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Intuition

➢Deep learning algorithms have made remarkable progress on 
numerous machine learning tasks and dramatically improved the 
state-of-the-art in many practical area.

➢Despite their great success, there is still no comprehensive 
understanding of the optimization process or the internal 
organization of DNNs .

➢They are often criticized for being used as mysterious ‘black 
boxes’



Introduction

➢ The DNN layers form a Markov chain of successive 
internal representations of the input layer X. 

➢ representation of the input, 𝑇 , is defined through 
an encoder, 𝑃 (𝑇|𝑋), and the prediction 𝑌, through 
a decoder 𝑃 𝑌 𝑇 .

➢ We formalize this problem as that of finding a short 
code for 𝑋 that preserves the maximum information 
about 𝑌 and eliminates the redundant information 
of 𝑋 relevant to 𝑌.

➢ we squeeze the information that X provides about 
Y through a ‘bottleneck’ formed by a limited set 
of codewords 𝑋. 

DataRepresentation



Information Theory Definitions

➢Entropy is the uncertainty of a random variable.
➢Joint entropy is the entropy of a pair of r.v.s.
➢Mutual Information is the KL-divergence between the joint 

distribution and the product distribution which can be interpreted 
as reduction in uncertainty of due to knowledge of another r.v.



Optimal Representation: Minimal Sufficient Statistics 

➢Minimal sufficient statistics, 𝑇 (𝑋), are the simplest sufficient 
statistics to inference Y and induce the coarsest sufficient partition 
on 𝑋.

➢Exact minimal sufficient statistics only exist for very special 
distributions.

➢Replace it with approximate minimal sufficient statistics, or the 
optimal tradeoff between compression of 𝑋 and prediction of 𝑌 .



A possible solution: Information Bottleneck

➢From ‘rate distortion theory’: how well we can represent a r.v. X using a compressed representation 𝑋

➢we squeeze the information that X provides about Y through a ‘bottleneck’ 
formed by a limited set of codewords 𝑋.

➢There is tradeoff between compressing the representation and preserving 
meaningful information.

➢The idea can be formulated as :

[1].N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” in Proceedings of the 37-th Annual Allerton 
Conference on Communication, Control and Computing, 1999, pp. 368–377.



Minimization method

• There are two parameters we need to specify in the equations.

• The distribution p(ො𝑥|𝑥) that minimizes I(X; 𝑋) can be calculated 
using Lagrange multipliers by minimizing :



• Computing the partial of ℱ w.r.t. p(ො𝑥|𝑥) yields 

IB self-consistent equations

• Setting this equal to 0 and solving for p(ො𝑥|𝑥) yields 

algorithm



Information Path In The Networks

➢Relevant information captured by the network can be quantified by:

➢After training, the network receives an input X, and successively processes it through the 
layers, which form a Markov chain to the predicted output Y(Data Processing Inequality).

➢Representation of Every layer can be quantified in the above formulation and can be used to 
evaluate the optimality of each hidden layer.

➢Our two order parameters, 𝐼(ℎ𝑖; 𝑋) and 𝐼(ℎ𝑖; 𝑌 ) ,allow us to visualize and compare different
network architectures in terms of their efficiency in preserving the relevant information in 
𝑃(𝑋; 𝑌 ).

𝐼 𝑋; ℎ𝑗 ≥ 𝐼(𝑋; ℎ𝑖) ≥ 𝐼(𝑋; 𝑌)



Dynamics of the training in networks
➢By visualizing the paths of different networks in the information 

path we explore the following fundamental issues:

[3]. Naftali Tishby et.al Opening the black box of Deep Neural Networks via Information



Experiment Setting

Dataset 

✓12D binary dataset.

✓4096 data points.

✓2 classes.

model

✓Architecture :

✓7 layers

✓Tanh or Sigmoid activation.



Training dynamics of the layers.

➢ During the SGD 
optimization the layers 
first increase IY , and 
later significantly 
decrease IX,
thus compressing the 
representation.



➢ During the fast  ERM - phase, which takes a 
few hundred epochs, the layers increase 
the information on the labels (increase IY ) 
while preserving the DPI order (lower 
layers have higher information). 

➢ In the second and much longer 
compression phase the layers’ information 
on the input, Ix, decreases and the layers 
lose irrelevant information until 
convergence .

➢ The compression phase significantly 
reduced the layers’ label information in the 
small sample case, but with large samples 
the label information mostly increased.

The effect of the training sample size on the layers



Computational benefit of the hidden layers

✓ Adding hidden layers dramatically 
reduces the number of training epochs 
for good generalization.

✓ The compression phase of each layer is 
shorter when it starts from a previous 
compressed layer .

✓ The compression is faster for the deeper 
(narrower and closer to the output) 
layers .



Convergence to the layers to the IB bound

➢ the DNN layers’ encoder-
decoder distributions satisfy 
the IB self-consistent 
equations within our 
numerical precision, with 
decreasing β as we move to 
deeper layers. 



Conclusion

➢We develop a new principle to evaluate the representations of our 
networks.
➢most of the training epochs in standard DL are spent on compression 

of the input to efficient representation and not on fitting the training 
labels.
➢The representation compression phase begins when the training errors 

becomes small.
➢The converged layers lie on or very close to the Information Bottleneck 

(IB) theoretical bound, and the maps from the input to any hidden 
layer and from this hidden layer to the output satisfy the IB self-
consistent equations. 
➢The training time is dramatically reduced when adding more hidden 

layers. Thus the main advantage of the hidden layers is computational. 



Limitation of the method

• In the experiment the dataset and the class of the data is pretty 
small.

• They just compute a pretty small net and dataset with a special 
activation.

• In recent study, we can’t get the same conclusion if we replace 
the activation with others , for example , relu.

• Computation of MI and IB of bigger networks and datasets is 
pretty hard.



Thanks!!


