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SUMMARY

Cancer cells within individual tumors often exist in
distinct phenotypic states that differ in functional
attributes. While cancer cell populations typically
display distinctive equilibria in the proportion of cells
in various states, the mechanisms by which this
occurs are poorly understood. Here, we study the
dynamics of phenotypic proportions in human breast
cancer cell lines. We show that subpopulations of
cells purified for a given phenotypic state return
towards equilibrium proportions over time. These
observations can be explained by a Markov model
in which cells transition stochastically between
states. A prediction of thismodel is that, given certain
conditions, any subpopulation of cells will return
to equilibrium phenotypic proportions over time. A
second prediction is that breast cancer stem-like
cells arise de novo from non-stem-like cells. These
findings contribute to our understanding of cancer
heterogeneity and reveal how stochasticity in
single-cell behaviors promotes phenotypic equilib-
rium in populations of cancer cells.

INTRODUCTION

The regulation of cell-state decisions is critical for the survival of

living systems. In unicellular organisms, cell-state changes occur

in response to environmental stressors or nutrient changes.

Direct sensing of environmental stimuli often involves stochastic

cell-fate decisions, modulated by random noise in gene expres-

sion (Süel et al., 2006, 2007). Such probabilistic behavior has

been shown to be advantageous in certain environmental condi-

tions (Kussell and Leibler, 2005; Thattai and van Oudenaarden,
2004; Wolf et al., 2005). Noisy gene-expression levels can also

stochastically influence cell-state decisions in eukaryotes

(Di Talia et al., 2007). However, less is known about the role

that stochasticity might play in regulating cell-state equilibria in

populations of cells.

Cell-state dynamics are of particular significance in tumor

pathobiology. Even within individual tumors, cancer cells

frequently exist in any of several possible phenotypic states.

Cancer cells in distinct phenotypic states often exhibit important

differences in functional properties. For example, subpopula-

tions of stem-like cancer cells with increased tumor-seeding

ability and drug resistance have been identified in a variety of

tumor types (Al-Hajj et al., 2003; Lapidot et al., 1994; Li et al.,

2007; Singh et al., 2004; Smalley and Ashworth, 2003; Stingl

and Caldas, 2007). The proportion of cancer cells in the various

states is related to both tumor type and grade (Chiou et al., 2008;

Harris et al., 2008). Additionally, because anticancer therapies

preferentially kill specific cancer cell states, treatment can result

in selective changes in phenotypic proportions within tumors

(Creighton et al., 2009; Gupta et al., 2009; Li et al., 2008; Wood-

ward et al., 2007). Understanding how cancer cell states coexist

and evolve within tumors is of fundamental interest and could

facilitate the development of more effective therapies.

Phenotypic equilibrium in cell-state proportions is observed

in vivo and in cell lines adapted to in vitro culture. Under fixed

conditions, both normal and cancerous epithelial lines display

stable proportions of cells in stem-like, basal, or luminal states

during propagation in culture. The mechanisms that stabilize

phenotypic proportions within cellular populations remain

unclear. Two general classes of mechanisms can be envisioned:

(1) in the absence of interconversion between states, equilibrium

proportions could be maintained through intercellular signals

that modulate the proliferation rates of distinct states and (2)

proliferation rates remain equal, but cancer cells could intercon-

vert between different states in a manner that maintains equilib-

rium cell-state proportions.
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Here, we study the mechanisms that underlie phenotypic

diversity in populations of cancer cells. We develop and validate

a quantitative Markov model of phenotypic transitions that

predicts evolution toward equilibrium proportions in cancer cell

populations. The Markov model makes several unanticipated

predictions about cell-state transitions and dynamics in cancer

cell populations. In addition, the proposed model is useful in

characterizing the effects of genetic and chemical perturbations

on phenotypic proportions in cancer cell populations.

RESULTS

Characterization of Luminal, Basal, and Stem-like
Differentiation States in Breast Cancer Cells
To study cell-state dynamics in cancer cells, we used fluores-

cence-activated cell sorting (FACS) to isolate three mammary

epithelial cell states that have been previously defined and

characterized using cell-surface markers: stem-like (CD44hi

CD24negEpCAMlo), basal (CD44hiCD24negEpCAMneg), and

luminal (CD44loCD24hiEpCAMhi) (Fillmore and Kuperwasser,

2008; Shipitsin et al., 2007). Using this system, we isolated

each of these cellular fractions from two human breast cancer

lines derived from primary tumors (SUM159 and SUM149), re-

sulting in subpopulations that exhibited significant differences

in morphology in culture (Figures 1A and 1B). To confirm that

these markers indeed define cells in the expected cell-differenti-

ation states, we collected global gene expression data from

sorted CD44hiCD24negEpCAMlo (stem-like), CD44hiCD24neg

EpCAMneg (basal), or CD44loCD24hiEpCAMhi (luminal) subpopu-

lations of the SUM149 and SUM159 breast cancer lines. We next

applied gene set enrichment analysis (GSEA) (Mootha et al.,

2003;Subramanianet al., 2005) todeterminewhether theexpres-

sion levels of genes previously reported to be associated with

stem, basal, and luminal differentiationwere specifically enriched

in the relevant sorted subpopulations (Assou et al., 2007; Black-

man et al., 2005; Böcker et al., 2002; Brambrink et al., 2008; Bus-

solati et al., 1996; Charafe-Jauffret et al., 2006; Dontu et al., 2003;

Drabsch et al., 2007; Dressman et al., 2001; Gill et al., 2001; Gud-

jonsson et al., 2002; Jones et al., 2004; Kariagina et al., 2007; Liu

et al., 2006; Lu et al., 2008; Monaghan et al., 1995; Parisi et al.,

2008; Perry et al., 2007; Phinney et al., 2005; Rasbridge et al.,

1993; Reis-Filho et al., 2006; Sansone et al., 2007; Shipitsin

et al., 2007; Sleeman et al., 2006; Sørlie et al., 2006) (Table S1

available online). We observed that in both the SUM159 and

SUM149 lines, the expression of genes associated with luminal

differentiationwas indeed enriched in theCD44loCD24hiEpCAMhi

subpopulation (Figures 1C ans 1D and Table S1). For example,

the luminal markers CD24, claudin 1 (CLDN1), and cytokeratins

6B and 8 were all specifically upregulated in CD44loCD24hi

EpCAMhi cells (Figure 1C and Table S1). Similarly, we found

a significant enrichment in the expression of genes associated

with basal differentiation in the CD44hiCD24negEpCAMneg sub-

population (Figures 1C and 1D and Table S1); these genes

included vimentin (VIM), Zeb1 (TCF8), membrane metallo-endo-

peptidase (CALLA/CD10), decorin (DCN), and plasminogen

activator inhibitor type 1 (SERPINE2). Genes implicated in the

self-renewal of embryonic stem cells, including EZH2, KLF5,

KLF4, andSOX9 (Brambrink et al., 2008; Ivanova et al., 2006;Par-
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isi et al., 2008), were significantly enriched in their expression

in the CD44hiCD24negEpCAMlo fraction (Figures 1C and 1D and

Table S1).

The expression levels of genes associated with basal differen-

tiation in the CD44hiCD24negEpCAMneg fraction was further

confirmed via quantitative RT-PCR. Consistent with the microar-

ray data, we observed that CD44hiCD24negEpCAMneg cells from

SUM149 and SUM159 populations expressed elevated levels of

Vimentin, N-cadherin, and Zeb1 compared to unsorted cells

(Figure 1E). In contrast, CD44loCD24hiEpCAMhi cells, which are

in a luminal state, exhibited a reduction in the expression levels

of these basal genes and elevated levels of the luminal epithelial

marker, E-cadherin (Figure 1E). Collectively, these data indi-

cated that, as previously reported, the cell-surface expression

of CD24, CD44, and EpCAM does indeed allow for an accurate

fractionation of cells in distinct differentiation states.

Cell-State Dynamics in Breast Cancer Populations
We next determined the proportions of the individual cell-states

in the SUM159 and SUM149 lines and found that they contained

distinct cell-state proportions: SUM159 populations exhibited

predominantly basal (B) differentiation with minority subpopula-

tions that were stem-like (S) or luminal (L) (proportion of B, S, and

L = 97.3%, 1.9%, and 0.62%, respectively; Figure 2B); in

contrast, SUM149 populations exhibited predominantly luminal

differentiation with stem-like and basal minority subpopulations

(B, S, and L = 3.3%, 3.9%, and 92.8%, respectively; Figure 2B).

Using FACS, we sorted stem-like, basal, or luminal cells from

the SUM159 and SUM149 lines (resulting in subpopulations that

were at least 96% pure based on reanalysis immediately after

sorting). By isolating relatively pure subpopulations of cells in

a given differentiation state and allowing them to expand in

culture, we could monitor how cell-state dynamics evolve over

time (Figure 2A). After 6 days of growth in culture, we assessed

the proportions of stem-like, basal, and luminal cells (Figure 2C).

For each isolated subpopulation, we observed a rapid progres-

sion toward equilibrium proportions (Figure 2C). Two lines of

evidence indicated that this progression was not due to differen-

tial growth rates of cells in the basal, stem-like, or luminal states

but rather to interconversion between states. First, we observed

no difference in the proliferation rates of the stem-like, basal, or

luminal subpopulations sorted from either SUM159 or SUM149

(Figure S1). Second, given the purity of the sorted populations

and the rapid rate of return to equilibrium proportions, some

minority subpopulations would need to divide more than three

times per day to achieve the observed proportions through

differential growth alone. Such a high proliferation rate is implau-

sible because even the most rapidly dividing human cells—

embryonic stem cells—require at least 24 hr to complete a prolif-

eration cycle (Cowan et al., 2004).

Quantitative Markov Model of Cell-State
Interconversion
Given that interconversion between cell states was occurring,

wemodeled these observations as a stochastic process in which

cancer cells transition randomly between states with each pro-

liferative cycle. We additionally made the assumption that

cell transitions follow a Markov process—that is, transition
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Figure 1. Isolation of Stem-like, Luminal,

and Basal Cell-Differentiation States in

Human Breast Cancer Lines

(A) Flow cytometry gating strategy for isolating

CD44loCD24hiEpCAMhi, CD44hiCD24negEpCAMneg,

and CD44hiCD24negEpCAMlo subpopulations from

SUM149 and SUM159 human breast cancer lines.

(B) Morphology of SUM149 and SUM159 colonies

cultured immediately after cell sorting. Repre-

sentative phase-contrast bright-field images of

colonies from sorted CD44lo/CD24hi/EpCAMhi

cells comprised of epithelial islands exhibiting

cobblestone morphology and tight cell-cell junc-

tions, consistent with a luminal cell phenotype.

CD44hi/CD24neg/EpCAMneg cells from colonies

exhibiting spindloid features reminiscent of basal

cell morphology. CD44hi/CD24neg/EpCAMlo colo-

nies are able to exhibit mixed morphologies rep-

resenting luminal and basal phenotypes, consis-

tent with differentiation of stem-like cells.

(C) Messenger RNA (mRNA) was extracted from

the sorted luminal, basal, and stem-like subpop-

ulations and Affymetrix gene chips were then

hybridized to pooled mRNA samples (between

three to five independent sorts were pooled per

marker profile combination and cell line). The heat

map displays differentially expressed genes that

can distinguish between the three cell states.

Genes having multiple instances correspond to

distinct probe sets.

(D) Schematic depicting the results of GSEA per-

formed to determine whether genes previously

published to be associated with luminal, mesen-

chymal or stem cell differentiation are upregulated

in sorted CD44loCD24hiEpCAMhi (luminal),

CD44hiCD24negEpCAMneg (basal), and CD44hi

CD24negEpCAMlo (stem-like) subpopulations. The

ten gene lists analyzed are described in Table S1

and include basal, CD44vsCD24up, TGFb, stem,

differentiated, sphere versus differentiated down,

luminal, luminal A, sphere versus differentiated up,

and mesenchymal. The gene lists are shown su-

perimposed upon the cellular subpopulation(s) in

which they were enriched, together with an

associated p value calculated by permutation

testing. Gene lists with corresponding references

are described in Table S1.

(E) Quantitative RT-PCR analysis of Vimentin,

N-cadherin, E-cadherin, and Zeb1 expression in

SUM149 or SUM159 sorted cell populations

relative to expression in the parental (unsorted)

cell line. Data are represented as the average

DDCt ± standard error of the mean (SEM). n = 3.

See also Table S1.
probabilities depend only on a cell’s current state, not on its prior

states (see the Experimental Procedures). Under a Markov

model, it is possible to use data from short-term cell culture of
Cell 146, 633–644
isolated subpopulations to infer the prob-

abilities of transition between any two cell

states (for example, PB/S denotes the

probability per generation of a basal cell

transitioning into a stem-like state). By
revealing whether certain transitions are allowed or forbidden,

these inferred probabilities could, in principle, provide significant

insights into the cell-state dynamics in cell lines.
, August 19, 2011 ª2011 Elsevier Inc. 635
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Figure 2. Determination of Breast Cancer Cell-State Transition Probabilities from Population Cell-State Proportions

(A) Schematic of experimental procedure used to determine cell-state transition dynamics.

(B) Proportions of cell-states in parental SUM159shCntrl and SUM149shCntrl breast cancer lines.

(C) Cellular subpopulations in stem-like (SL), basal, or luminal states were isolated by FACS with antibodies directed against the CD44, CD24, and EpCAM cell-

surface antigens. Bar charts show the proportion of cells in each cell-differentiation state as assessed by FACS after in vitro culture for 6 days.

(D) Lineage hierarchies for the SUM159shCntrl and SUM149shCntrl lines were calculated from the data in (C). The corresponding cell-state transition probabilities for

each cell line are shown. Solid arrows denote transition probabilities greater than 0.1. Dashed arrows denote transition probabilities between 0.01 and 0.1.

See also Figure S1.
The transition probabilities for the SUM159 and SUM149 lines

inferred from the experiment above (Figure 2D and Table 1) re-

vealed several interesting similarities and distinctions between

the cell lines:

(1) For both lines, we found that stem-like cells could either

self-renew or transition into either of the basal or luminal

states (Figure 2DandTable1).While the self-renewal prob-

abilitiesarecomparable (PS/S=0.58,0.61), stem-likecells

were more likely to transition into a luminal state in the

SUM149 line (PS/L = 0.30, PS/B = 0.09), but into a basal

state in the SUM159 line (PS/L = 0.07, PS/B = 0.35).

(2) In both cell lines, basal cells exhibited a high probability of

self-renewing divisions (PB/B = 0.99, 0.90). In contrast,

the behavior of luminal cells differed strongly between

the cell lines. Luminal cells in the SUM149 line displayed

a high probability of self-renewal (PL/L = 0.99), while

luminal cells in the SUM159 line exhibited roughly equal

probabilities of either remaining in the luminal state or

transitioning to basal state (PL/L = 0.47; PL/B = 0.49).

These distinctions help explain the higher proportion of
636 Cell 146, 633–644, August 19, 2011 ª2011 Elsevier Inc.
basal cells observed at equilibrium in the SUM159 line

relative to the SUM149 line.
Validation of Markov Model Predictions In Vitro
and In Vivo
The inferred Markov transition probabilities make it possible to

quantitatively predict how a population of cells evolves over

time given the initial proportion of cell states. Examples are

shown in Figure 3 for several initial cell state proportions of

SUM159 populations.

The model makes several unanticipated predictions. First,

even though a subpopulation of sorted stem-like cells from

SUM159 has a low proportion of luminal cells both immediately

after sorting and at 6 days postsort (0.6%), the model predicts

that the proportion of luminal cells will actually show a sharp tran-

sient rise to �7.3% at 1 day postsort (arrow in Figure 3). We

tested this prediction and indeed observed an increase in the

proportion of luminal cells (to 6.5%) at 1 day postsort. This unex-

pected prediction could not have been made without a quantita-

tive model of the underlying cell-state dynamics.



Table 1. Cell-State Transition Probabilities for Control or TBX3-

Inhibited Human Breast Cancer Cells

Control shTBX3

Transition Probabilities S B L S B L

SUM159

Stem 0.58 0.35 0.07 0.50 0.49 0.01

Basal 0.01 0.99 0.00 0.01 0.99 0.00

Luminal 0.04 0.49 0.47 0.06 0.16 0.78

SUM149

Stem 0.61 0.09 0.30 0.63 0.07 0.30

Basal 0.01 0.90 0.08 0.02 0.86 0.12

Luminal 0.01 0.00 0.99 0.01 0.00 0.99

S, B and L correspond to stem-like, basal, and luminal states, respec-

tively. The rows and columns correspond to initial (pretransition) and final

(posttransition) states, respectively. Transition probabilities are shown

per cell division.
A second striking prediction of the model is that basal and

luminal cells have a non-zero probability of transitioning to

a stem-like state—that is, that cancer stem-like cells can arise

from non-stem-like cells. This notion stands in stark contrast to

the classical understanding of the concept of ‘‘stem cells’’ in

normal tissues, which posits the existence of a rigid lineage-hier-

archy in which stem cells can give rise to nonstem cells but not

vice versa.

To test this prediction, we evaluated the ability of sorted

SUM159 subpopulations to seed tumors in mice, either after

their initial isolation or after propagation in culture. Consistent

with previous observations, the stem-like fraction could effi-

ciently seed tumors, but neither the luminal nor basal fraction

was capable of doing so (Table 2). The lack of tumor-seeding

potential of luminal and basal subpopulations could be due to

either an inherent inability to give rise to cancer stem cells

(CSCs) in vivo or simply an inability to survive long enough at

the site of implantation to do so. We speculated that admixture

with irradiated carrier cells could allow sorted subpopulations

to survive longer in vivo following injection, as has been previ-
Figure 3. Prediction of Cell-State Dynamics with the Stochastic Cell-S

The transition probabilities determined for the SUM159 line were used to compu

stem-like, basal, or luminal cells. For all three isolated subpopulations, an eventu

a transient increase in the proportion of SUM159 luminal cells one day after isola
ously shown in the context of hematopoietic reconstitution

(Bonnet et al., 1999).

Accordingly, we coinoculated with GFP-labeled irradiated

parental SUM159 carrier cells. Under these conditions, all three

fractions (stem-like, basal, and luminal) were equally capable of

efficiently seeding tumors (Table 2). In contrast, irradiated

parental SUM159 populations failed to seed tumors on their

own, indicating that irradiation had ablated their tumor-seeding

ability. Examination of the tumors arising from basal and luminal

subpopulations mixed with irradiated carrier cells revealed the

presence of significant numbers of stem-like cells (Table 2).

Moreover, the proportions of basal, stem-like, and luminal cells

in tumors were comparable irrespective of the sorted subpopu-

lation used to seed the tumor (Table 2). Collectively, these results

demonstrated that the luminal and basal fractions can indeed

regenerate functional stem-like cells in vivo and suggested that

convergence toward equilibrium cell-state proportions could

be occurring due to cell-state interconversion within tumors.

The ability of basal and luminal cells to regenerate stem-like

cells de novo is consistent with our finding that basal and luminal

subpopulations return to equilibrium cell-state proportions over

time both in vitro and in vivo. More generally, it is a basic math-

ematical theorem (Perron-Frobenius [Frobenius, 1912; Perron,

1907]) that any finite Markov process satisfying mild conditions

(essentially that there is a path of transitions between any two

states) necessarily returns to a unique stationary distribution

regardless of the starting state. In the context of cancer popula-

tions with nonzero transition probabilities, a Markov process

would cause cellular subpopulations to return to equilibrium

proportions upon propagation.

Influence of Genetic Perturbation on Cell-State
Dynamics
We next examined whether the study of cell-state transition

probabilities could help elucidate how genetic perturbations

affect cell-state dynamics in cancer populations. We studied

the inhibition of the TBX3 gene, which encodes a transcription

factor that is overexpressed in breast cancers (Yarosh et al.,

2008) and regulates differentiation in multiple cell types (Fillmore
tate Transition Model

te the expected cell-state proportions over time for isolated subpopulations of

al return to equilibrium cell-state proportions is predicted. The model predicts

tion of a stem-like subpopulation (red arrow).

Cell 146, 633–644, August 19, 2011 ª2011 Elsevier Inc. 637



Table 2. Incidence and Phenotype Analyses of Tumors Arising from Sorted SUM159 Subpopulations

SUM159 Subpopulations Analysis of Formed Tumors

Basal Stem-like Luminal Tumor Incidence Viable cells (%) GFP-neg H2K-neg (%) Basal (%) Stem-like (%) Luminal (%)

Direct Injection

+ – – 0/4

– + – 4/4 17.11 49.34 93.38 6.03 0.59

– – + 0/4

With GFP + Irrad. SUM159

– – – 0/4

+ – – 4/5 58.1 ± 2.1 56.0 ± 6.0 81.7 ± 5.9 11.4 ± 3.5 6.9 ± 2.4

– + – 4/5 53.4 ± 4.7 56.7 ± 7.7 67.2 ± 11.4 24.1 ± 8.0 8.6 ± 3.5

– – + 4/5 65.7 ± 6.3 57.7 ± 7.2 82.4 ± 8.1 12.0 ± 6.5 5.6 ± 2.7

Sorted SUM159 CD44loCD24hiEpCAMhi (luminal) CD44hiCD24negEpCAMneg (basal), and CD44hiCD24negEpCAMlo (stem-like) subpopulations (104 per

injection) were either directly implanted into NOD/SCID mice alone (direct injection) or coinoculated with 106 GFP-labeled irradiated SUM159 parental

carrier cells prior to implantation in vivo. The fraction of viable cells after tumor dissociation was assessed by propidium iodide staining coupled with

flow-cytometry analysis. H2K and GFP were used to exclude contamination of mouse and GFP-positive carrier cells. Luminal, basal, and stem-like

proportions within the viable cancer cells of the resulting SUM159 tumors are shown.
et al., 2010; Govoni et al., 2009; Howard and Ashworth, 2006;

Ivanova et al., 2006; Lee et al., 2007). To inhibit TBX3 function,

we developed and validated short hairpin RNA (shRNA)

constructs targeting the TBX3 gene. We then isolated stem-

like, basal, or luminal subpopulations from SUM149 and

SUM159 cells in which TBX3 expression had been inhibited.

After 6 days in culture, we determined the cell-state proportions

in TBX3-inhibited populations and computed the corresponding

transition probabilities (Table 1).

The results reveal that in SUM159 cells, TBX3 inhibition

decreased the probability of luminal-to-basal cell state transitions

and increased the likelihood of self-renewing divisions for the

luminal state (PL/B decreases from 0.49 to 0.16, while PL/L

increases from0.47 to 0.78; Table 1). InSUM149cells, onecannot

measure whether TBX3 inhibition causes a decrease in PL/B or

an increase in PL/L, because the former is 0.00 and the latter is

0.99 in the absence of inhibition. However, TBX3 inhibition in the

SUM149 line resulted in an increase in the probability of basal-

to-luminal transitions (PB/L increases from 0.08 to 0.12; Table 1).

These findings indicated that TBX3promotes basal differentiation

by distinct mechanisms, depending on the underlying cell-state

transitions present in a given cancer cell population.

Inferring Cell-State Treatment Sensitivities
with a Markov Model
Cell-state dynamics can also be applied to study the differential

toxicities of collections of potential anticancer drugs on various

cell states. Such studies are of particular importance because

of the observed resistance of cancer stem-like cells to chemo-

and radiation therapies (Bao et al., 2006; Dean et al., 2005; Diehn

and Clarke, 2006; Eyler and Rich, 2008; Li et al., 2008; Wood-

ward et al., 2007). This has fueled interest in identifying drugs

that selectively target specific cell-differentiation states. One

approach to finding such drugs would be to use high-throughput

flow cytometry to screen collections of chemicals for their effects

on cell-state proportions.

To explore this idea, we treated SUM159 and SUM149 cells

with two commonly used breast cancer chemotherapy drugs:
638 Cell 146, 633–644, August 19, 2011 ª2011 Elsevier Inc.
paclitaxel and 5-fluorouracil (5-FU) (Figure 4A). For both cell lines,

we observed that treatment with either drug resulted in an

increase in the relative proportion of stem-like cells (each drug

was applied at a concentration that resulted in 90% inhibition of

viability). In SUM159 cells, treatment with either paclitaxel or (to

a lesser degree) 5-FU also increased the proportion of cells in

a luminal state. In contrast, treatment of SUM149 cells with either

paclitaxel or 5-FU resulted in expansion of cells in the basal state.

To understand these observations, we expanded our model to

allow the three cell states to have different relative viabilities in

response todrug treatment.Weused thesame transitionprobabil-

ities as previously determined for each cell line, but incorporated

drug treatment effects by pre-multiplying the transition matrix by

adiagonalmatrixof relativeviabilities (vB, vS, vL). The relativeviabil-

ities represent the survival probability per generation for each cell

state,with the valuesnormalized to sum to1.Because they sum to

1, the values can be represented as points in a ternary plot (that is,

an equilateral triangle in which the three coordinates are repre-

sented by the distance to each side). We then used Monte Carlo

simulation to infer the relative viability matrix most consistent

with the cell-state proportions observed following drug treatment.

Results of this analysis are shown in the ternary density plots in

Figure 4C,with the color of eachpoint representing the normalized

difference between the experimentally observed and predicted

cell-state proportions. The viability values most consistent with

the data are shown as a dark brown region in Figure 4C.

For the SUM159 line, the viability parameters were con-

strained to a small region and imply that basal cells were more

sensitive than the other cell-states to paclitaxel treatment (values

tightly centered around vB = 0.1 ± 0.025, vS = 0.4 ± 0.05, vL = 0.5

± 0.05) (Figure 4C). In contrast, the differential viabilities were not

well constrained for 5-FU treatment. For SUM149 cells, the

viabilities were tightly constrained and approximately equal for

both drugs (vB = 0.15 ± 0.15, vS = 0.68 ± 0.12, vL = 0.22 ±

0.05), and indicate that the stem-like cells were selectively resis-

tant to treatment (Figure 4C).

These results provide insight into the observation that pacli-

taxel treatment of SUM149 cells leads to an �5-fold increase
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Figure 4. Analysis of Chemical Treatment Sensitivities by Monte Carlo Simulation with the Stochastic Cell-State Transition Model

(A) Cell-state proportions after a 6 day treatment with either paclitaxel or 5-FU are shown for SUM159 and SUM149 populations.

(B) A schematic showing how differential chemical treatment sensitivities can be incorporated into the Markov stochastic model. The matrix of transition

probabilities is premultiplied by a differential viability matrix. The diagonal entries of thismatrix, (vB, vS, and vL), encode the survival probabilities of basal, stem-like

and luminal cells in the presence of chemical treatment. These entries are normalized to sum to 1. Monte Carlo simulation is performed by random sampling of

differential viability vectors.

(C) The results of Monte Carlo simulation, shown as ternary density contour plots in which coloration represents the normalized difference (see the Experimental

Procedures for the metric used) between experimentally observed and predicted cell-state proportions following chemical treatment. Ten thousand random

points within the triangle simplex were sampled, each representing a distinct choice of differential viability vector, (vB, vS, vL), with entries ranging from zero

(sensitive) to one (resistant).
in both stem-like and basal cells. In particular, they reveal that

the relative increase in the proportion of basal cells does not

reflect a selective resistance of basal cells to paclitaxel treat-

ment. Rather, it is an indirect effect arising from the selective

resistance of stem-like cells, which then expand and give rise

to basal cells. This important inference would not have been

possible without taking into account the lineage-structure (i.e.,

cell-state transition probabilities) of the SUM149 line.

DISCUSSION

While malignant transformation is invariably associated with the

perturbation of normal regulatory mechanisms, one of the
puzzling features of cancer cell populations is their ability to retain

phenotypic equilibrium over extended periods of time. Popula-

tions of cancer cells, for example, often harbor subpopulations

with specific cell-surface marker profiles that are stably main-

tained across many cell divisions in culture. The observations

here demonstrate that such equilibrium is maintained through

the interconversionof cancercellsbetweenstates, the latter being

defined based on cell-surface marker expression. We have

described a Markov model of cell-state dynamics that assumes

interconversation rates depend only on a cell’s current state and

remain constant under fixed microenvironmental conditions.

A specific prediction of this quantitative model is that any

subpopulation of cancer cells will return to a fixed equilibrium
Cell 146, 633–644, August 19, 2011 ª2011 Elsevier Inc. 639



of cell-state proportions over time, provided that it is possible

through one or more interconversions to transition between

any two states. The cell-state proportions at this equilibrium

can be derived from the transition rates as the second eigen-

vector of the corresponding transition probability matrix. One

corollary of this prediction is that deviations from equilibrium

proportions will be corrected even in the absence of any intercel-

lular communication. Therefore, while intercellular signals clearly

influence cell-state decisions, they are not necessarily required

for stability in phenotypic proportions. Thus, for many types of

cancer populations, it is possible that phenotypic equilibrium is

maintained in culture in the absence of regulatory feedback

mechanisms.

The prediction that cell-state proportions in any subpopulation

would return to a stable equilibrium does not depend on the

strong form of the Markov property assumed above—namely,

that cells lack any memory of their prior states. A more modest

form of the Markov condition—that cell-state decisions depend

only a fixed depth of prior history—would also be sufficient to

promote a stable phenotypic equilibrium, provided there is

weak interconnectedness between states as described above.

The prediction of a return to phenotypic equilibrium is consis-

tent with the finding that CSCs give rise to tumors that recapitu-

late the differentiation-state heterogeneity present in the

parental tumors fromwhich they were derived. Our observations

with breast cancer lines in vitro indicate that cells in CSC-

depleted fractions give rise to cells expressing marker profiles

that enrich for CSCs (Chaffer et al., 2011). If a similar interconver-

sion occurs after in vivo injection, a prediction of themodel would

be that CSC-depleted fractions would give rise to tumors if they

survived long enough at the site of implantation to regenerate

CSCs. In support of this idea, we found that coimplantation

with irradiated carrier cells enabled the luminal, basal and stem-

like fractions of the SUM159 breast cancer line to form tumors

with high efficiency. Additionally, as predicted by the Markov

model, similar cell-state proportions were observed in tumors

generated by the luminal, basal and stem-like fractions and in

tumors generated from unfractionated populations. While these

observations are consistent with the Markov model proposed

here, further experimentation will be needed to quantify the rates

of interconversion between cancer cell states in vivo.

The experiments described here used sorted subpopulations

with relatively large numbers of cells. Accordingly, the transition

rates determined represent population averages over numerous

cancer cells. Therefore, it is possible that interconversion rates

might vary significantly across the individual cancer cells of

any particular sorted subpopulation. To determine whether

such variability exists, further experimentation will be needed

to quantify interconversation rates among the progeny of

single-cell clones. For such an experiment, cancer-cell clones

would need to be grown under conditions that control for effects

on interconversion rates arising from sparsity in culture. Such

variability, if observed, could arise from two sources: (1) the

cell-surface markers failed to segregate epigenetically uniform

subpopulations or (2) there are genetic differences among

cancer cells that are in identical epigenetic states.

If observed, variability in interconversion rates across indi-

vidual cells would not alter the predictive value, at a population
640 Cell 146, 633–644, August 19, 2011 ª2011 Elsevier Inc.
level, of the Markov model proposed here. Indeed, the ability of

theMarkovmodel to predict the dynamics of cell-surfacemarker

profiles does not depend on a one-to-one correspondence

between biological states and the cell-surface marker profiles

used to segregate subpopulations. Moreover, a subsequent

refinement of the markers allowing for the discrimination of addi-

tional states would lead to a natural extension of the model.

In adult tissues, specialized niche cells supply stem and

progenitor cells with paracrine signals necessary for their main-

tenance or expansion. In contrast, due to their acquired genetic

lesions, cancer cells can stochastically enter into stem-like

states in the absence of normal niche microenvironments. For

example, RB loss in animal models of osteosarcoma can cause

dedifferentiation of bone-committed progenitors, resulting in

cancer cell plasticity and the ability to generate tumors of

multiple lineages (Calo et al., 2010; Gutierrez et al., 2008). As

another example, mutations in the BRCA1 gene inhibit the ability

of breast cancer cells to differentiate into the luminal lineage,

resulting in less-differentiated tumors.

While our study was limited to mutated cancer cell popula-

tions, there is evidence indicating that ostensibly normal cells

that are differentiated can either transdifferentiate or transition

into more primitive states. Such differentiation-state plasticity

occurs in response to either genetic or microenvironmental per-

turbations (Deng et al., 2011; Thorel et al., 2010; Zhou et al.,

2008) and has also been observed during normal developmental

processes (Richard et al., 2011). It will be of significant interest to

determine how adult cells acquire plasticity, since modulation of

the underlying mechanisms could lead to novel therapies for

regenerative medicine.

While our findings indicate that cancer stem-like cells can arise

de novo from non-stem-like cells at a low but significant rate, it is

unclear whether the presence of such plasticity indicates that the

concept of cancer stem cells is fundamentally different from that

of normal stem cells. Indeed, the plasticity described above

suggests that the lineage-hierarchy associated with normal cells

may be more flexible than is commonly depicted (Figure 5,

model I versus II).

The de novo generation of CSCs has implications for the effec-

tiveness of anticancer therapies that exclusively target CSCs,

because non-CSCs would regenerate CSCs after cessation of

therapy and lead to renewed tumor growth. Therefore, in order

to be effective, cancer therapies will need to combine agents

that are selectively toxic to CSCs with agents that either target

the bulk non-CSC populations within tumors or inhibit transitions

from non-CSC to CSC states.

The Markov model described here allows for the quantitative

inference of transition probabilities between phenotypic states

within cancer cell populations. The marker profiles studied

here correlate with particular differentiation states associated

with mammary epithelial cells. However, the model described

here could be applied to subpopulations isolated using any other

cell-surface marker profiles. In principle, themodel could also be

extended to other biological settings in which stochastic state

transitions occur, either in normal or diseased contexts. In

such applications, it is possible that proliferation or survival rates

could differ across cell-states. If this is the case, additional mea-

surements quantifying the viability differences or model-fitting



Figure 5. Two Distinct Models of Cancer

Cell Populations

In the existing paradigm (model I), CSCs give rise

to non-CSCs but not vice versa, resulting in

a hierarchical cell-lineage structure reflective of

normal tissue biology. We propose an alternative

scenario (model II) in which there is bidirectional

interconversion between CSC and non-CSC

states. The rates of transition between cell states,

which vary across distinct cancer cell populations,

can be computed with the Markov modeling

approach described in the main text and Experi-

mental Procedures.
approaches would be needed in order to extend the model

described here.

Interconversion of cells between differentiation states compli-

cates the interpretation of experiments in which cell-state

proportions aremeasured in populations of cells following chem-

ical or genetic perturbation. Our findings indicate that knowledge

of inter-conversion rates is needed to accurately characterize

the effects of perturbations on cell-state dynamics. The model

proposed makes it possible to systematically characterize how

cell-state transitions are influenced by experimental perturba-

tions. In addition to being practically useful, the ability to relate

cell-state transition probabilities at the single-cell level to the

dynamics of population cell-state proportions should prove

useful in future theoretical studies of phenotypic complexity.
EXPERIMENTAL PROCEDURES

Description of the Cell-State Transition Markov Model

The Markov model makes several assumptions: (1) cells within a population

can exist in any one ofM possible states and (2) under fixed genetic and envi-

ronmental conditions, cells transition from one state to another with transition

rates per unit time that are constant.

Let Pij denote the probability that a cell transitions from state i to state j.

Since a given cell must either remain in the same state or enter into one of

the other possible M-1 states, it follows that for all i,

XM

j =1

Pij =1:
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A population of cells can be described by

a single row-vector v of dimension k in which the

ith entry of the vector is the proportion of cells

that are present in the ith phenotypic state. Since

all cells must exist in one of the k states, it follows

that for any n,

XM

i = 1

ni = 1:

Given these assumptions, the dynamic evolu-

tion over time of the various cell state proportions

is a Markov process. The rates of transition

between states can be encoded in a (M 3 M)

stochastic matrix P with row-sums equal to 1

that encodes the transition rates per unit time.

Given a vector encoding the initial cell-state
proportions at time 0, v(0), and the stochastic matrix P, it is possible to calcu-

late cell-state proportions after T time units:

nðTÞ = nð0Þ,
�
PT

�
:

Computation of the Stochastic Matrix Associated with a Population

of Cells

To predict the evolution of phenotypic proportions in a cellular population, the

transition probabilities and initial state vector for the population need to be

determined. The initial state vector corresponds to the proportions of the

various cell states at time 0. To compute the matrix of transition probabilities,

P, it is necessary to observe the evolution of at leastM populations for a fixed

length of time, T. Any set of M populations would suffice to determine P,

provided that the initial state vectors corresponding to the distinct populations

span RM. This information is sufficient to determine the stochastic matrix in

cases where proliferation and survival rates do not differ between states.

For example, one could use as starting populations the M distinct subpop-

ulations for which all cells in a population are present in one of the states S1,

S2,., SM. The observed state-vector at time T for population Si is given by

the ith row of the matrix P (T) where P represents the transition rates per unit

time. Accordingly, the matrix P would equal the matrix of observations raised

to the power (1/T).

Monte Carlo Simulation with Transition Probabilities for Analysis

of Treatment Sensitivity

We assumed that compound treatment affects cell viability but not the cell-

state transition probabilities for a given population. The differential treatment

sensitivities for the k distinct cell states were represented in a diagonal (M 3

M) matrix with diagonal elements encoding survival probabilities summing to

one. Together, the differential treatment sensitivity and transition probabilities

allow for in silico predictions of cell state proportions after treatment. To
, August 19, 2011 ª2011 Elsevier Inc. 641



determine the differential drug sensitivities that best correspond to experi-

mental observations following treatment, Monte Carlo simulation was per-

formed by randomly sampling treatment sensitivity vectors from the (M-1)-

simplex. The initial cell-state proportions prior to treatment were assumed to

be at equilibrium. For each cell line, the predicted cell-state proportions after

6 days of treatment were determined from the differential treatment sensitivity

matrix and the matrix of transition probabilities for the cell line. The normalized

distance,D, between the observed n io b s and predicted n ip r e d cell-state propor-

tions was calculated with the metric

D=
XM

i =1

jn io b s � n ip r e d j
n ie q

;

where n ie q are the equilibrium proportions.

Cell Lines and Tissue Culture

SUM cell lines were obtained from Stephen Ethier (Karmanos Institute, MI) and

are commercially available (Asterand); SUM149 and SUM159 cells were

cultured in Ham’s F12 medium with 5% calf serum, insulin (5 mg/ml), and

hydrocortisone (1 mg/ml). All cell lines were grown at 37�C in a 5% CO2

incubator.

Microarray Hybridization and Global Gene Expression Profiling

Total RNA for gene-expression studies was isolated from sorted stem-like

(CD44hiCD24negEpCAMlo), basal (CD44hiCD24negEpCAMneg), and luminal

(CD44loCD24hiEpCAMhi) subpopulations from SUM149 and SUM159 cell

cultures with the RNeasy Mini kit (QIAGEN). Synthesis of complementary

DNA from total RNA and hybridization/scanning of microarrays were per-

formed with Affymetrix GeneChip products (HGU133A) as described in the

GeneChip manual. Raw data files (.CEL) were converted into probe-set values

by RMA normalization using the affy package in R (Gentleman et al., 2004).

After RMA normalization, the limma R package (Smyth, 2004) was used to

determine regression coefficients, identifying probes differentially expressed

between stem versus basal cells, stem versus luminal and luminal versus basal

cells for the SUM149 and SUM159 lines. Hierarchical clustering was per-

formed with the Pearson correlation metric, using probes consistently regu-

lated across both lines. GSEAwas performed as described previously (Mootha

et al., 2003; Subramanian et al., 2005), using gene lists previously reported to

characterize stem, luminal, and basal cells (Table S1). GSEAwas on performed

for each pair-wise comparison on probe lists preranked based on the sum of

the regression coefficients for both lines. Probe sets were collapsed to gene

scores based on maximal intensity.

Lentiviral Infection of shRNA Constructs

Bacterial glycerol stocks of MISSION shRNAs were obtained (SIGMA) and

plasmid DNA was isolated by mini-prep (QIAGEN). pLKO.1 (0.6 mg) plasmid

containing the shRNA constructs targeting Tbx3 or no known target (Scram-

bled) were transiently cotransfected into S293T cells along with the VSV-G-

expressing construct pCMV-VSV-G and the packaging construct pCMV

DR8.2Dvpr generously provided by Inder Verma (Salk Institute). Viral superna-

tant was collected and introduced to subconfluent SUM149 or SUM159

cultures. Lentiviral integration was selected with 1 mg/ml puromycin for

7 days, and knockdown efficiency was measured by quantitative RT-PCR.

The Tbx3 clone ID is NM_016569.2-443s1c1 50ATTGATCCATGATC

GGCTTGG30.

Fluorescence-Activated Cell Sorting

Subconfluent cultures were trypsinized, counted, washed with PBS, and

stained with antibodies specific for the following human cell-surface markers:

EpCAM (ESA)-FITC (clone VU-ID9, AbD Serotec), CD24-PE (clone ML5, BD

PharMingen), and CD44-APC (clone G44-26, BD PharMingen). For each stain-

ing reaction, cells were incubated with antibody (20 ml antibody per million

cells) for 15 min at room temperature. Unbound antibody was washed off,

and cells were analyzed on a BD FACSCaliber no more than 1 hr after staining.

Isotype controls included mouse IgG1-FITC, mouse IgG2ak-PE, and mouse
642 Cell 146, 633–644, August 19, 2011 ª2011 Elsevier Inc.
IgG2bk-APC (BD PharMingen). Cell sorting for subsequent culture was per-

formed on a MoFlo cell sorter (Cytomation).
Tumor formation Experiments

All animal procedures were conducted in accordance with a protocol

approved by the Tufts University IACUC committee. Nulliparous NOD/SCID

female mice aged 6–8 weeks were used for all injection experiments. Human

breast cancer cells were suspended in 30 ml phosphate-buffered saline and in-

jected into the fourth inguinal mammary glands of mice. Tumor formation was

assessed by palpitation. Tumors were dissociated with Collagenase Type IV

and 0.25% Trypsin (Invitrogen). Viable human cells were isolated from disso-

ciated tumors by negative selection of GFP-positive irradiated carrier cells,

propidium iodide-positive cells, and mouse pan H2K-MHCI-PE-positive cells.

The FACS-sorted viable human cells were then stained for flow cytometry as

described above for cell lines.
SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure and one table and can be found

with this article online at doi:10.1016/j.cell.2011.07.026.
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interplay controls self-renewal and hypoxia survival in human stem/progenitor

cells of the mammary gland expanded in vitro as mammospheres. Stem Cells

25, 807–815.

Shipitsin, M., Campbell, L.L., Argani, P., Weremowicz, S., Bloushtain-Qimron,

N., Yao, J., Nikolskaya, T., Serebryiskaya, T., Beroukhim, R., Hu, M., et al.

(2007). Molecular definition of breast tumor heterogeneity. Cancer Cell 11,

259–273.

Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkel-

man, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human

brain tumour initiating cells. Nature 432, 396–401.

Sleeman, K.E., Kendrick, H., Ashworth, A., Isacke, C.M., and Smalley, M.J.

(2006). CD24 staining of mouse mammary gland cells defines luminal epithe-

lial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res. 8, R7.

Smalley, M., and Ashworth, A. (2003). Stem cells and breast cancer: A field in

transit. Nat. Rev. Cancer 3, 832–844.
644 Cell 146, 633–644, August 19, 2011 ª2011 Elsevier Inc.
Smyth, G.K. (2004). Linear models and empirical bayes methods for assessing

differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol.

3, Article3.

Sørlie, T., Wang, Y., Xiao, C., Johnsen, H., Naume, B., Samaha, R.R., and

Børresen-Dale, A.L. (2006). Distinct molecular mechanisms underlying clini-

cally relevant subtypes of breast cancer: gene expression analyses across

three different platforms. BMC Genomics 7, 127.

Stingl, J., and Caldas, C. (2007). Molecular heterogeneity of breast carcinomas

and the cancer stem cell hypothesis. Nat. Rev. Cancer 7, 791–799.

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,

Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and

Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-based

approach for interpreting genome-wide expression profiles. Proc. Natl.

Acad. Sci. USA 102, 15545–15550.
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