
1

Defects Described in Verilog-AMS

Copyright © 2020 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1

2

Module/model level defects

Since the most common device model description form is Verilog-A (an analog-only
subset of Verilog-AMS), the easiest place to drop a defect description is in the device
model itself. Put simply: the defect is a subcircuit of the module, with the option of
breaking a port connections:

module DeviceName #(properties...) (ports…);

 analog begin

 // device model

 ….

 end

 defect DefectName1;

 break PortName; // => Open defect, “/PortName” to connect to outside

 StandardDefect #(properties...) (nodes…);

 enddefect;

 defect DefectName2;

 defparam Param = OOBvalue; // parametric defect

 ...

endmodule;

Multiple defects can be described and any active defect in simulation behaves the same as
a submodule – the instance path being “...<device instance>.<defect name>...”

If a simulator doesn't understand the defect syntax the defects can be surrounded by a
`ifdef...`endif to hide them.

The module reference “StandardDefect” would be replaced by something like
“SimpleShort” from the standard defect library described below.

For annotating devices from outside the module the syntax is the same but “module” is
preceded by “annotate”, e.g.:

annotate

module DeviceName #(properties...) (ports…);

 // no model constructs allowed

 defect DefectName1;

 break PortName; // => Open defect, “/PortName” to connect to outside

Copyright © 2020 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1

2
3
4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23
24

25
26

27
28

29

30

31

32

33

34

3

 StandardDefect #(properties...) (nodes…);

 enddefect;

 ...

endmodule;

“annotate” statements refer to the last module of that name if there is ambiguity, or the
next if there is no immediate match (Verilog input is usually read in strict sequence). The
module name in an annotate statement may be “(<regular expression>)” so that one set of
defects may be used for multiple devices – e.g. “annotate module (*) ...” for all modules.

The base class of a defect (open or short) is implied by whether there are “breaks” in it,
otherwise its name and/or submodules called (from a P2427 standard library) imply the
defect type. Note: “break” is a Verilog keyword, and the “defparam” mechanism already
exists, so scripting the generation of an individual defect model from the general device
model is straightforward – rename the internal node for any breaks, and instantiate the
given defect block(s). Verilog has a general attribute scheme - (* <attribute> *) - for any
extra information needed.

While intended to be used in the device models, this mechanism can be used in any
module, so wiring defects due to circuit construction can be add in higher level modules
when delivering blocks of IP, and above. Likewise the “annotate” version can be used
with SPICE subcircuits.

The “/” operator is not unary in existing Verilog, and the new use would be limited to
defect blocks.

SystemVerilog and VHDL support configurations, where you can provide alternative
implementations of a given instance. For (re)simulating a defect you just run the above
module/defect definition through a simple script script to create the defective version to
use. Noting that the syntax is mostly structural and analog behavior is in the defect library
not necessarily the device/module definition (it works equally well for digital defects)

P2427 Standard Library

Most defects can be described with passive components that can be described as SPICE
subcircuits. Verilog-A was designed to be SPICE compatible (Appendix E in the LRM),
so using the Verilog-A device/defect description doesn't preclude the standard defect
models being in other languages – module instance binding is by name and port order for
most HDLs.

SystemVerilog supports “packages”, using that syntax the standard defects can be
provided in a file with that style and also “ifdef’d” for inclusion in standard Verilog-AMS
-

package P2427_Defects;

Copyright © 2020 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1

2

3

4

5

6
7
8
9

10
11
12
13
14
15
16

17
18
19
20

21
22

23

24
25
26
27
28

29

30

31
32
33
34
35

36

37
38
39

40

4

 module SimpleShort (inout a, inout b);

 electrical a,b;

 parameter real R = 1.0 from (0.0:inf];

 analog I(a,b) <+ V(a,b)/R;

 endmodule

 module OpenResistance (inout a, inout b);

 electrical a,b;

 parameter real R = 1.0e9 from (0.0:inf];

 analog I(a,b) <+ V(a,b)/R;

 endmodule

 ….

endpackage

Copyright © 2020 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1

2

3

4

5

6

7

8

9

10

11

12

13

5

Defect reporting

When reporting defects used in a test run, the same format can be used but with “annotate
<instance path>: <module name>” instead of just “annotate <module name>”.

As above, the defect description may just be breaks and references to standard defect
models, and the standard model descriptions would not need to be included in every
report. Only the defect(s) chosen for simulation out of the complete set are reported, and
specific parameter values if the source defect description was specified with a range.

Copyright © 2020 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1

2
3

4
5
6
7

6

References

https://www.hdlworks.com/hdl_corner/verilog_ref/items/DefParam.htm

https://verilog.renerta.com/mobile/source/vrg00027.htm

https://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf

http://www.ece.uah.edu/~gaede/cpe526/SystemVerilog_3.1a.pdf

https://www.hdlworks.com/hdl_corner/verilog_ref/items/Configuration.htm

Copyright © 2020 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

1

2

3

4

5

6

7

https://www.hdlworks.com/hdl_corner/verilog_ref/items/Configuration.htm
http://www.ece.uah.edu/~gaede/cpe526/SystemVerilog_3.1a.pdf
https://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://verilog.renerta.com/mobile/source/vrg00027.htm
https://www.hdlworks.com/hdl_corner/verilog_ref/items/DefParam.htm

