (2 Mb). DI computation 
was then followed by a mixed Hidden Markov Model (mHMM) 
using Gaussian mixtures to predict ‘upstream bias’, ‘downstream 
bias’ and ‘no bias’ states using the procedure of Dixon et al.8. 
We used the Baum–Welch expectation-maximization algorithm 
and the Forward–Backward algorithm to estimate posterior 
marginals and compute the maximum likelihood estimate. The 
mixture with best goodness of fit was chosen by AIC criterion  
(equation (7)):

AIC k L= −2 2 7ln( ) ( )

where k is the number of parameters in the model, and L is the 
maximum likelihood estimate. mHMM was then followed by a 
postprocessing step where only regions with median posterior 
probabilities ≥99% or a region comprised of at least 2 bins were 
selected. Domains were initiated at the beginning of a down-
stream-biased mHMM state and continued throughout con-
secutive downstream states. Domains ended when the last of the 
upstream-biased states was reached.

To identify a nested hierarchy of domains in human cortical 
plate cells16 using the DI-HMM method (Fig. 2e), we used a 
range of Directionality Index lengths8: 7 bins, 8 bins, 20 bins,  
35 bins and 50 bins. We determined 7 bins to be the lower limit 
on account of the narrow distribution of DI values relative to the 
number of bins genome wide, resulting in rank deficiency during 
matrix inversion within HMM.

To call domains using the TADtree method19, we down-
loaded the TADtree python tool from http://compbio.cs.brown.
edu/projects/tadtree. TADtree recursively maximizes a bound-
ary index that looks for shifts in interaction frequency at TAD 
boundaries to form an optimal set of nested TAD trees19. 
We kept the default or recommended parameters to identify 
domains in Won et al.16 cortical plate chromosome 7 (Fig. 2e 
and Supplementary Fig. 14c). For 40 kb resolution data, these 
parameters are: s = 50, m = 10, P = 3, q = 12, gamma = 500 and n 
= 40019. The TADtree authors recommend 2 Mb as the maximal 
detected TAD size, which translates to s = 50 for 40-kb-binned 
data. The reported ~O(s5) scaling of the TADtree method19 
leads to computationally intractable run times for Hi-C data 
binned lower than 40 kb matrix resolution. Because Jiang et al.20 
wild-type neuron Hi-C is binned at 20 kb resolution, we could 
only run the method on a small individual chromosome (chr 
18) with s = 50 (1 MB maximal detected TAD size) and default  
n, m, p, q and gamma values (Supplementary Fig. 15b). To detect 
domains with standard s = 100 (2 Mb maximal detected TAD 
size), we could only run half of chromosome 18 with n scaled 

(6)(6)

(7)(7)

to 200 and default m, p, q and gamma values (Supplementary  
Fig. 15c). Per the recommendation of TADtree authors, a final 
set of domain calls was chosen such that at most 2% of all output-
ted TADs are duplicates.

To call domains using the Arrowhead method, Juicer_tools_
0.7.0 was installed from https://github.com/theaidenlab/juicer/
wiki/Download. Arrowhead calculates the likelihood that a given 
pixel corresponds to the corner of a domain and is capable of 
finding a nested hierarchy of domains7. For Won et al.16 data, 
the −n flag was used to indicate that data were already matrix 
balanced, whereas for Jiang et al.20 data, the −n flag was omit-
ted, and default matrix normalization was performed. All other 
default parameters were used to identify domains in Won et al.16 
(Fig. 2e and Supplementary Fig. 14a) and Jiang et al.20 Hi-C data 
(Supplementary Fig. 15a).

To more appropriately compare domains identified across 
the methods, domains identified in regions with low counts 
or regions overlapping centromeres and telomeres (i.e. regions 
already excluded from 3DNetMod analysis) were excluded from 
further analysis.

We compared the run times of 3DNetMod to TADtree on chro-
mosome 18 of Jiang et al.20 wild-type neurons and chromosome 7 
of Won et al.16 cortical plate. We used these single-chromosome  
runtimes in combination with the equations provided in 
Weinreb et al.19 to estimate a genome-wide runtime for TADtree 
(Supplementary Table 2) and compared this runtime to actual 
runtimes of 3DNetMod. We estimate that a genome-wide runtime 
of TADtree on 40-kb-binned data would take ~44.5 h of compu-
tation time, whereas a 3DNetMod takes ~22 h of computation 
time. Furthermore, we estimate that the genome-wide computa-
tion time of TADtree on 20-kb-binned data using all processors 
on a quad-core computer would take >63 d, whereas 3DNetMod 
takes ~2 d of computation time.

Benchmarking 3DNetMod against leading domain-calling 
methods in simulations. To quantitatively compare the per-
formance of DI-HMM, 3DNetMod and TADtree in identify-
ing domain structures, we constructed two different network 
simulations with known community structure: (i) binarized 
(Supplementary Fig. 13a) and (ii) nested overlapping (Fig. 2a 
and Supplementary Fig. 13c,d). A 400 × 400 bin binary network 
was constructed with three domain sizes of 100, 50 and 10 bins 
(14 in total). Each pixel within a domain was assigned a value of 
1,000, while pixels not belonging to a domain were each assigned 
a value of zero. Additionally, we derived a nested overlapping 
480 × 480 bin simulation from a well-ordered Sierpinski fractal 
pattern. In the nested construct, the simulated counts within the 
original layered triangles were randomly scrambled within the 
same layer to form square domains with the corners preserved 
(unscrambled). We constructed five nested layers of domains: the 
first inner layer consisted of 24 total 20-bin-sized domains. The 
second layer consisted of 22 total overlapping domains of size 
40 bins offset midway at 20 bins. The third layer consisted of six 
80-bin-sized domains, and the fourth and fifth layers contained 
three 160-bin domains and one 320-bin domain, respectively. The 
intensity of each layer was set to scale with the distance depend-
ence of chromosome conformation capture data. The intensity of 
the domain corners was raised beyond the distance expectation 
to simulate loops anchoring chromatin-folding domains.

http://compbio.cs.brown.edu/projects/tadtree
http://compbio.cs.brown.edu/projects/tadtree
https://github.com/theaidenlab/juicer/wiki/Download
https://github.com/theaidenlab/juicer/wiki/Download
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We applied DI-HMM, 3DNetMod and TADtree to find domains 
in our simulated Hi-C networks (Fig. 2 and Supplementary  
Fig. 13). DI A/B lengths L of 20, 30, 40, 60, 80, 120, 160, 240, 320 
and 360 bins were chosen to capture as much nested structure 
as possible in the nested simulation, while L of 100 and 50 bins 
were chosen for the binary simulation. In 3DNetMod, we used a 
convergence threshold of 0.0035 for max γ value determination, 
20 partitions, a plateau size of 1 and a minimal size threshold of 
two nodes. No variance thresholding at any length scale or filter-
ing was applied.

To run TADtree on the nested overlapping simulations, an s 
value of 200 bins was used on account of limitations of O(s5) scal-
ing (TADtree with s = 200 required 433,862 s to detect domains in 
the simulation). Thus, only one domain at the largest scale (320 
bins) of the 56 known simulated domains could not be detected 
and was omitted from consideration. For the other TADtree 
parameters, m = 5, n = 56, P = 3, gamma = 500 and q = 12 were 
selected. For binary networks, an s value of 100 bins was used and 
other parameter choices included: m = 2, n = 14, P = 3, gamma = 
500 and q = 12. We were unable to detect domains in our simula-
tions using the Arrowhead method, as our simulation data struc-
ture was not readily transformed into the format required for the 
method’s software implementation.

A receiver operating characteristic (ROC) curve was con-
structed for DI sweep, 3DNetMod and TADtree (Fig. 2b and 
Supplementary Fig. 13b) by comparing a combined test array 
of all nested layers against a combined binary true array of all 
layers with one at a true domain boundary and zero elsewhere. 
The simulations shown in Supplementary Figure 13a were used 
to construct the ROC shown in Supplementary Figure 13b. The 
simulations shown in Supplementary Figure 13d were used to 
construct the ROC shown in Figure 2b. To score the confidence 
in the domain calls for the test array for DI sweep, boundaries of 
domains were assigned the domain average probability of each 
most likely hidden state. For 3DNetMod, boundaries of domains 
were assigned the boundary spatial variance. For TADtree, no 
metric is provided for the confidence in domain calls; thus, the 
boundaries of domains were assigned a confidence of 1. If called 
boundaries were within 3 bins of the actual boundary, and the 
domain sizes did not differ by more than 4 bins, the call was 
considered correct, and the boundary position in the test array 

was assigned to the same boundary position in the true array. 
Otherwise, the test boundary was tallied as a false positive.

Pileups of CTCF at domain boundaries. To assess the enrichment 
of chromatin marks at domain boundaries identified in wild-type 
mouse neurons at different length scales (Supplementary Fig. 9), 
we computed the average number of wild-type CTCF ChIP-seq 
peaks per 40-kb genomic interval at increasing distances from 
boundary coordinates.

Spring force diagram visualization. We visualized networks 
as spring-force diagrams using the MATLAB BGL toolbox 
(Fruchterman and Reingold, Code from MatlabBGL toolbox, 
David Gleich, Fig. 1). Networks were thresholded such that the 
top 15% of edge weights were visualized. A threshold of 15% was 
chosen because it was stringent enough to improve visualization, 
but it was lenient enough for the graph to remain fully connected. 
All analyses were performed on the fully weighted graphs; ad hoc 
thresholds were applied to facilitate visualization.

Life Sciences Reporting Summary. Further information regard-
ing the experimental design may be found in the Life Sciences 
Reporting Summary.

Data availability. Code, sample input data and usage instructions 
are available at the following Bitbucket repository: https://bitbucket.
org/creminslab/3dnetmod_method_v1.0_10_06_17. The data ana-
lyzed in this study are summarized in Supplementary Tables 1 and 3.  
Source data for Figures 1 and 2 are available online.
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N/A
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