

Printed on 7 September, 2015

Software Gadgetry

Brochure
Vol. 1 - "tsWxGTUI_PyVx" Toolkit

Rev. 0.0.2 (Pre-Alpha)

Author(s): Richard S. Gordon

Author Copyrights & User Licenses for "tsWxGTUI_Py2x" & "tsWxGTUI_Py3x" Software & Documentation
§ Copyright (c) 2007-2009 Frederick A. Kier & Richard S. Gordon, a.k.a. TeamSTARS. All rights reserved.
§ Copyright (c) 2010-2015 Richard S. Gordon, a.k.a. Software Gadgetry. All rights reserved.
§ GNU General Public License (GPL), Version 3, 29 June 2007
§ GNU Free Documentation License (GFDL) 1.3, 3 November 2008

Third-Party Component Author Copyrights & User Licenses
§ Attribution for third-party work directly or indirectly associated wth the TeamSTARS

"tsWxGTUI_PyVx" Toollkit are detailed in the "COPYRIGHT.txt", "LICENSE.txt" and "CREDITS.txt"
files located in the directory named ". /tsWxGTUI_PyVx_Repository/Documents".

Contents

1 INTRODUCTION 3
1.1 About...3

1.1.1 Platform Hardware and Software Requirements ...3
1.1.2 What is the Toolkit designed do? ..6
1.1.3 What is included in the release? ..7
1.1.4 How might you use the Toolkit?..9
1.1.5 Where to get further information? ...11

1.2 System Block Diagrams ..13
1.2.1 Block Diagram...14
1.2.2 Stand Alone System Architecture..15
1.2.3 Stand Among System Architecture..20

1.3 Usage Terms & Conditions ...22

2 SCREENSHOTS 23
2.1 Latest XTERM & VT100 Desktops ..23

2.1.1 Multi-Session Desktop...24
2.1.2 tsWxScrolledWindow using vt100 (via Debian 8 Linux Terminal & LXTerminal)26
2.1.3 wxPython Color Palette (Built-In) ...27
2.1.4 wxPython Color Palette (Mapped) ..27

2.2 Earlier XTERM with 8-Color / 64-Color Pairs ...28
2.2.1 test_tsWxWidgets using xterm (via Cygwin mintty)...29
2.2.2 test_tsWxBoxSizer using xterm (via Cygwin mintty) ...30
2.2.3 test_tsWxGridSizer using xterm (via Cygwin mintty)...31
2.2.4 test_tsWxStaticBoxSizer using xterm (via Cygwin mintty) ..32
2.2.5 test_tsWxTextEntryDialog using xterm (via Cygwin mintty) ...33
2.2.6 test_tsWxScrolled using xterm (via Cygwin mintty)...34
2.2.7 test_tsWxScrollBar using xterm (via Cygwin mintty)...35
2.2.8 test_tsWxRadioBox using xterm (via Cygwin mintty) ..36
2.2.9 test_tsWxGauge using xterm (via Cygwin mintty)..37
2.2.10 test_tsWxCheckBox using xterm (via Cygwin mintty) ...38

2.3 Earlier VT-100 with 1-Color / 2-Color Pairs...39
2.3.1 test_tsWxWidgets using vt100 (via Cygwin mintty) ...40
2.3.2 test_tsWxBoxSizer using vt100 (via Cygwin mintty) ..41
2.3.3 test_tsWxGridSizer using vt100 (via Cygwin mintty)- ...42
2.3.4 test_tsWxScrolled using vt100 (via Cygwin mintty) ...43
2.3.5 test_tsWxScrollBar using vt100 (via Cygwin mintty) ...44
2.3.6 test_tsWxRadioBox using vt100 (via Cygwin mintty) ..45
2.3.7 test_tsWxGauge using vt100 (via Cygwin mintty)..46
2.3.8 test_tsWxCheckBox using vt100 (via Cygwin mintty) ...47

 3

1.1 About
The TeamSTARS "tsWxGTUI_PyVx" Toolkit's cross-platform virtual machine design and
implementation supports a broad assortment of open and proprietary hardware and software platforms.

The Toolkit's Python source code has been developed and tested only with Intel x86 and x64 processors
and representative GNU/Linux, Mac OS X, Microsoft Windows and Unix operating system releases.

Its source code has been compiled, interpreted and executed by Python 2x and 3x Virtual Machines
developed by the Python Software Foundation (PSF).

The PSF also distributes equivalent Python 2x and 3x Virtual Machines (and the source code to build
them) for other processor types and operating systems, some of which are listed below.

All of the Toolkit's human readable source code:

1 Is that part of computer software which most users don't ever see; it's the part computer programmers
manipulate to change how a computer "program" or "application" works.

2 Is included in the release for you to freely use, study, modify and redistribute.

3 May be run on any or all of the platforms which satisfy the following Toolkit hardware and software
requirements.

1.1.1 Platform Hardware and Software Requirements
1 Computer Central Processing Unit

A single or multi-core 32-/64-bit processor.

2 Basic Computer Terminal Display and Keyboard for Software Engineering Workstation

A pixel-mode multi-font graphics display that supports at least 80 col x 40 row (640 x 480 pixels) and
16,777,216 colors and industry standard terminal emulators.

a) xterm (8-color, 64-color pairs)

b) xterm-16color (16-color, 256-color-pairs)

c) vt100 (1-color, 2-color-pair)

d) vt220 (1-color, 2-color-pair)

3 Basic Computer Terminal Display and Keyboard for Embedded System Operator

1 INTRODUCTION

4 Brochure Software Gadgetry

A character-mode single font text display that supports at least 80 col x 40 row (640 x 480 pixels) and
industry standard terminal emulators:

a) xterm (8-color, 64-color pairs)

b) xterm-16color (16-color, 256-color-pairs)

c) vt100 (1-color, 2-color-pair)

d) vt220 (1-color, 2-color-pair)

4 Mouse or Trackball for Software Engineering Workstation and Embedded System Operator
A cross-platform, industry standard mouse or trackball with:

a) two button (left & right)

b) an optional scroll wheel, which can also act as a third (middle) button

c) an optional touchpad or touchscreen with software that can recognize one and two finger gestures
such as tap, drag and scroll

5 Computer Operating System
A multi-user (for local and remote access), multi-process (for interacting with multiple applications)
and multi-threaded (for sharing platform resources) operating system such as:

a) GNU/Linux on Intel (x86 and x64) and other architectures

b) Mac OS X (Darwin Unix-based operating system) on Apple–IBM–Motorola alliance (PowerPC)
and Intel (x86 and x64) architectures

c) Microsoft Windows on Intel (x86 and x64) architectures. Its POSIX-compatible user interface and
"curses" terminal control library features require "Cygwin", the free GNU/Linux-like plug-in from
Red Hat.

d) Unix on Apple–IBM–Motorola alliance (PowerPC), HP-UX (PA-RISC), IBM-AIX (RS/6000),
Intel (x86 and x64), IRIX (SGI/MIPS), Solaris (Sun/SPARC) and other architectures

6 Terminal Control Library

A cross-platform, industry-standard library of functions that manage an application's character-mode
text display on character-cell terminals:

a) curses

The traditional library available on Unix-like systems. It provides a platform-independent
Application Programming Interface (API) that enables the same application source code to work
with proprietary hardware. Features (such as vt100/vt220 mouse and xterm-16color support)
introduced with ncurses are not necessarily available.

b) ncurses (new curses)

The updated library available on Linux-like systems. (including the Cygwin plug-in for Microsoft
Windows). It provides a platform-independent Application Programming Interface (API) that
enables the same application source code to work with proprietary hardware.

7 Python Interpreter / Python Virtual Machine

One or more cross-platform, industry-standard Python programing languages and associated
Interpreter and Virtual Machine.

 INTRODUCTION 5

The TeamSTARS "tsWxGTUI_PyVx" Toolkit is implementation in both the mature Python 2x and
evolving Python 3x interpreted programming languages.

a) It is precompiled for the platform's processor and operating system by either the operating system
or "Cygwin" plug-in manufacturer.

b) It automatically compiles source code into platform independant byte-code during "site-package"
installation or else upon Python application launching.

8 Optional Computer Terminal Display for Software Engineering Workstation

Any one of the following may be substituted for the Basic Computer Terminal Display based on your
need to simultaneously view multiple software engineering documents and activities.

Derived From Wikipedia, the free encyclopedia at "https://en.wikipedia.org/wiki/Display_resolution"

Acronym (usage) Aspect ratio Width (pixels) Height (pixels)

 VGA (12" CRT) 4:3 640 480

 SVGA (14" CRT) 4:3 800 600

 XGA (15" Laptop) 4:3 1024 768

 XGA+ 4:3 1152 864

 WXGA 16:9 1280 720

 WXGA 5:3 1280 768

 WXGA 16:10 1280 800

 SXGA– (UVGA) 4:3 1280 960

 SXGA 5:4 1280 1024

 HD ~16:9 1360 768

 HD ~16:9 1366 768

 SXGA+ 4:3 1400 1050

 WXGA+ (17" Laptop) 16:10 1440 900

 HD+ 16:9 1600 900

 UXGA 4:3 1600 1200

 WSXGA+ 16:10 1680 1050

 FHD 16:9 1920 1080

 WUXGA 16:10 1920 1200

https://en.wikipedia.org/wiki/Display_resolution

6 Brochure Software Gadgetry

 QWXGA 16:9 2048 1152

 WQHD (27" Desktop) 16:9 2560 1440

 WQXGA 16:10 2560 1600

1.1.2 What is the Toolkit designed do?
The TeamSTARS "tsWxGTUI_PyVx" Toolkit's cross-platform design facilitates the creation,
enhancement, troubleshooting, maintenance, porting and support of:

1 Mission-critical equipment used by commercial, industrial, medical and military customers. Such
equipment can include a broad range of embedded computer systems which satisfy the Platform
Hardware and Software Requirements (on page 3).

2 Application programs used for the local and remote supervisory control and data acquisition
associated with automation, communication, control, diagnostic, instrumentation and simulation. Such
application software typically includes "operator-friendly" user interfaces.

1.1.2.1 Command Line User Interface (CLI)

Application programs may support none, any, or all of these three major types of command line interface
mechanisms:

1 Parameters

Most operating systems support a means to pass additional information to a program when it is
launched. When a program is launched from an Operating System command line shell, additional text
provided along with the program name is passed to the launched program.

The Toolkit's POSIX-compatible Command Line User Interface (CLI) supports use of:

a) key-word/value pair options

Example: python -m MODULE_NAME

b) positional arguments

Example: diff ./Python2xVersion/tsLogger.py ./Python3xVersion/tsLogger.py

2 Interactive command line sessions

After launch, a program may provide an operator with an independent means to enter commands in the
form of text.

3 OS inter-process communication

Most operating systems support means of inter-process communication (for example; standard streams
or named pipes). Command lines from client processes may be redirected to a CLI program by one of
these methods.

Example: python tsLinesOfCodeProjectMetrics.py 2> error.log

 INTRODUCTION 7

1.1.2.2 Graphical User Interface (GUI)

The Toolkit's character-mode emulation of the pixel-mode "wxPython" Graphical User Interface (GUI)
creates displays on terminals and terminal emulators with:

1 8-/16-Color (xterm-family) and non-color (vt100-family) Display output

2 Keyboard input

3 Pointer input (mouse, trackball, touchpad and touch screen)

The displays may include horizontal and vertical lines, side-by-side and overlapping windows with or
without titles, menu bars, scroll bars, status bars, task bars, buttons, checkboxes, radio boxes & buttons,
gauges, date and time stamped event messages, text with or without color and intensity markup, and other
GUI objects. Displays may be laid out with or without the help of box and grid sizer services.

1.1.3 What is included in the release?
1.1.3.1 Multi-Project Release

Unlike other "GitHub" repositories which contain a single project, the one for theTeamSTARS
"tsWxGTUI_PyVx" Toolkit is organized into four collections of project-specific computer program
source code files that the Toolkit recipient will need to install, operate, modify, port and re-distribute the
Toolkit.

1 Site-Packages

These two projects are intended to be installed as a registered Python site-package (one for the mature
Python 2x programming language and the other for the evolving Python 3x programming language).

Local or remote applications that have imported the appropriate Python 2x or Python 3x "site-
package" can be launched from any convenient directory on the associated local or remote computer
system.

Modifying a copy of one of these is the most direct way to port the Toolkit to a currently unsupported
Python 1x, 2x or 3x platform.

a) Python-2x ("tsWxGTUI_Py2x")

b) Python-3x ("tsWxGTUI_Py3x)"

2 Developer-Sandboxes

These two projects are NOT intended to be installed as a registered Python site-package (one for the
mature Python 2x programming language and the other for the evolving Python 3x programming
language).

Local or remote Python 2x or Python 3x applications can only be launched from the associated
"tsWxGTUI_Py2x" or "tsWxGTUI_Py3x" developer-sandbox directory.

8 Brochure Software Gadgetry

Modifying a copy of one of these is the least painful way to experiment with alternative software
architectures and algorithms.

a) Python-2x ("tsWxGTUI_Py2x")

b) Python-3x ("tsWxGTUI_Py3x")

1.1.3.2 Consistant User Interface

The four TeamSTARS "tsWxGTUI_PyVx" Toolkit projects are released as a set so that (despite their
Python 2x and Python 3x implementation differences) they retain the identical Application Programming
Interface (API) and look & feel of their User Interfaces (UI):

1 Command Line User Interface (CLI) (on page 6)

2 Graphical User Interface (GUI) (on page 7)

1.1.3.3 Toolkit Components

The TeamSTARS "tsWxGTUI_PyVx" Toolkit include the following components:

1 Documents

The directory contains a collection of files which provide the Toolkit recipient with an understanding
of the purpose, goals (capabilities), non-goals (limitations), terms & conditions and procedures for
installing, operating, modifying and redistributing the Toolkit.

2 Manual Pages

The directory contains a collection of files which provide a form of online software documentation
usually found on a Linux or Unix-like operating systems.

Topics covered include computer programs (library and system calls), formal standards and
conventions, and even abstract concepts.

3 Notebooks

The directory contains a collection of files which provide commentaries that express opinions or
offerings of explanations about events or situations that might be useful to Toolkit installers,
developers, operators, troubleshooters and distributors.

4 SourceDistributions

The directory contains a collection of source code files organized by category:

a) Python programming language (Python 2x and Python 3x)

b) Operating Mode (Command Line Interface and Graphical User Interface)

c) Function (Building Block Libraries, Tools, Tests, Utilities and Examples)

d) Installation (registered Python "Site-Package" and non-registered Python "Developer-Sandbox")

 INTRODUCTION 9

1.1.4 How might you use the Toolkit?
The TeamSTARS "tsWxGTUI_PyVx" Toolkit can save you time by eliminating the need to re-invent,
organize and integrate a collection of general purpose, re-usable software building block libraries, tools,
tests, utilities and examples.

Here are a few usage situations and associated benefits:

1 Port your existing "curses" software:

Adapt your software so that an executable program can be created for computing environments that
are different from the one(s) for which it was originally designed (e.g. different CPU, operating
system, or third party library).

You should consider porting when the cost of porting it to a new platform is less than the cost of
writing it from scratch. The lower the cost of porting software, relative to its implementation cost, the
more portable it is said to be.

a) Existing GUI applications implemented in the low level "c" programming language which use the
low level, character-mode "curses" terminal device interface library Application Programming
Interface (API) are substantially more costly (in effort) to develop, maintain and enhance than
those implemented in higher level "Python" with its somewhat higher level "curses" API.

b) Existing GUI applications implemented in the high level "Python" programming language which
use the character-mode "curses"-based emulation of the high level pixel-mode "wxPython" API
are substantially less costly (in effort) to develop, maintain and enhance.

2 Port your existing "wxPython" or "wxWidgets" software:

a) Existing GUI applications implemented in the high level "Python" programming language which
use the high level pixel-mode "wxPython" API will become portable after removal of those API
activities involving icons and curved shapes.

b) Existing GUI applications implemented in the higher level "c++" programming language which
use the high level, pixel-mode "wxWidgets" API will become portable after porting to "wxPython
and removal of those API activities involving icons and curved shapes.

3 Adapt existing Toolkit software:

a) Find an application among the Toolkit's various CLI and GUI tools, tests and tutorial examples
having the structure and user interface closest to your needs.

b) Modify a copy of the Toolkit application to suit your needs.

4 Create new software from scratch:

 11

1.1.5 Where to get further information?
Additional information is available:

1 Learn more about theTeamSTARS "tsWxGTUI_PyVx" Toolkit by browsing its collection of
documents, manpages, notebooks (engineering) and source code (building block libraries, tools, tests
and examples) at:

https://github.com/rigordo959/tsWxGTUI_PyVx_Repository

2 Get your own copy of the Toolkit repository (including its records of comments, issue tracking and
revisions) via:

git clone https://github.com/rigordo959/tsWxGTUI_PyVx-Repository

https://github.com/rigordo959/tsWxGTUI_PyVx_Repository
https://github.com/rigordo959/tsWxGTUI_PyVx-Repository

 13

1.2 System Block Diagrams
1 Block Diagram (on page 14) - High level depiction of the organizational, functional and interface

relationship between the TeamSTARS "tsWxGTUI_PyVx" Toolkit components and users (System
Administrator, Software Engineer, System Operator and Field Service personnel):

a) A Command Line Interface ("tsToolkitCLI") - It provides the foundation for the Graphical User
Interface ("tsToolkitGUI). Its components include:

tsApplicationPkg --- Base class to initialize and configure the application program launched by an
operator. It enables an application launched via a Command Line Interface (CLI) to initialize,
configure and use the same character-mode terminal with a Graphical-style User Interface (GUI).

tsCommandLineEnvPkg --- Class to initialize and configure the application program launched by
an operator. It delivers those keyword-value pair options and positional arguments specified by the
application, in its invocation parameter list. It wraps the Command Line Interface application with
exception handlers to control exit codes and messages that may be used to coordinate other
application programs.

tsCommandLineInterfacePkg --- Class establishes methods that prompt or re-prompt the operator
for input, validate that the operator has supplied the expected number of inputs and that each is of
the expected type.

tsCxGlobalsPkg --- Module to establish configuration constants and macro-type functions for the
Command Line Interface mode of the "tsWxGTUI_PyVx" Toolkit. It provides a centralized
mechanism for modifying/restoring those configuration constants that can be interrogated at
runtime by those software components having a "need-to-know". The intent being to avoid
subsequent manual searches to locate and modify or restore a constant appropriate to the current
configuration. It also provides a theme-based mechanism for modifying/restoring those
configuration constants as appropriate for various users and their activities.

tsDoubleLinkedListPkg --- Class to establish a representation of a linked list with forward and
backward pointers.

tsExceptionPkg --- Class to define and handle error exceptions. Maps run time exception types into
8-bit exit codes and prints associated diagnostic message and traceback info.

tsLoggerPkg --- Class that emulates a subset of Python logging API. It defines and handles
prioritized, time and date stamped event message formatting and output to files and devices. Files
are organized in a date and time stamped directory named for the launched application. Unix-type
devices include syslog, stderr, stdout and stdscr (the ncurses display screen). It also supports
"wxPython"-style logging of assert and check case results.

tsOperatorSettingsParserPkg --- Class to parse the command line entered by the operator of an
application program. Parsing extracts the Keyword-Value pair Options and Positional Arguments
that will configure and control the application during its execution.

tsPlatformRunTimeEnvironmentPkg --- Class to capture current hardware, software and network
information about the run time environment for the user process.

tsReportUtilityPkg --- Class defining methods used to format information: date and time (begin,
end and elapsed), file size (with kilo-, mega-, giga-, tera-, peta-, exa-, zeta- and yotta-byte units)
and nested Python dictionaries.

14 Brochure Software Gadgetry

tsSysCommandsPkg --- Class definition and methods for issuing shell commands to and receiving
responses from the host operating system.

b) A Graphical-style User Interface ("tsToolkitGUI") - It uses the services of the "tsToolkitCLI"
when appropriate.

tsWxPkg --- Collection of approximately 100 Classes that use the services of the Python Curses
module to create a character-mode emulation of their pixel-mode "wxPython" Class counterparts.

tsWxGlobals --- Module provides a centralized mechanism for modifying/restoring those
configuration constants that can be interogated at runtime by those software components having a
"need-to-know". The intent being to avoid subsequent manual searches to locate and modify or
restore a constant appropriate to the current configuration. It also provides a theme-based
mechanism for modifying/restoring those configuration constants as appropriate for the character-
mode emulation of the following pixel-mode "wxPython" features:

The collection includes widgets for frames, dialogs, panels, buttons, check boxes, radio
boxes/buttons and scrollable text windows. It includes box and grid sizers.

It also includes classes to emulate the host operating system theme-based color palette
management, task bar, scroll bar, mouse click and window focus control services used/expected by
"wxPython".

The Application Programming Interface (API) retains those "wxPython" keyword-value pairs and
posittonal arguments needed for pixel-mode application compatibility. It adds keyword-value pairs
and positonal arguments needed only for internal (non-application) Toolkit use.

2 Stand Alone System Architecture (on page 15) - High level depiction and description of the
components of and relationship between components of an isolated system operating by itself.

3 Stand Among System Architecture (on page 20) - High level depiction and description of the
components of and relationship between two or more networked systems operating in collaboration
with each other.

1.2.1 Block Diagram
This Block Diagram depicts the organizational, functional and interface relationship between the
TeamSTARS "tsWxGTUI_PyVx" Toolkit components and users (System Administrator, Software
Engineer, System Operator and Field Service personnel):

1 the external System Operator interface to "tsToolkitCLI"

2 the internal "tsToolkitCLI" interface to "tsToolkitGUI"

3 the internal System Operator interfaces:

a) to "tsUtilities", "tsToolsCLI" and "tsTestsCLI" via "tsToolkitCLI"

b) to "tsToolsGUI" and "tsTestsGUI" via "tsToolkitCLI" and "tsToolkitGUI"

 INTRODUCTION 15

Graphical-style User Interface (tsToolkitGUI)
§ The "tsToolsGUI" is a set of graphical-

style user interface application programs
for tracking software development metrics.

§ The "tsTestsGUI" is a set of graphical-style
user interface application programs for
regression testing and tutorial demos.

§ The "tsLibGUI" is a library of graphical-style user interface building blocks that establishes
the emulated run time environment for the high-level, pixel-mode, "wxPython" GUI Toolkit
via the low-level, character-mode, "nCurses" Text User Interface Toolkit.

 ^ ^ |
 | | |
 | | v

Command Line Interface (tsToolkitCLI)
§ The "tsToolsCLI" is a set of command line

interface application programs and utility
scripts for: checking source code syntax
and style via "plint"; generating Unix-style
"man page" documentation from source
code comments via "pydoc"; and installing,
modifying for publication, and tracking
software development metrics.

§ The "tsTestsCLI" is a set of command line
interface application programs and scripts
for regression testing and tutorial demos.

§ The "tsLibCLI" is a library of command line building blocks that establishes the POSIX-
style, run time environment for pre-processing source files, launching application programs,
handling events (registering events with date, time and event severity annotations) and
configuring console terminal and file system input and output.

§ The "tsUtilities" is a library of computer system configuration, diagnostic, installation,
maintenance and performnce tool components for various host hardware and software
platforms.

 ^ ^ |
 | | +- > Operator Display & Log Files
 | +------ Operator Keyboard
 +--------- Operator Mouse

1.2.2 Stand Alone System Architecture
The TeamSTARS "tsWxGTUI_PyVx" Toolkit provides:

1. Python version-specific components for its Command Line Interface ("tsToolkitCLI")

2. Python version-specific components for its Graphical-style User Interface ("tsToolkitGUI").

The following description uses the component names as depicted in the Block Diagram (on page 14)

This section depicts and describes the organization, function of and interface between various system
hardware and software components and "tsWxGTUI_PyVx" Toolkit users (System Administrator,
Software Engineer, System Operator and Field Service personnel):

1 the external System Operator interface to "tsToolkitCLI"

2 the internal "tsToolkitCLI" interface to "tsToolkitGUI"

16 Brochure Software Gadgetry

3 the internal System Operator interfaces:

a) to "tsLibCLI", "tsToolsCLI" . "tsTestsCLI" and "tsUtilities" via "tsToolkitCLI"

b) to "tsLibGUI", "tsToolsGUI" and "tsTestsGUI" via "tsToolkitGUI" and "tsToolkitCLI"

This depiction represents a typical Stand Alone System configuration. In this configuration, the optional
Network Hardware Interface and its associated Network Device Driver Interface should not be used, even
if present, in order to avoid activities that adversely impact system performance.

 INTRODUCTION 17

1 Operating System - The platform specific software (such as Linux, MacOS X, Microsoft Windows and
Unix) that coordinates and manages the time-shared use of a platform's processor, memory, storage
and input/output hardware resources by multiple application programs and their associated
users/operators.

2 Operator Terminal - A device for human interaction that includes:

a) A Keyboard unit for text input

b) A Mouse unit (mouse, trackball, trackpad or touchscreen with one or more physical or logical
buttons) for selecting one of many displayed GUI objects to initiate an associated action.

c) A Display unit (1-color "ON"/"OFF" or multi-color two-dimensional screen) for output of text and
graphic-style, tiled and overlaid boxes.

3 Terminal Hardware Interface - The platform specific hardware with connections to the device units of
the Operator Terminal.

a) A PS/2 Port is a type of input port developed by IBM for connecting a mouse or keyboard to a
Personal Computer. It supports a mini DIN plug containing just 6 pins.

b) An RS-232C or RS-422 port for connecting a mouse for position and button-click input.

c) A Universal Serial Bus (USB) port is an industry standard first developed in the mid-1990s that
was designed to standardize the connection of computer peripherals (including keyboards, pointing
devices, digital cameras, printers, portable media players, disk drives and network adapters) to
personal computers, both to communicate and to supply electric power. It has effectively replaced
a variety of earlier interfaces, such as serial and parallel ports, as well as separate power chargers
for portable devices.

The USB 1.0 specification was introduced in January 1996. It defined data transfer rates of
1.5 Mbit/s "Low Speed" and 12 Mbit/s "Full Speed". The first widely used version of USB was 1.1
(now called "Full-Speed"), which was released in September 1998. Its 12 Mbit/s data rate was
intended for higher-speed devices such as disk drives, and its lower 1.5 Mbit/s rate for low data
rate devices such as joysticks.

The USB 2.0 (now called "Hi-Speed") specification was released in April 2000. It defined a higher
data transfer rate, with the resulting specification achieving 480 Mbit/s, a 40-times increase over
the original USB 1.1 specification.

The USB 3.0 specification (now called "SuperSpeed") was preleased in November 2008. It
defined an even higher data transfer rate (up to 5 Gbit/s) and was backwards-compatible with USB
2.0. It added a new, higher speed bus called SuperSpeed in parallel with the USB 2.0 bus.

d) A Video Adapter is a computer circuit card that provides digital-to-analog conversion, video
RAM, and a video controller so that data can be sent to a computer's display. It typically adheres
to the de facto standard, Video Graphics Array (VGA). VGA describes how data - essentially red,
green, blue data streams - is passed between the computer and the display. It also describes the
frame refresh rates in hertz. It also specifies the number and width of horizontal lines, which
essentially amounts to specifying the resolution of the pixels that are created. VGA supports four
different resolution settings and two related image refresh rates. The maximum VGA resolution
setting produces a display that is 640 pixels wide by 480 pixels high. For a character font that is 8
pixels wide by 12 pixels high, the longest line of text with be 80 characters wide and there can be
up to 40 lines of text displayed at any moment. Higher resolutions, such as SVGA, are supported
by more advanced Video Adapters. The higher resolution settings typically require use of
proportionally larger displays in order to maintain the size and legibility of the displayed text.

18 Brochure Software Gadgetry

4 Terminal Device Driver - The platform specific software for transforming data (such as single button
scan codes, multi-button flags and pointer position) to and from the platform independent formats
(such as upper and lower case text, display screen column and row and displayed colors, fonts and
special effects) used by the Command Line Interface and Graphical User Interface software.

5 Command Line-Style Interface ("tsToolKitCLI") - The platform specific keywords arguments, positional
arguments and their associated values and syntax of text used to request services from the Operating
System and various Application Programs.

a) "tsLibCLI" --- A library of command line building blocks that establishes the POSIX-/Unix-style,
run time environment for pre-processing source files, launching application programs, handling
events (registering events with date, time and event severity annotations) and configuring console
terminal and file system input and output.

b) "tsToolsCLI" --- A set of command line interface application programs and utility scripts for:
checking source code syntax and style via "plint"; generating Unix-style "man page"
documentation from source code comments via "pydoc"; and installing, modifying for publication
and tracking software development metrics.

c) "tsTestsCLI" --- A set of command line interface application programs and utility scripts for unit,
integration and system level regression testing.

d) "tsUtilities" --- A library of computer system configuration, diagnostic, installation, maintenance
and performnce tool components for various host hardware and software platforms.

6 Graphical-Style User Interface ("tsToolKitGUI") - The platform specific tiled, overlaid and click-to-select
Frames, Dialogs, Pull-down Menus, Buttons, CheckBoxes, Radio Buttons, Scrollbars and associated
keywords, values and syntax of text used to request services from the Operating System and various
Application Programs.

a) "tsLibGUI"--- A library of graphical-style user interface building blocks that establishes the
emulated run time environment for the high-level, pixel-mode, "wxPython" GUI Toolkit via the
low-level, character-mode, "nCurses" Text User Interface Toolkit.

b) "tsToolsGUI"--- A set of graphical-style user interface application programs for tracking software
development metrics.

c) "tsTestsGUI" --- A set of graphical-style user interface application programs and command line
interface utility scripts for unit, integration and system level regression testing.

7 Python Application Program - The application specific program that performs its service when
executed by the Python Virtual Machine.

8 Non-Python Application Program - The application specific program that performs its service when its
pre-compiled, platform specific machine code is executed. Typically, these services are used to
analyze, edit, view, copy, move or delete those data and log files which are of interest or no longer
needed.

9 Python Virtual Machine - The platform specific program that loads, interprets and executes the platform
independent source code of a Python language application program.

10 Processor, Memory, Storage and Communication Hardware - Platform specific resources that are
required by the Operating System and Application software.

 INTRODUCTION 19

11 Network Hardware Interface - The optional platform specific ethernet, blue-tooth and RS-232 serial port
hardware for physical connections between the local system and one or more remote systems. It may
also include such external hardware as gateways, routers, network bridges, switches, hubs, and
repeaters. It may also include hybrid network devices such as multilayer switches, protocol converters,
bridge routers, proxy servers, firewalls, network address translators, multiplexers, network interface
controllers, wireless network interface controllers, modems, ISDN terminal adapters, line drivers,
wireless access points, networking cables and other related hardware.

a) An RJ-45 Ethernet port connecting to a local or wide area network. This port is capable of
conducting simultaneous (full-duplex,) two-directional input and output at speeds over 100
gigabits per second. This port can also provide the interface to an optional printer shared with
other network users.

b) An RS-232C or RS-422 port for connecting a modem. Depending on the application, modems
could be operated, at speeds over 56 kilobits per second, in either of two modes. In half duplex
mode, each side alternated its sending and receiving roles. In full-duplex mode, each side could
simultaneously send and receive.

12 Network Device Driver Interface - The optional platform specific software whose layered protocol suite
(such as TCP/IP) enables the concurrent sharing of the physical connection between the local system
and one or more remote systems.

NOTE: Concurrent local and remote login sessions are a convenience that must be used with caution.
Time critical, resource intensive activities ought to be performed individually or sequentially (but NOT
concurrently) on a Stand Alone System.

20 Brochure Software Gadgetry

1.2.3 Stand Among System Architecture
The TeamSTARS "tsWxGTUI_PyVx" Toolkit provides:

1. Python version-specific components for its Command Line Interface ("tsToolkitCLI")

2. Python version-specific components for its Graphical-style User Interface ("tsToolkitGUI").

The following description uses the component names as depicted in the Block Diagram (on page 14)

The Stand Alone System Architecture (on page 15), as previously described, may be extended to enable a
single operator, working from a Local System, to interact with one or more Remote Systems.

 INTRODUCTION 21

In this configuration, the Local (Left) and Remote (Right) systems must first be networked via the
available communication resources (Network Interface Hardware and Network Device Driver Interface).

Once networked, the local system operator must login to the Remote system via the "ssh user@Remote"
command. The Local and Remote Terminal Device Interface then establishes a logical communication
channel for exchanging keyboard, mouse and display information.

For each login Local and Remote session, the Operator may then select and run an Application Program.
As depicted in the following figure. Application Programs run as Local Units on the system to which the
Operator first logged in. Application Programs run as Remote Units on the systems to which the operator
logged in via the "ssh user@Remote" command.

NOTE: Concurrent login sessions are a convenience that must be used with caution. Time critical,
resource intensive activities ought to be performed individually or sequentially (but NOT concurrently) on
a Stand Alone System. Only non-time critical, non-resource intensive activities may be performed
concurrently on Stand Alone or Stand Among Systems.

1 Local System (Left) --- Operator opens one or more Command Line Interface Shells.

§ One or more newly opened shells may be used to run a Python or non-Python Application
Program as its Local Unit (Left.)

§ One or more newly opened shells may be used to login to a Remote system (via the "ssh
user@Remote command). Once Remote login has been successful, the operator may run a Python
or non-Python Application Program as a Remote Unit (Right).

2 Local Unit (Left) --- A Python or non-Python Application Program that has been launched in a Local
Command Line Interface Shell.

3 Remote System (Right) - Same Operator opens one or more Command Line Interface Shells.

22 Brochure Software Gadgetry

§ One or more newly opened shells may be used to run a Python or non-Python Application
Program as its Remote Unit (Right).
The Multi-Session Desktop (on page 24) figure depicts the desktop of a multi-user, multi-process,
multi-threaded computer running the Professional Edition of Microsoft Windows 7. Among the
backround of desktop icons, there are two TeamSTARS "tsWxGTUI_PyVx" Toolkit sessions. The
time each session displays synchronizes within its own one second refresh interval. The local
session, on the left, is actively running Python 3.x on the Windows platform. The remote session,
on the right, is actively running Python 2.x on the Mac OS X Yosemite platform which also serves
as the Parallels 10 Hypervisor host for diverse Guest Operating Systems including:

Linux (CentOS7 64-bit, Fedora 21 64-bit, Scientific 6.5 32-bit and Ubuntu 12.04 32-bit)

Windows (98 SE 16-bit, XP 32-bit, 7 32-bit, 8 32-bit and 8.1 32-bit)

Unix (FreeBSD 9.2, PC-BSD 10, OpenIndiana 151a8 and OpenSolaris 11 32-bit)

§ One or more newly opened shells may be used to login to a Remote system (via the "ssh
user@Remote command). Once Remote login has been successful, the operator may run a Python
or non-Python Application Program as a Remote Unit (Right).

4 Remote Unit (Right) --- A Python or non-Python Application Program that has been launched in a
Remote Command Line Interface Shell.

1.3 Usage Terms & Conditions
1 The TeamSTARS "tsWxGTUI_PyVx" Toolkit and its third-party components are copyrighted works

that are licensed and distributed as free and open source software, in the hope that they will be useful
but WITHOUT ANY WARRANTY; WITHOUT EVEN THE IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL
THE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

2 You may use, modify and redistribute individual copyrighted works only under the terms and
conditions of the license designated by the TeamSTARS "tsWxGTUI_PyVx" Toolkit and its third-
party component work's copyright holder(s).

 23

From Wikipedia, the free encyclopedia

"A screen dump, screen capture (or screen-cap), screenshot (or screen shot), screengrab (or screen grab),
or print screen[1] is an image taken by the computer user to record the visible items displayed on the
monitor, television, or another visual output device. Usually, this is a digital image using the (host)
operating system or software running on the computer, but it can also be a capture made by a camera or a
device intercepting the video output of the display (such as a DVR). That latent image converted and
saved to an image file such as to JPEG or PNG format is also called a screenshot.

Screenshots can be used to demonstrate a program, a particular problem a user might be having, or
generally when display output needs to be shown to others or archived. For example, after being emailed a
screenshot, a Web page author might be surprised to see how his page looks on a different Web browser
and can take corrective action. Likewise with differing email software programs, (particularly such as in a
cell phone, tablet, etc.,) a sender might have no idea how his email looks to others until he sees a
screenshot from another computer and can (hopefully) tweak his settings appropriately."

§ Latest XTERM & VT100 Desktops (on page 23)
§ Earlier VT-100 with 1-Color / 2-Color Pairs (on page 39)
§ Earlier XTERM with 8-Color / 64-Color Pairs (on page 28)

2.1 Latest XTERM & VT100 Desktops
The appearance of the Graphical User Interface has evolved over time:

1 During development of support for 8-/16-color XTERMs, it seemed useful to support color markup
for text messages rather than just for foreground/background window borders and client areas. The
tsWxGlobals.py configuration file now includes options to enable or disable color markup in the
Frame used for Redirected Output of stderr/stdout messages and/or in the
test_tsWxScrolledWindow.py demo text nessages.

2 During development of local and remote access demonstrations, it became obvious that the display
needed to not only identify the launched application but also the local or remote host on which it was
launched. The top-left of the Task Bar now displays the host name (and domain when available).

3 The Python Curses-based terminal device interface library supports proprietary terminals from
manufacturers such as Data General, Hewlett-Packard, International Business Machines and Tektonix.

Curses also supports widely-used industry-standard terminal emulators such as Digital Equipment
Corporation's "vt100" and the X-Window System's "xterm".

2 SCREENSHOTS

24 Brochure Software Gadgetry

a) The "vt100" and "vt220" emulators generate each "White"-on-"Black" character by turning
individual pixels in an 8x12 grid of pixels "ON" for foreground or "OFF" for background.
Conversely, "Black"-on-"White" characters are generated by turning individual pixels in an 8x12
grid of pixels "OFF" for foreground or "ON" for background.

b) The "xterm" emulators generate each character by adjusting the color intensity (from "OFF" at 0%
to "ON" at 100%) of individual tri-color ("RED"-"GREEN"-"BLUE") pixels in an 8x12 grid of
tri-color pixels. The "xterm" supports 8-colors for foreground or background with 64-color-pairs.
The Toolkit includes an application that displays the built-in color palette: wxPython Color
Palette (Built-In) (on page 27)

c) Despite their name, the "xterm-16color", "xterm-88color" and "xterm-256color" emulators only
support 16-colors with 256-color-pairs.

4 The TeamSTARS "tsWxGTUI_PyVx" Toolkit recognizes the "wxPython" 68-color palette but must
use a mapped (substitute) color from the "xterm" or "vt100" color palette which may be a "likeness" in
name only. The Toolkit includes an application that displays the color substitution palette: wxPython
Color Palette (Mapped) (on page 27)

2.1.1 Multi-Session Desktop
From Wikipedia, the free encyclopedia

"In computer science, in particular networking, a session is a semi-permanent interactive information
interchange, also known as a dialogue, a conversation or a meeting, between two or more communicating
devices, or between a computer and user (see Login session). A session is set up or established at a certain
point in time, and then torn down at some later point. An established communication session may involve
more than one message in each direction. A session is typically, but not always, stateful, meaning that at
least one of the communicating parts needs to save information about the session history in order to be
able to communicate, as opposed to stateless communication, where the communication consists of
independent requests with responses.

An established session is the basic requirement to perform a connection-oriented communication. A
session also is the basic step to transmit in connectionless communication modes. However any
unidirectional transmission does not define a session.[1]

Communication sessions may be implemented as part of protocols and services at the application layer, at
the session layer or at the transport layer in the OSI model.

§ Application layer examples:
§ HTTP sessions, which allow associating information with individual visitors

§ A telnet remote login session
§ Session layer example:
§ A Session Initiation Protocol (SIP) based Internet phone call

§ Transport layer example:
§ A TCP session, which is synonymous to a TCP virtual circuit, a TCP connection, or an established

TCP socket.

 SCREENSHOTS 25

In the case of transport protocols that do not implement a formal session layer (e.g., UDP) or where
sessions at the application layer are generally very short-lived (e.g., HTTP), sessions are maintained by a
higher level program using a method defined in the data being exchanged. For example, an HTTP
exchange between a browser and a remote host may include an HTTP cookie which identifies state, such
as a unique session ID, information about the user's preferences or authorization level.

HTTP/1.0 was thought to only allow a single request and response during one Web/HTTP Session.
However a workaround was created by David Hostettler Wain in 1996 such that it was possible to use
session IDs to allow multiple phase Web Transaction Processing (TP) Systems (in ICL[disambiguation
needed] nomenclature), with the first implementation being called Deity. Protocol version HTTP/1.1
further improved by completing the Common Gateway Interface (CGI) making it easier to maintain the
Web Session and supporting HTTP cookies and file uploads.

Most client-server sessions are maintained by the transport layer - a single connection for a single session.
However each transaction phase of a Web/HTTP session creates a separate connection. Maintaining
session continuity between phases required a session ID. The session ID is embedded within the <A
HREF> or <FORM> links of dynamic web pages so that it is passed back to the CGI. CGI then uses the
session ID to ensure session continuity between transaction phases. One advantage of one connection-per-
phase is that it works well over low bandwidth (modem) connections. Deity used a sessionID, screenID
and actionID to simplify the design of multiple phase sessions."

The Sample Screenshot above shows a Windows 7 Desktop with:

1 A local Windows host with Python 3x session on left; and

26 Brochure Software Gadgetry

2 A remote Mac OS X host with Python 2x session on right.

3 Each session consists of

a) a wxPython-style Frame named "Dual ScrollBars" containing scrollable text with optional color
markup.

b) a wxPython-style Frame named "Redirected Output" containing date and time stamped event
messages, with optional with color markup, that scroll up when new events are registered.

c) a Host Desktop-style Frame named "Tasks @ Host Name" and Application Name with buttons to
shift focus from background to foreground. There is also a spinner (to indicate the frequency or
absence of idle time) and the current date and time (to indicate when the display was last updated).

2.1.2 tsWxScrolledWindow using vt100 (via Debian 8 Linux Terminal &
LXTerminal)

 SCREENSHOTS 27

2.1.3 wxPython Color Palette (Built-In)

2.1.4 wxPython Color Palette (Mapped)

28 Brochure Software Gadgetry

2.2 Earlier XTERM with 8-Color / 64-
Color Pairs

From Wikipedia, the free encyclopedia:

"In computing, xterm is the standard terminal emulator for the X Window System. A user can have many
different invocations of xterm running at once on the same display, each of which provides independent
input/output for the process running in it (normally the process is a Unix shell).

xterm originated prior to the X Window System. It was originally written as a stand-alone terminal
emulator for the VAXStation 100 (VS100) by Mark Vandevoorde, a student of Jim Gettys, in the summer
of 1984, when work on X started. It rapidly became clear that it would be more useful as part of X than as
a standalone program, so it was retargeted to X. As Gettys tells the story, "part of why xterm's internals
are so horrifying is that it was originally intended that a single process be able to drive multiple VS100
displays."

After many years as part of the X reference implementation, around 1996 the main line of development
then shifted to XFree86 (which itself forked from X11R6.3), and it is presently actively maintained by
Thomas Dickey.

Xterm variants are also available.

Most terminal emulators for X started as variations on xterm."

Typically, xterms support keyboard and mouse input and a display whose character cells consist of an
array of RED-GREEN-BLUE phosphors per pixel that are independently programmable in intensity so as
to produce any of 8-colors (with their associated 64-color pairs) per character:

1 BLACK

2 RED

3 GREEN

4 YELLOW

5 BLUE

6 MAGENTA

7 CYAN

8 WHITE

NOTE: The following screen shots demonstrate various widgets on a terminal that reports having colors.
It is the same application that runs on terminals that report NOT having colors. The application remains
unaware of the presence or absence of colors.

 SCREENSHOTS 29

2.2.1 test_tsWxWidgets using xterm (via Cygwin mintty)

30 Brochure Software Gadgetry

2.2.2 test_tsWxBoxSizer using xterm (via Cygwin mintty)

 SCREENSHOTS 31

2.2.3 test_tsWxGridSizer using xterm (via Cygwin mintty)

32 Brochure Software Gadgetry

2.2.4 test_tsWxStaticBoxSizer using xterm (via Cygwin mintty)

 SCREENSHOTS 33

2.2.5 test_tsWxTextEntryDialog using xterm (via Cygwin mintty)

34 Brochure Software Gadgetry

2.2.6 test_tsWxScrolled using xterm (via Cygwin mintty)

 SCREENSHOTS 35

2.2.7 test_tsWxScrollBar using xterm (via Cygwin mintty)

36 Brochure Software Gadgetry

2.2.8 test_tsWxRadioBox using xterm (via Cygwin mintty)

 SCREENSHOTS 37

2.2.9 test_tsWxGauge using xterm (via Cygwin mintty)

38 Brochure Software Gadgetry

2.2.10 test_tsWxCheckBox using xterm (via Cygwin mintty)

 SCREENSHOTS 39

2.3 Earlier VT-100 with 1-Color / 2-
Color Pairs

From Wikipedia, the free encyclopedia:

"The VT100 is a video terminal that was made by Digital Equipment Corporation (DEC). Its detailed
attributes became the de facto standard for terminal emulators to emulate.

It was introduced in August 1978, following its predecessor, the VT52, and communicated with its host
system over serial lines using the ASCII character set and control sequences (a.k.a. escape sequences)
standardized by ANSI. The VT100 was also the first Digital mass-market terminal to incorporate "graphic
renditions" (blinking, bolding, reverse video, and underlining) as well as a selectable 80 or 132 column
display. All setup of the VT100 was accomplished using interactive displays presented on the screen; the
setup data was stored in non-volatile memory within the terminal. The VT100 also introduced an
additional character set that allowed the drawing of on-screen forms.

The control sequences used by the VT100 family are based on the ANSI X3.64 standard, also known as
ECMA-48 and ISO/IEC 6429. These are sometimes referred to as ANSI escape codes. The VT100 was
not the first terminal to be based on X3.64—The Heath Company had a microprocessor-based video
terminal, the Heathkit H-19 (H19), that implemented a subset of the standard proposed by ANSI in X3.64.
In addition, the VT100 provided backwards compatibility for VT52 users, with support for the VT52
control sequences.

In 1983, the VT100 was replaced by the more-powerful VT200 series terminals such as the VT220.

In August 1995 the terminal business of Digital was sold to Boundless Technologies."

Typically, vt100/vt220 terminals support keyboard (without mouse) input and a display whose character
cells consist of a single WHITE, GREEN or ORANGE color phosphor per pixel that are independently
programmable in intensity so as to produce any of 2-colors (with their associated 2-color pairs) per
character:

1 BLACK (phosphor pixel "OFF")

2 WHITE, GREEN or ORANGE (phosphor pixel "ON")

NOTE: The following screen shots demonstrate various widgets on a terminal that reports NOT having
colors. It is the same application that runs on terminals that report having colors. The application remains
unaware of the presence or absence of colors.

40 Brochure Software Gadgetry

2.3.1 test_tsWxWidgets using vt100 (via Cygwin mintty)

 SCREENSHOTS 41

2.3.2 test_tsWxBoxSizer using vt100 (via Cygwin mintty)

42 Brochure Software Gadgetry

2.3.3 test_tsWxGridSizer using vt100 (via Cygwin mintty)-

 SCREENSHOTS 43

2.3.4 test_tsWxScrolled using vt100 (via Cygwin mintty)

44 Brochure Software Gadgetry

2.3.5 test_tsWxScrollBar using vt100 (via Cygwin mintty)

 SCREENSHOTS 45

2.3.6 test_tsWxRadioBox using vt100 (via Cygwin mintty)

46 Brochure Software Gadgetry

2.3.7 test_tsWxGauge using vt100 (via Cygwin mintty)

 SCREENSHOTS 47

2.3.8 test_tsWxCheckBox using vt100 (via Cygwin mintty)

