Release Note for Xblite Revision 16

About revision 16

3 new keywords

CODE, GRAB and STRIP are new additions to an already rich language, in the sense that they open huge possibilities in 3 directions:

1. CODE for faking “inline assembly”,

2. GRAB for code injections,

3. STRIP for trimming an Xblite source.

I added the last two because I believe in the DRY principle: "Don't Repeat Yourself!":
GRAB "some_snippet.x" allows for code re-use, and STRIP weeds away extraneous FUNCTION bodies.

I first intended to propose a crude pre-processor: CODE, GRAB and STRIP were at first source directives and their output are saved in separate Xblite source files for whatever you would to do with them. However, I decided to treat CODE as a normal Xblite operator: I succeeded to break badly the CODE directive while injecting really huge pieces of GoAsm code. Since I had a previous implementation of CODE as a normal Xblite key word, I tried the old CODE version and it worked nicely! Well, you can’t beat success! CODE is and will remain an Xblite operator, unlike GRAB and STRIP, which remain pre-compile directives and yield to a new and improved source file.

1. CODE and END CODE, which injects assembler code by bulk-prepending with the keyword ASM

CODE and END CODE are 2 new Xblite keywords (and therefore recognized by the Xblite compiler)

Purpose

CODE provides support for GoAsm code injection. Unlike GRAB, CODE is compiled and generates code into the resulting GoAsm source.

CODE just simplifies the syntax for "inline assembly":

ASM cld

ASM rep movsb

Can now be replaced with the more familiar:

CODE

cld

rep movsb

END CODE

Syntax

CODE

(some carefully tested GoAsm code)

END CODE

The assembly lines between [CODE, END CODE] will be prefixed at compile-time with the ASM keyword and then passed to the compiler parser to resume the assembly generation.
Usage

When using the CODE statement, you must keep in mind that:

1.
Xblite can probably do the job at least as well,

2.
The injected snippet must be "atomic",

3.
The snippet could break in a future release of Xblite's compiler,

4.
The snippet must be checked "in context", in the generated .asm.

Assembly CODE injection is great, but never necessary, except to take advantage of specific features of the running processor.

Some Examples

1. An inline XstCopyMemory ()

' old---

'
XstCopyMemory (sourceAddr, &piece$, 32)

destAddr = &piece$

' old~~~

' new+++

' primitive code

CODE

mov
esi,[EmitString.sourceAddr]

mov
edi,[EmitString.destAddr]

mov
ecx,32

cld

rep movsb

END CODE

' new~~~

' new+++

' smart 32 bit code

' =================

' Note: 32bit-word == dword == 4-byte word

CODE

mov
esi,[EmitString.sourceAddr]

mov
edi,[EmitString.destAddr]

mov
ecx,8

; 8-dword chunk == 32-byte chunk

cld

rep movsd

; dword copy

END CODE

' new~~~

2. An inline "SPLIT WORD"

' old---

' Inside FUNCTION MyFun():

'
bu_y = HIWORD (bu)

'
bu_x = LOWORD (bu)

' old~~~

' new+++

' Allocate 2 new variables.

bu_y = 0 ' = HIWORD (bu)

bu_x = 0 ' = LOWORD (bu)

' Split bu into its high and low parts.

CODE

mov eax, d[MyFun.bu]

mov ebx, 0x10000

cdq

idiv ebx

mov d[MyFun.bu_y],eax ; = HIWORD

mov d[MyFun.bu_x],edx ; = LOWORD

END CODE

' new~~~

2.GRAB "file_to_grab", which is an IMPORT statement at pre-compilation time

GRAB is _not_ a new Xblite keyword but a pre-processing directive.

Note that GRABbing an assembler source file will insert the assembler source between a pair of (CODE, END CODE) for proper compilation.

The GRAB directive is able to parse and insert any valid file path:
- assembler file name
- Xblite source file name without directory
- file name with partial but correct directory
- file name with directory prefixed by .\
- file name with directory prefixed by ..\

Purpose

GRAB provides support for code reuse very much like the INPUT statement, but with additional possibilities. Just like INPUT, GRAB is never compiled and acts as a pre-processing directive.

The GRAB statement was a great help in xsx.x in order to

generate "typed" quick sort routines from a single "grabbed"

snippet:

'

' NUMERIC TYPES

'

GRAB "QuickSort/define.x"

' "$1" := "XLONG"

GRAB "QuickSort/define.x"

' "$1" := "GIANT"

GRAB "QuickSort/define.x"

' "$1" := "DOUBLE"

' r22-new+++

GRAB "QuickSort/define.x"

' "$1" := "ULONG"

GRAB "QuickSort/define.x"

' "$1" := "LONGDOUBLE"

' r22-new~~~

Syntax

GRAB "text_file_path"

The content of text_file_path is inserted verbatim.

GRAB "piece_of_code.txt" ' "find" := "replace"

' "$1" := "MyText"

This GRAB statement inserts the contents of piece_of_code.txt applying 2 text substitutions: "find" by "replace" and "$1" by "MyText".

GRAB "snippet.x"

' OMIT FUNCTION "Fun_1" "Fun_2"

This GRAB statement inserts the contents of snippet.x trying to remove 2 Xblite functions: "Fun_1" and "Fun_2".

Functionalities

Code injection

GRAB injects code from an external text file: the Xblite compiler reads a text file at pre-compile-time and inserts it inside the code source at the exact location of the GRAB statement. This could be done with XSEd, but you get the latest version of the inserted snippet, which is great if you corrected a bug for example.

Since the file extension is associated with a language, GRAB injects GoAsm code inside a [CODE, END CODE] statement, seamlessly so to speak.

Text processing during injection

In addition of the code injection, GRAB allows to modify the injected text. This is done thru a block comment following the GRAB, and respecting a strict format.

Text replacement

This is done thru a comment line with the syntax:

' "1st text to find" := "1st replacing text"

' "2nd text to find" := "2nd replacing text"

FUNCTION elimination

Possible only to a peace of Xblite code, GRAB annul the injection of FUNCTION declaration and/or FUNCTION bodies.
This is done thru a comment line with the syntax:

' OMIT FUNCTION "function name suffix"

' OMIT FUNCTION[s/S/*] "1st name suffix" "2nd name suffix" "…"

The use of a suffix allows omitting: "parent_Update" as well as "child_Update" just with the comment line:

' OMIT FUNCTIONs "_Update"

Just the same as:

' OMIT FUNCTIONs "parent_Update" "child_Update"

Xblite's folder grab_bag

The new folder grab_bag is a proposed repository for the most successful snippets: an Xblite hall of fame so to speak GRAB works well with the new folder grab_bag: you will find there some snippets used to implement Revision 16 of the Xblite compiler, and now at your disposal for your own developments.

Of special interest is an implementation of Callum Lowcay's Abstract Data Type Library, which I use routinely in all my developments.

grab_bag is not intended to host all and every snippets but the more universal ones, so that the Xblite will search there by default (after exhausting all other candidates). Notable exception would be snippets associated to your preferred GUI: they can be placed there for easier maintenance and swift override with another GUI if necessary.

Some Examples

1. Inline: SPLIT_WORD(int32, @high16, @low16)

2. Inject: Most Recently Used list

Priming with temporary GRABs

The drawback

A major inconvenience of using GRABs is that, in case of a compile error, the compiler indirectly points to the offending line in the expanded Xblite file, instead of the line in the compiled source.

The fix

You might want to get rid of the GRAB statements as soon as they served their purpose by retrieving Xblite's generated output and using this new source in place of the original source.

However, evaluate if your original source would be more readable retaining the GRABS, as it shows only specific code and conveniently hides the "streamlined" code.

3. STRIP

The new STRIP directive can pinpoint coding problems: when the Xblite compiler removes the body of an uncalled function, it is either legitimate (and then prevents compiling dead code), or a mistake (which should be corrected). Try STRIP compile on programs to be deployed, as a new good check before shipping new programs especially because the compiler does not STRIP a meticulously pruned calling tree. However, STRIP works wonders combined with GRAB statements as it removes all the unnecessary function before compilation.

Purpose

STRIP provides support for code reuse very much like the INPUT statement, but with additional possibilities. Just like INPUT, STRIP is never compiled and acts as a pre-processing directive.

The STRIP statement was a great help in xsx.x in order to

generate "typed" quick sort routines from a single "GRABbed"

snippet:

'

' NUMERIC TYPES

'

STRIP "QuickSort/define.x"

' "$1" := "XLONG"

STRIP "QuickSort/define.x"

' "$1" := "GIANT"

STRIP "QuickSort/define.x"

' "$1" := "DOUBLE"

' r22-new+++

STRIP "QuickSort/define.x"

' "$1" := "ULONG"

STRIP "QuickSort/define.x"

' "$1" := "LONGDOUBLE"

' r22-new~~~

Syntax

STRIP "text_file_path"

The content of text_file_path is inserted verbatim.
STRIP "piece_of_code.txt" ' "find" := "replace"

' "$1" := "MyText"

This STRIP statement inserts the contents of piece_of_code.txt applying 2 text substitutions: "find" by "replace" and "$1" by "MyText".

STRIP "snippet.x"

' OMIT FUNCTION "Fun_1" "Fun_2"

This STRIP statement inserts the contents of snippet.x trying to remove 2 Xblite functions: "Fun_1" and "Fun_2".

Functionalities

Code injection

STRIP injects code from an external text file: the Xblite compiler reads a text file at pre-compile-time and inserts it inside the code source at the exact location of the STRIP statement. This could be done with XSEd, but you get the latest version of the inserted snippet, which is great if you corrected a bug for example.

Since the file extension is associated with a language, STRIP injects GoAsm code inside a [CODE, END CODE] statement, seamlessly so to speak.

Text processing during injection

In addition of the code injection, STRIP allows to modify the injected text. This is done thru a block comment following the STRIP, and respecting a strict format.

Text replacement

This is done thru a comment line with the syntax:

' "1st text to find" := "1st replacing text"

' "2nd text to find" := "2nd replacing text"

FUNCTION elimination

Possible only to a piece of Xblite code, STRIP annuls the injection of FUNCTION declaration and/or FUNCTION bodies.
This is done thru a comment line with the syntax:

' OMIT FUNCTION "function name suffix"

' OMIT FUNCTION[s/S/*] "1st name suffix" "2nd name suffix" "…"

The use of a suffix allows omitting: "parent_Update" as well as "child_Update" just with the comment line:

' OMIT FUNCTIONs "_Update"

Just the same as:

' OMIT FUNCTIONs "parent_Update" "child_Update"

Xblite's folder STRIP_bag

The new folder STRIP_bag is a proposed repository for the most successful snippets: an Xblite hall of fame so to speak STRIP works well with the new folder STRIP_bag: you will find there some snippets used to implement Revision 16 of the Xblite compiler, and now at your disposal for your own developments.

Of special interest is an implementation of Callum Lowcay's Abstract Data Type Library, which I use routinely in all my developments.

STRIP_bag is not intended to host all and every snippets but the more universal ones, so that the Xblite will search there by default (after exhausting all other candidates). Notable exception would be snippets associated to your preferred GUI: they can be placed there for easier maintenance and swift override with another GUI if necessary.

Some Examples

1. Inline: SPLIT_WORD(int32, @high16, @low16)

2. Inject: Most Recently Used list

Priming with temporary STRIPs

The drawback

A major inconvenience of using STRIPs is that, in case of a compile error, the compiler indirectly points to the offending line in the expanded Xblite file, instead of the line in the compiled source.

The fix

You might want to get rid of the STRIP statements as soon as they served their purpose by retrieving Xblite's generated output and using this new source in place of the original source.

However, evaluate if your original source would be more readable retaining the STRIPS, as it shows only specific code and conveniently hides the "streamlined" code.

Preserve your current seting

- SAVE C:\xblite\include\xst.dec in C:\xblite\include\bak\ (for example).
- SAVE C:\xblite\bin\xblite.exe in C:\xblite\bin\bak\ (for example).
- SAVE C:\xblite\bin\XFORMAT.exe in C:\xblite\bin\bak\
- SAVE C:\xblite\bin\xsx.dll in C:\xblite\bin\bak\

Add the new sources

1. Create new directory C:\xblite\xblite_2_41_16

2. Create new directory C:\xblite\xblite_2_41_16\xblite and copy downloaded xblite.x

3. Create new directory C:\xblite\xblite_2_41_16\xbdll and copy downloaded xst.x

4. Create new directory C:\xblite\xblite_2_41_16\xblib and copy downloaded XFORMAT.x

5. Create new directory C:\xblite\xblite_2_41_16\xsx and copy downloaded xsx.x

6. Create new directory C:\xblite\grab_bag and unzip there downloaded grab_bag.zip

Build xblite.exe

1.Make a backup copy of your C:\xblite\bin\xblite.exe: xblite_old.exe
2.Make a backup copy of your C:\xblite\xblite_2_41_16\xblite\xblite.x: xblite_old.x
3.Overwrite your C:\xblite\xblite_2_41_16\xblite\xblite.x with the downloaded xblite.x
4.Open the new C:\xblite\xblite_2_41_16\xblite\xblite.x with XSEd
5.Compile (F9), Link (F10) and Run (F11) => displays "...Xblite version 2.41.16..." in the console
6.Overwrite C:\xblite\bin\xblite.exe with C:\xblite\xblite_2_41_16\xblite\xblite.exe

Build FORMAT.dll

1.Make a backup copy of your C:\xblite\bin\XFORMAT.dll: XFORMAT_old.dll

2.Make a backup copy of your C:\xblite\xblite_2_41_16\xblib\XFORMAT.x: XFORMAT_old.x

3.Overwrite your C:\xblite\xblite_2_41_16\xblib\XFORMAT.x with the downloaded XFORMAT.x

4.Open the new C:\xblite\xblite_2_41_16\xblib\XFORMAT.x with XSEd

5.Compile (Shift+F9) and Link (F10)

6.In dialog 'Compiler options', Enable 'clean' Makefile option and Link (F10)

Build xbl.dll and xst.dll

1.Make a backup copy of your C:\xblite\bin\xbl.dll: xbl_old.dll

2.Make a backup copy of your C:\xblite\xblite_2_41_16\xbdll\xst.x: xbl_old.x

3.Overwrite your C:\xblite\xblite_2_41_16\xbdll\xst.x with the downloaded xst.x

4.Run downloaded BuildXstDll.bat

Build xsx.dll

1.Make a backup copy of your C:\xblite\bin\xsx.dll: xsx_old.dll

2.Make a backup copy of your C:\xblite\xblite_2_41_16\xsx\xsx.x: xsx_old.x

3.Overwrite your C:\xblite\xblite_2_41_16\xsx\xsx.x with the downloaded xsx.x

4.Run downloaded BuildXsxDll.bat

To revert, just copy back:
- from C:\xblite\include\bak\xst.dec to C:\xblite\include\
- from C:\xblite\bin\bak\xblite.exe to C:\xblite\bin\
- from C:\xblite\bin\bak\XFORMAT.exe to C:\xblite\bin\
- from C:\xblite\bin\bak\xsx.dll to C:\xblite\bin\

Xblite v2.41.16
Page 1

