
A dynamically loadable XLA 
plugin proposal

Avijit Chakraborty, Intel



Motivation

• XLA backends must currently be built with TensorFlow
• Steep learning curve
• Upstreaming plugins developed by various contributors may take up 

significant resources from core TensorFlow team 
• Changes in the “plugin” code (though unrelated to TensorFlow code) need to 

up upstreamed
• We have made minimal modifications to XLA to
• Load XLA backends at runtime
• Co-exists with traditional statically linked plugin backends



A dynamically loaded XLA Backend

• Just a normal dynamic shared object library, loaded at run time (using 
dlopen)
• The plugin is written using c++ and located outside of TensorFlow

source tree
• Depends on include files from TF installation (i.e., from Python site 

packages/tensorflow/include)
• Links with libtensorflow_framework.so

• The plugin is placed in a well known location 
• For example TF installation/plugins directory
• May have an optional configuration file (co-located)

• This idea is very similar to TensorFlow “Adding a New Op”

https://www.tensorflow.org/extend/adding_an_op


TensorFlow changes

• TensorFlow will have a plugin “adapter” that will connect with one or 
more plugin DSO libraries
• The adapter will be initialized statically and will discover the plugin(s)
• Load the plugin (.so), configure it, and query necessary data
• If successful, register the plugin device with various TF registries

• Platform, Compiler, Transfer Manager, Device
• Connect the corresponding implementation components from the plugin DSO

• At run time, user scripts requests computation placement on this 
plugin device
• Will follow the usual TensorFlow computation placement and execution



TensorFlow code changes

• Need to modify the BUILD scripts 
• Add additional header files (xla) to be included with the usual “include” target
• Add additional library objects to the libtensorflow_framework.so
• Add the additional directories to be packaged with Python wheel

• Need to implement the plugin “adapter” code 
• Compiler/plugin/<adapter directory>
• Code is modeled from the existing XLA plugin code

• Some refactoring to separate out the static registration parts and functional parts
• Timeframe

• We already have written the code to test out this concept. Can submit the code for 
PR very soon – in the next few days.

• Have included an example plugin that uses the HloEvaluator to run simple 
computations


