
Wub Unofficial Bootstrap Tutorial

[WUB Tutorial]

Wub 6.0
Part 1

Alie Tormusa Koroma [ATK]
akoroma at consultant dot com

01 October 2015

TclWeb powered by Wub Page 1

 Introduction

I was never a web developer and an intermediate coder I'll call myself. But when it became
inevitable that I died or learn web development? I chose the latter and I was not going to
learn a new language doing so.

Thank goodness Tcl provides a few options but Wub is my favourite because of its
framework approach, not like I'm in any place to comment on the others nor have I
attempted to use any other but TclHttpd. I found it very difficult for a newbie with no prior
web development experience to grasp the Wub concept. I struggled the same way with
TclHttpd before switching to Wub.

As I struggled with what might be simple for most people, I thought there might be others
like me that will benefit from the little understanding I had built of the product. Wub is my
favourite Tcl (Tool command language) tool to say the least and will like for others to rip its
benefits.

Wub as a framework does not provide a graphical user interface with point-and-click or
drag-and-drop functionalities. You might need some bootstrapping to leverage its power. I
hope this document will provide you with the understanding required to do so.

Getting Started

Wub works out of the box, the following steps are from the quick start doc that comes with
the software when you download it;

 Step 1: Download the code (which you've probably done already)

svn checkout http://wub.googlecode.com/svn/trunk/ wub

 Step 2: Change into the Wub directory:

cd wub

 Step 3: Run the demo application:

 tclsh8.6 Wub.tcl

 Step 4: Connect and Go.
 the server should now be listening on port 8080. Try it (http://localhost:8080).

 Step 5: For later

edit site.config to your taste

Some start-up texts are displayed on your terminal which will only makes sense as you gain
more understanding. We will get to that later on in the document. What actually happens at
this stage is, Wub reads its configuration file (/$install_dir/site.config) and performs all
the configured actions. This means you can direct the web server to do things like...if you
receive a request for url http://x, call code proc handle_x and Wub will pass all the
browser query key-pair values to your code handle_x as arguments. This is called a direct
domain and it's a ways of channelling a HTTP client request to your handling code
(namespace or class).

TclWeb powered by Wub Page 2

Let's say your web site address is www.mydomain.co.za and the web server powering this
site is running Wub. If someone types that url on their browser, the request will travel over
the internet using name resolution (DNS) all the way to your machine or server running
Wub on port 8080 or 80. We are only interested in when that communication reaches the
Wub server for the scope of this document.

Wub will be listening for this request on the configured port number, the default is 8080.
this is depicted in this section of site.config as follows;

Listener module defines the HTTP network listener
connections are established through this module, and simply passed
into the protocol engine. This module allows you to define where
the server should accept connections (which port, which interface, etc.)
Listener {
 -port 8080 ;# HTTP listener's port
 #-myaddr X ;# make listener listen on the nominated interface
}

If you change this port number to 80 under Ubuntu, you can only start-up the web server
using sudo (only tested on Ubutu). Wub listens on all interfaces by default, comment out
-myaddr and add a interface name to make listener listen on the nominated interface.

A web server serves content using the HTTP protocol. The content can be static or dynamic.
To server dynamic content, you will manipulate the request and respond with something
relevant to the user's request. For example if a user fills a form at
www.mydomain.co.za/register and clicks submit, the browser will pass the url plus key-
pair values from the form to the web server. This url and key-pair value together is called a
query string. It will look as follows;

http://www.mydomain.co.za/register?firstname=Tormusa&lastname=Koroma

The query string may not always look as above, it may contain encoded non-ascii
characters. If a procedure by the name register exists within the namespace or class
configured for this domain (direct Domain), Wub will call it with the arguments values of
firstname and lastname (Tormusa and Koroma). This means your proc should look as
follows;

proc /register {firstname lastname} { . . . }

If such proc does not exist in your program or namespace, it will be passed to the root proc
of your namespace or class;

proc / {r args} { . . . }

Once the request reaches your logic, you are free to manipulate its values and respond
meaningfully. For example, you can validate and authenticate the firstname and lastname
values and if a user with such first and last names exists in your database, you can grant
the user access (login) and return his/her alias name.

In other web development environments like apache with php for example, the server and
client parts are cleanly distinguished by <html> and <%php> tags. With Wub, everything is Tcl
and it's difficult to make such reference here using Direct Domains. The server is Tcl and
the scripting language is Tcl so there's no need to distinguish Tcl from Tcl. For that reason,
in Wub you just write code using Tcl and Wub commands without separation. So while
transitioning from your old habits into using Wub, always remember... “everything is Tcl”.

TclWeb powered by Wub Page 3

http://www.koroma.co.za/

Utilities and Domains

A framework from my definition is a skeletal foundation for developing upon. This
development will be governed by the framework's guidelines or rules which are
implemented in its capabilities and tools. Wub is not only a HTTP server but a framework
for building HTTP applications. It provides the tools to assist you in rapidly doing so (Utilities
and Domains).

All the utilities are readily available to you under /$install_dir/Utilities. They are used
without the need to package require them first. Examples of such tools are Http, Html,
Form, Cookies to name a few. Domains on the other hand needs to be configured in
site.config before use. They reside in the /$install_dir/Domains directory (jQ, Nub, Direct
etc). We will visit a few of them in a minute.

With all these available utilities and tools provided by the framework, building a web page
in Wub can be very quick and simple. The process involves constructing the page (html),
apply functionality and styling (jquery & css)...then return the content back to the browser
using Http utility.

Here is a simple example (excuse the html tags).

build the page content in variable mypage
set mypage “

<html>
<head>
<title>My Wub Page</title>
</head>

<body>Welcome to my first Wub page</body>
</html>

“
apply style called mycss to the page
set r [Html style $r mycss]

return the content to browser
return [Http Ok $r $mypage]

You can neatly embed your CSS within your code as opposed to having it in an external file.
This is an excellent feature provided by Wub and we will get into the specifics a little later
on.

Configuring Wub for your site

There is only one configuration file called site.config and it resides under /$install_dir, all
configuration changes going forth will mean editing this file. We will configure a Direct
domain for our site that will tell Wub to dispatch all URL requests to our specified
namespace or class. This concept helps you as a developer maintain an organized code in
the sense that your whole web site is encapsulated in a single namespace/class.

Add the following entries to create and execute the namespace MySite for requests to
/mysite (this will mean the user typed www.mydomain.co.za/mysite). The root proc of
namespace MySite is called (proc / {}{...}).

We will now configure a Direct domain for our site;

TclWeb powered by Wub Page 4

http://www.mydomain.co.za/mysite

Add a domain /mysite/ of type Direct for www.mydomain.co.za/mysite requests that
executes namespace MySite

/mysite/ {
domain Direct
url /mysite
namespace ::MySite

}

Change the root URL redirect to domain /mysite/. The out of the box configuration will
redirect to /wub.

the URL / redirects to /wub
/ {
 #redirect /wub/ ;# this was the default for the wub page

redirect /mysite/
}

On your browser, type http://localhost:8080

The browser address will automatically change http://localhost:8080/mysite/ this is
because of the configuration containing the line redirect /mysite/

Wub server needs to be told where to send the user request when it receives it. This way,
you can build logic to handle the request and send back a response. Converting requests to
responses in Wub simply means the developer will modify the request dictionary and return
it as the response.

Our proc / {r args} { . . . } in namespace MySite will receive the request dict (r) for our
Direct Domain request. In the Prac that follows, we simply print out the variable r which
contains the request dict.

Your namespace code should reside in a file called local.tcl under the $install_dir. This file
is sourced during server start-up. The complete code will look something like the following;

Prac 1.0 sample web page code in /$install_dir/local.tcl file

namespace eval ::MySite {

 proc / {r args} {
puts "root::MySite:RequestDict_r: -->\n $r"
set content $r

return [Http Ok $r $content text/html]
 }

 namespace export -clear *
 namespace ensemble create -subcommands {}

}

Figure 1.0 an example request dict dump

root::MySite:RequestDict_r: -->
-host localhost -port 8080 -httpd {::Httpd new} -id ::oo::Obj51 -server {127.0.0.1 127.0.0.1
8080} -scheme http -sock sock2623a90 -cid ::oo::Obj57 -ipaddr 127.0.0.1 -rport 57504
-received_seconds 1443093470 -server_id {Wub 6.0} -pipeline 3 -send ::Httpd::coros::obj57
-transaction 3 -time {connected 1443093470010508} -header {GET /mysite/%2F HTTP/1.1} -method
GET host localhost:8080 -clientheaders {host user-agent accept accept-language accept-encoding
referer connection} user-agent {Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:31.0)

TclWeb powered by Wub Page 5

http://localhost:8080/mysite/
http://localhost:8080/
http://www.mydomain.co.za/mysite

Gecko/20100101 Firefox/31.0} accept
{text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8} accept-language {en-ZA,en-
GB;q=0.8,en-US;q=0.5,en;q=0.3} accept-encoding {gzip, deflate} referer
http://localhost:8080/mysite/logout connection keep-alive -version 1.1 -ua {ua {Mozilla/5.0
(X11; Ubuntu; Linux x86_64; rv:31.0) Gecko/20100101 Firefox/31.0} id FF version {}
mozilla_version 5.0 extensions {} platform X11 security Ubuntu subplatform {Linux x86_64}
language rv:31.0 product {Gecko 20100101 Firefox 31.0}} -ua_class unknown -normalized 1
-path /mysite/ -url http://localhost:8080/mysite/ -uri http://localhost:8080/mysite/ -forwards
{} -encoding binary -received 1443093471248483 -cookies {} -Query {} -prefix /mysite/ -suffix
{} -extension {} content-type x-text/html-fragment -dynamic 1 -extra {} -fprefix / -cprefix /

The Http utility is used for generating HTTP responses (Ok/200, ServerError/500,
NotFound/404, Forbidden/403 etc) and the package is located in /$install_dir/Utilities.

Http Ok $r $mypage text/html

The above code generates a 200/Ok response with the dictionary $r and page content
$mypage of content type text/html.

The request dictionary holds valuable information like the query string for example. This
made room for me to make mention of another useful tool called Query. This query string
for instance, is contained in a dict key called -Query (highlighted in the figure 1.3). It
contains no values (-Query {}). The Query command is used to manipulate the content of
-Query in the request dictionary.

One can equally use the ncgi package that comes with Tcllib to manipulate this query
string. However, I prefer to use the Query utility when using the framework.

Let's develop our page a little more by adding some html and changing the content to
something plain and simple.

Prac 1.1 building the web page

namespace eval ::MySite {

proc / {r args} {
puts "root::MySite:RequestDict_r: -->\n $r"

set mypage {
<html>

<head>
<title>WUB Tutorial</title>
</head>

<body>
WUB Tutorial
<hr
color=”blue”>

Welcome to my first Wub page
</body>
</html>

}

return [Http Ok $r $mypage]
 }

namespace export -clear *
namespace ensemble create -subcommands {}

}

Note with the Http command this time, we did not add the content type. The default is
text/html.
If you type http://localhost:8080 in your browser, your page should look like the image

TclWeb powered by Wub Page 6

http://localhost:8080/

below;

Figure 1.2 welcome to my first Wub page

TclWeb powered by Wub Page 7

Using Query

“Select fname, lname, startdate from students;”

What does a select query have to do with Wub? Well...not much, but I want to draw from
the word query as a way of formally introducing Wub's Query utility. It is such an important
utility I feel it deserves the wow. We will view the query string at the Wub server to better
understand how you use the Query utility.

Change your browser URL to be
http://localhost:8080/?fname=Alie&lname=Koroma&startdate='09-SEP-2015' and press
enter.

If we take a look at the request dict, two elements of interest will be the -query and
-Query. They are the query string and the -Query key-pair (for lack of better name)
respectively.

Excerpt of -query and -Query from the request dict as posted by your browser to Wub
web server

-query fname=Alie&lname=Koroma&startdate=%2709-SEP-2015%27

-Query {fname {Alie {-count 1}} lname {Koroma {-count 2}} startdate {'09-SEP-2015' {-count
3}}}

Prac 1.2 modify our page to capture or extract the query string values and use
them.

 namespace eval ::MySite {

proc / {r args} {
puts "root::MySite:RequestDict_r: -->\n $r"
set mypage {

<html>
<head>
<title>WUB Tutorial</title>
</head>

<body>
WUB Tutorial
<hr color="light-
blue">

}

extract the values from the query string or the request dict
set fName [Query::value [Query::parse $r] fname]
set lName [Query::value [Query::parse $r] lname]
set sDate [Query::value [Query::parse $r] startdate]

append mypage "Welcome $fName $lName
"
append mypage "This is Wub Unofficial Bootstrap Tutorial.
Start Date: $sDate"

append mypage "</body></html>"

return [Http Ok $r $mypage]
 }

namespace export -clear *
namespace ensemble create -subcommands {}

 }

Figure 1.2 shows our response to that browser request. The fname, lname and startdate
values from the query string are used in the response.

TclWeb powered by Wub Page 8

http://localhost:8080/?fname=Alie&lname=Koroma&startdate='09-SEP-2015

The Query::value command takes two arguments, query and element.

Query::value [Query::parse $r] fname

arg1 is the query string in the format returned by Query::parse command
arg2 is the exact name of the query string element that must exist (e.g fname)

Query::parse $r returns the query string in the form of -Query dict element. Below is the
actual output;

fname {Alie {-count 1}} lname {Koroma {-count 2}} startdate {'09-SEP-2015' {-count 3}}

Figure 1.2 using values from a query string

Referencing a query element that doesn't exist will cause an error. Use the Query::exists to
check its existence before referencing its value where necessary. It returns a 1 or 0 for true
or false respectively.

The following command will return 1 if element fname exists in query string returned by
Query::parse command;

Query::exists [Query::parse $r] fname

TclWeb powered by Wub Page 9

Prac 1.3 modifying proc / demonstrating the use of exists in order to enhance the
logic.

namespace eval ::MySite {

proc / {r args} {

puts "root::MySite:RequestDict_r: -->\n $r"
set mypage {

<html>
<head>
<title>WUB Tutorial</title>
</head>

<body>
WUB Tutorial
<hr color="light-
blue">

}

if { [Query::exists [Query::parse $r] fname] } {

extract the values from the query string or the request dict
set fName [Query::value [Query::parse $r] fname]
set lName [Query::value [Query::parse $r] lname]
set sDate [Query::value [Query::parse $r] startdate]

append mypage "Welcome $fName $lName
Start Date: $sDate

"
append mypage "This is Wub Unofficial Bootstrap Tutorial.

"

} else {

set encStr [Query::encode "?fname=Alie&lname=Koroma&startdate=[clock
format [clock seconds] -format {%d-%b-%Y}]"]
append mypage "My login bookmark: Auto Login"

}
append mypage "</body></html>"

return [Http Ok $r $mypage]
 }

namespace export -clear *
namespace ensemble create -subcommands {}

}

The modification checks if the fname element exists and extracts the values of fname,
lname and startdate from the query string. Otherwise, it constructs and encodes a query
string and uses it in a link.

set encStr [Query::encode "?fname=Alie&lname=Koroma&startdate=[clock format [clock seconds]
-format {%d-%b-%Y}]"]

append mypage "My login bookmark: Auto Login"

In the above line, we create the hyperlink (highlighted) that will post the encoded query
string to our root proc if or when “Auto Login” is clicked.

TclWeb powered by Wub Page 10

Figure 1.3 modified page demonstrating the use of encode command;

Figure 1.4 Auto Login was clicked and the values were used to login

Clicking the “Auto Login” in the previous page will post the query string we constructed
using the encode command to Wub server. The server returned a page which included the
values from the query string (fname, lname and startdate).

There are many more commands provided by the Query utility. There is even an ncgi
compatible nvlist command available. Take a look at the source code in

/$install_dir/Utilities/Query.tcl for more details.

TclWeb powered by Wub Page 11

Using Html

“the neatest html markup ever!”

Remember Wub is a web framework that provides tools (utilities and domains) that assist
you in rapidly developing better web applications. HTML is a markup language, “the
neatest html markup ever!” refers to Html’s tag generation capability.

We will rewrite the code that produced the pages above (Prac 1.4). From this point on, we
will ditch the conventional <html> tags (can't wait...it saves me some typing) and
transition into the neatest html markup ever!

Prac 1.4 rewrite Prac 1.3 in the neatest html markup ever!

1 namespace eval ::MySite {
2
3 proc / {r args} {
4
5 if {0} {
6 puts "root::MySite:RequestDict_r: -->\n $r"
7 set mypage {
8 <html>
9 <head>
10 <title>WUB Tutorial</title>
11 </head>
12 <body>
13 WUB Tutorial
<hr color="light-blue">

14 }
15 }
16
17 set mypage [size 14px ["WUB Tutorial"]][
][
][<hr> color blue][
]

[
]
18
19 if { [Query::exists [Query::parse $r] fname] } {
20
21 # extract the values from the query string or the request dict
22 set fName [Query::value [Query::parse $r] fname]
23 set lName [Query::value [Query::parse $r] lname]
24 set sDate [Query::value [Query::parse $r] startdate]
25
26 append mypage "Welcome $fName $lName[
]Start Date: $sDate[
][
]"
27 append mypage "Wub Unofficial Bootstrap Tutorial.[
][
]"
28
29 } else {
30
31 set encStr [Query::encode "?fname=Alie&lname=Koroma&startdate=[clock format

[clock seconds] -format {%d-%b-%Y}]"]
32 append mypage "My login bookmark: [<a> href $encStr {Auto Login}]"
33 }
34 #append mypage "</body></html>" #we don't need you anymore
35
36 dict append r -title "WUB Tutorial" ;# equivalent to line 9-11
37
38 return [Http Ok $r $mypage]
39 }
40
41 namespace export -clear *
42 namespace ensemble create -subcommands {}
43
44 }

TclWeb powered by Wub Page 12

Note that we didn't have to use <html>, <body> and <head> tags. I deliberately left the
old code in there (commented out of course, lines 5-15 and 34) , so it's easy to make a
comparison. In line 17 you can see that the commands are the same names as the html
tags. There are no = signs for the html attributes (e.g size=14px becomes size 14px).

Also note in line 36 we set the page title by directly manipulating the request/response dict
r;

dict append r -title “WUB Tutorial”

Figure 1.5 Modified code using Wub Html commands instead of standard
html

Figure 1.6 Modified page after clicking Auto Login

TclWeb powered by Wub Page 13

The syntax for Html tags is <tagname> attr value attr value attr ...

The command size 14px color green face arial will yield the html output;

To return the value of the command you put them in braces;

set mypage [size 14px color green face arial]

“What about tables, menu and style?”

Tables and menus sounds like we talking about restaurants. Table is a valid html tag
frequently used for organizing or presenting content on a page. Menus can also be created
with a simple command. We will demonstrate a few more useful commands like <table>,
<menulist>, <stylesheet>, <div>, <links> etc. in the next Prac section.

TclWeb powered by Wub Page 14

Prac 1.5 more demonstration of the Html utility

 namespace eval ::MySite {

proc / {r args} {
puts "root::MySite:RequestDict_r: -->\n $r"

Build the page header taking into account the different query strings passé
d from menulist
if { [Query::exists [Query::parse $r] fname] } {

extract the values from the query string or the request dict
set fName [Query::value [Query::parse $r] fname]
set lName [Query::value [Query::parse $r] lname]
set sDate [Query::value [Query::parse $r] startdate]

append mypage "Welcome: $fName $lName[
]Today's Date: $sDate[
]
[
]"
set mypage [<div> [<h2> {WUB Tutorial}]$mypage]

} else {

set mypage [<div> "[<h1> {WUB Tutorial}]Wub Unofficial Bootstrap
Tutorial[
]pure-Tcl HTTP 1.1 Server"]

}

append mypage [
][
][<hr> color blue] [
]
append mypage [{Menulist:}] ;#returns string Menulist: in bold
set encStr [Query::encode "?fname=Alie&lname=Koroma&startdate=[clock format
[clock seconds] -format {%d-%b-%Y}]"]
append mypage [Html::menulist "Home / AutoLogin $encStr LogOut [Query::encode
logout]"] [
]
append mypage [<div> width 100% height 400px border 1 [<p> [<h2> {Wub image;}]]]
append mypage [<div> [src /images/wub_tcl_on_web.jpg width 90px height
120px]][
][
]

append mypage [<div> width 100% height 400px border 1 [<p> [<h2> {a sample
table;}]]]
append mypage [<tr> [<td> [#]][<td> [Field]][<td> [Value]]]
append mypage [<tr> [<td> [<a> href [Query::encode ?#] 1]][<td> "Tcl Version:"]
[<td> "Tcl8.6/[info patchlevel]"]]
append mypage [<tr> [<td> [<a> href [Query::encode ?#] 2]][<td> "Script:"][<td>
[info script]]]
append mypage [<tr> [<td> [<a> href [Query::encode ?#] 3]][<td> "Procedures:"]
[<td> [info proc]]]
append mypage [<tr> [<td> colspan 3]]
append mypage [<tr> [<td> colspan 3 {Dict Dump:}]]
append mypage [<tr> [<td> colspan 3 $r]]

set mypage [<div> [<table> border 1 width 100% $mypage]]
append mypage [<div> height 80px "[
][
][<hr> color blue][
]TclWeb [<i>
{powered by Wub}]"]
set mypage [<div> $mypage];#add page wrapper

ditch the tags and make the code look more tcl
dict append r -title "WUB Tutorial" ;#add page title

return [Http Ok $r $mypage]

}

TclWeb powered by Wub Page 15

proc /logout {r args} {

set logout [size 14px ["WUB Tutorial"]][
][
][<hr> color
blue][
]
append logout [<p> ["Logged Out"][
][
][
][<a> href
[Query::encode /] {Start Over}]]
dict append r -title "WUB Tutorial"

return [Http Ok $r $logout]
}

namespace export -clear *
namespace ensemble create -subcommands {}

}

Menu lists are easy to create with the Html utility, the following excerpt from Prac 1.5
shows how this was done;

set encStr [Query::encode "?fname=Alie&lname=Koroma&startdate=[clock format [clock seconds]
-format {%d-%b-%Y}]"]

append mypage [Html::menulist "Home / AutoLogin $encStr LogOut [Query::encode logout]"]

The first line builds/encodes a query string where fname=Alie and lname=Koroma and
startdate is today's date.
The query string does not have to be encoded in some cases but I like to do it anyway. This
eliminates the confusion of when to and when not to. The following line will also work;

set encStr "?fname=Alie&lname=Koroma&startdate=[clock format [clock seconds] -format {%d-%b-
%Y}]"

The second line of code starting with append above builds a bulleted menulist as follows;
Home (Home /): when clicked will call proc /
AutoLogin: when clicked will post a query string stored in $encStr (?fname=A...)
LogOut (LogOut [Query::encode logout]): when clicked will call proc /logout

If your query string is to call a proc like /logout for example, it must be encoded. However,
you can get away with not encoding the forward slash that calls proc /. If we had “Home
{}” it will still call proc /. On the other hand, if you fail to encode /logout, you will get the
following error;

http://localhost:8080/logout Not Found

These are the intricacies we trying to avoid thus, the reason for encoding all query strings.
The image, table and div are straight-forward, they are used in exactly the same way you
write html, the only difference is the attribute do not have equals sign.

TclWeb powered by Wub Page 16

Figure 1.7 modified page displaying the use of menulist, table, image and
div elements

“the page looks plain, what about some style?”

Of course Wub supports cascading style sheets (CSS). The implementation especially with
Direct Domains is pretty cool as it embeds what will be your style-sheet file (with the .css
extension) into a single proc. Below we demonstrate how the previous lifeless, dull and
boring looking page could be brought to life with a little colour and style using CSS.

You will notice all the html formatting (e.g font-size 14px etc...) have disappeared from our
code and now resides in a proc call /mysitecss. This proc is our css file per se. For this one,
We'll show the page before the code as seen below;

TclWeb powered by Wub Page 17

Figure 1.8 modified page using cascading style sheet

 The menulist items are activated as your mouse pointer hovers over them. Let's take a
look at the code behind the above page and the CSS implementation in particular.

TclWeb powered by Wub Page 18

Prac 1.6 applying some style to the page without changing the content
much

namespace eval ::MySite {

proc / {r args} {

Build the page header taking the value may be passed from the menulist
if { [Query::exists [Query::parse $r] fname] } {

extract the values from the query string or the request dict
set fName [Query::value [Query::parse $r] fname]
set lName [Query::value [Query::parse $r] lname]
set sDate [Query::value [Query::parse $r] startdate]

append mypage "[Welcome:] $fName $lName[
]Today's Date: $sDate[
][
]"
set mypage [<div> id divtop [<h2> class wubhead {WUB Tutorial}]$mypage[<hr>]]

} else {

set mypage [<div> id divtop "[<h2> class wubhead {WUB Tutorial}][class bwub
W]ub\ [class bwub U]nofficial\ [class bwub B]ootstrap Tutorial[
]pure-
Tcl HTTP 1.1 Server[
][
][<hr>]"]

}

set encStr [Query::encode "?fname=Alie&lname=Koroma&startdate=[clock format [clock
seconds] -format {%d-%b-%Y}]"]

set mymenu [class img src /images/wub_tcl_on_web.jpg width 90px height 120px]
append mymenu [Html::menulist "Home / AutoLogin $encStr LogOut [Query::encode logout]"]
set mymenu [<div> id divmenu [<p> class menu $mymenu]]

if { [Query::exists [Query::parse $r] fname] } {

set wubintro [<div> id divhome "
[<h1> {What is Wub: Introduction}]
Wub is a web-server written in pure-Tcl. It runs the Wiki you're now
reading.
It absolutely requires Tcl 8.6 and tracks the HEAD closely. It should help
in creating highly-dynamic (and portable) web applications.
It is the successor in spirit of Tclhttpd, aiming to preserve the best of it
while using the bleeding-edge latest Tcl facilities to simplify and extend.
Wub is essentially an interpreter for HTTP 1.1 requests, and it's very
appropriate to use Tcl for that kind of thing. Here's Wub's Read-Eval-Print
loop ... couldn't be simpler.
[
][
][src /images/arch.png class imgarch]

"]
append mypage [<div> id divbody $mymenu$wubintro]

} else {

set mytable [<tr> class tabhead [<td> [#]][<td> [Field]][<td> [
Value]]]
append mytable [<tr> [<td> [<a> href [Query::encode ?#] 1]][<td> "Tcl Version:"]
[<td> "Tcl8.6/[info patchlevel] Required/Installed"]]
append mytable [<tr> [<td> [<a> href [Query::encode ?#] 2]][<td> "Script:"][<td>
[info script]]]
append mytable [<tr> [<td> [<a> href [Query::encode ?#] 3]][<td> "Namespace
Procedure(s):"][<td> [info proc]]]
append mytable [<tr> [<td> colspan 3]]
append mytable [<tr> [<td> colspan 3 {Dict Dump:}]]
append mytable [<tr> [<td> colspan 3 $r]]

set whereiswub [<div> id divhome "
 [<h1> {Where is Wub?}]
 Wub is hosted here [<a> href http://code.google.com/p/wub/
 {http://code.google.com/p/wub/}][
]
 Wub has a discussion group here [<a> href http://groups.google.com/group/wub-
 discussion {http://groups.google.com/group/wub-discussion}][
]
 Wub code can be fetched from svn with svn checkout
 http://wub.googlecode.com/svn/trunk/ wub[
]
 Occasional releases can be found here: 1
 Issues with Wub can be reported here: 2
 Wub tutorial presented at 8th European Tcl/Tk Users Meeting, available from [<a>

TclWeb powered by Wub Page 19

http://groups.google.com/group/wub-

 href http://code.google.com/p/wubwikit/downloads/list
{http://code.google.com/p/wubwikit/downloads/list}]
 Follow that link and download either eurotcl2009-examples.zip or eurotcl2009-wub-

tcllib-examples.zip,
 those two archives contain a PDF file named Lets_Wub.pdf, that is the tutorial.
 [
][
]
 [<h2> {Installation Details:}]
 [<table> class mytable $mytable]
"]
append mypage [<div> id divbody $mymenu$whereiswub]

}

set myfoot "[
]TclWeb [<i> {powered by Wub}][
][<a> href http://wiki.tcl.tk/15781
{Wub wiki page}]"

set myfoot [<hr>]$myfoot
append mypage [<div> id divfoot $myfoot]

set mypage [<div> $mypage] ;#add page wrapper

dict append r -title "WUB Tutorial" ;# add a page title

set r [Html style $r mysitecss]
return [Http Ok $r $mypage]

 }

proc /logout {r args} {

set logout [<h2> class wubhead {WUB Tutorial}][
]
append logout [<p> ["Logged Out..."][
][
][<a> href [Query::encode /] {Start

Over}]]
set logout [<div> id divtop $logout[<hr>]]

dict append r -title "WUB Tutorial"

set r [Html::style $r mysitecss]
return [Http Ok $r $logout]

}

proc /mysitecss {r args} {

set css {
a { font-size:12px; font-weight:bold; text-decoration:none; text-underline:none; }
div#divbody { width:100%; height:auto; padding-right:50px; }
div#divfoot { width:100%; height:100px; background-color:#43e8d3; clear:both; text-

align:center; border-radius:5px; padding:20px; margin:5px; }
div#divhome { width:70%; float:left; padding:20px; margin:5px; }
div#divtop { padding:15px; width:100%; height:auto; background-color:#43e8d3;

border-radius:5px; }
div#divmenu { width:18%; height:auto; float:left; }
div#divtable { width:60%; height:auto; float:left; padding:20px; }
.bwub { color:black; font-weight:bold; font-size:16px; }
.tabhead { background-color:#43e8d3; font-weight:bold; }
.img { width:auto; height:120px; padding:20px; margin:2px; }
.imgarch { width:600px; height:600px; clear:both; }
.menu { font-size:12px; }
.mytable { width:100%; height:auto; text-align:center; border:1px solid #43e8d3; }
.wubhead { font-size:18px; font-weight:bold; color:#fff; }
hr { color:#43e8d3; width:100%; height:5px; box-shadow:3px 3px 3px #fff;

border:0px; border-radius:3px; }
td { border:1px solid #43e8d3; border-radius:5px; }
a:hover { border:0px; background-color:#43e8d3; cursor:grab; font-size:12px; font-

weight:bold;
color:#fff; border-radius:5px; box-shadow: 3px 3px 3px grey; padding:2px;

}
tr:hover { background-color:#43e8d3; font-weight:bold; }

}

return [Http Ok $r $css text/css]

}

namespace export -clear *
namespace ensemble create -subcommands {}

}

TclWeb powered by Wub Page 20

Of the whole of Prac 1.6, we are only interested in one proc and one line of statement to
explain the implementation of CSS in Wub. Within your proc, define all your CSS attributes
and return it in a Http Ok response. Before sending the page response, style it with the Html
style command to apply the CSS to your page.

Defining the CSS proc is easy. The following proc /mysitecss returns all the style sheet
definition in a variable called mycss as a Http Ok response.

proc /mysitecss {r args} {

set mycss {
a { font-size:12px; font-weight:bold;

text-decoration:none;
text-underline:none;

}
.

}
return [Http Ok $r $mycss text/css]

}

You will then apply this style to your page before sending your response as follows;

set r [Html style $r mysitecss]
or

set r [Html::style $r mysitecss]

This will set the -style element of the request/response dict to;

-style {mysitecss {}}

The traditional method is also supported with the <stylesheet> command. If your CSS is
defined in a file called mysitecss.css in the root directory for example. You can reference it
within your code as follows;

<stylesheet> ./mysitecss.css

This will return the html tag;

<link rel='StyleSheet' type='text/css' media='screen' href='./mysitecss.css'>

There are many more commands provided by the Html utility like If, Foreach, Switch,
While, dict2json, dict2table to name a few.

TclWeb powered by Wub Page 21

Using Form

“build them...whatever the shape or form”

Like most other things in Wub, Forms are pretty easy to build using the Form utility. It
provides commands like <checkbox>, <password>, <textarea>, <hidden> and many
more. For now we will replace the AutoLogin with an actual user input username and
password from a form (simulating user login).

Figure 1.9 modified page using a form for user authentication (login)

If you click login after any value was inserted in the Email field, you are logged in to the
page with a menulist on the left hand side and the “What is Wub” content on the right. The
user session is maintained with a single variable called isLoggedIn until the LogOut menu
item is clicked.

TclWeb powered by Wub Page 22

Figure 2.0 the intro page after login

If you click on the Intro link, it will reload the same page.

The MyForm menu item displays a form with different field types like text, radioset (a set
of radio buttons), password, select and a submit button.

TclWeb powered by Wub Page 23

Figure 2.1 the MyForm page after login

The LogOut menu item will terminate your session (set isLoggedIn=0) and log you out to a
page as seen below;

Figure 2.2 the LogOut page after login

We will take our focus back to the FREE AUTHENTICATION heading with the login button in
Fig 1.9. It's a form that uses the HTTP post method to submit its values. Below is the code
for the pages illustrated above, we will visit the form construct section immediately after.

TclWeb powered by Wub Page 24

Prac 2.1 using form to add user authentication to the main page

namespace eval ::MySite {

variable isLoggedIn 0 ;#flag if the user is logged in or not
variable remMyHeader {} ;#remember the header for use in subsequent user activitiesd

proc / {r args} {

variable isLoggedIn
variable remMyHeader

Build the page header taking the value may be passed from the menulist
if { [Query::exists [Query::parse $r] usrname] && ![string equal [Query::value [Query::parse $r] usrname] {}] } {

set mypage [wtHeader [Query::value [Query::parse $r] usrname] [Query::value [Query::parse $r] usrpasswd]]
set remMyHeader $mypage
set isLoggedIn 1

} elseif { $isLoggedIn == 1 } {
set mypage $remMyHeader ;#set the header to the authenticated one

} else {
set mypage [wtHeader]

}

if { $isLoggedIn == 1 } { ;#the user is still logged in

if { [Query::exists [Query::parse $r] frm] } {

set wubform [<tr> [<td>][<td> colspan 2 [<i> {*this is a demo form, all field are mandatory}]]]
append wubform [<tr> [<td> colspan 2 [<hidden> hideme id hideme]]]
append wubform [<tr> [<td> "First Name:"][<td> [<text> fname id fname class frmfld title {First
Name}]]]
append wubform [<tr> [<td> "Last Name:"][<td> [<text> lname id lname class frmfld title {Last
Name}]]]
append wubform [<tr> [<td> "Email Add:"][<td> [<text> email id email class frmfld title {Email
Address}]]]
append wubform [<tr> [<td> "Password :"][<td> [<password> passwd id passwd class frmfld title
{Password}]]]
append wubform [<tr> [<td> "Re-Password:"][<td> [<password> repeat id repeat class frmfld title
{Retype Password}]]]
append wubform [<tr> [<td> "Radioset : "][<td> [<radioset> mysex id mysex {Male male Female
fmale}]]]
append wubform [<tr> [<td> "Checkset :"][<td> [<checkset> mysurvey id mysurvey {Newsletter lnews
Whitepaper wpaper}]]]
append wubform [<tr> [<td> "Country:"][<td> [wtGetCountries]]]
append wubform [<tr> [<td> colspan 2 [
][
][<submit> subReg id subReg class frmbutton {FREE
REGISTRATION}]]]
set wubform [<table> $wubform]

build the form and insert the fields contained in variable 'wubform'
set wubform [
][<form> frmlogin id frmlogin name frmlogin action [Query::encode "?/signup"] method

POST {
[<fieldset> { [<legend> { FREE REGISTRATION }] $wubform }]

}]

set wubform [<div> $wubform]

} elseif { [Query::exists [Query::parse $r] subReg] } {
respond to the free registration form post

set myReg [<p> "
[If { [string equal [Query::value [Query::parse $r] fname] {}] } {

"Guest"
} else { "[Query::value [Query::parse $r] fname]" }],
[
][class bfont {thanks for registering with us.}]

"]

} else {

set wubintro [<div> "
[<h1> {What is Wub: Introduction}]
Wub is a web-server written in pure-Tcl. It runs the Wiki you're now reading.
It absolutely requires Tcl 8.6 and tracks the HEAD closely. It should help in creating
highly-dynamic (and portable) web applications.
It is the successor in spirit of Tclhttpd, aiming to preserve the best of it while using the
bleeding-edge latest Tcl facilities to simplify and extend.
Wub is essentially an interpreter for HTTP 1.1 requests, and it's very appropriate to use
Tcl for that kind of thing. Here's Wub's Read-Eval-Print loop ... couldn't be simpler.
[
][
][src /images/arch.png class imgarch]

"]
}
set mymenu [class img src /images/wub_tcl_on_web.jpg width 90px height 120px]
append mymenu [Html::menulist "Intro / {MyForm} [Query::encode ?frm=myform] LogOut [Query::encode logout]"]
set mymenu [<div> id divmenu [<p> class menu $mymenu]]

if { [Query::exists [Query::parse $r] frm] } {
append mypage [<div> id divbody $mymenu$wubform]

} elseif { [Query::exists [Query::parse $r] subReg] } {
append mypage [<div> id divbody $mymenu$myReg]

} else {
append mypage [<div> id divbody $mymenu$wubintro]

}

} else {

create a table with field values and store it in a variable mytable for use in the following section
set mytable [<tr> class tabhead [<td> [#]][<td> [Field]][<td> [Value]]]
append mytable [<tr> [<td> class tabdetail [<a> href [Query::encode ?#] 1]][<td> class tabdetail "Tcl
Version:"][<td> class tabdetail "Tcl8.6/[info patchlevel] required/installed"]]

TclWeb powered by Wub Page 25

append mytable [<tr> [<td> class tabdetail [<a> href [Query::encode ?#] 2]][<td> class tabdetail "Script:"]
[<td> class tabdetail [info script]]]
append mytable [<tr> [<td> class tabdetail [<a> href [Query::encode ?#] 3]][<td> class tabdetail "Namespace
Procedures\([llength [info proc]]\):"][<td> class tabdetail [info proc]]]
append mytable [<tr> [<td> class tabdetail colspan 3]]
append mytable [<tr> [<td> class tabdetail colspan 3 [{Dict Dump:}]]]
append mytable [<tr> [<td> class tabdetail colspan 3 [
]$r[
][
]]]

set whereiswub [<div> id divhome "
 [<h1> {Where is Wub?}]
 Wub is hosted here [<a> href http://code.google.com/p/wub/ {http://code.google.com/p/wub/}][
]
 Wub has a discussion group here [<a> href http://groups.google.com/group/wub-discussion
{http://groups.google.com/group/wub-discussion}][
]
 Wub code can be fetched from svn with svn checkout http://wub.googlecode.com/svn/trunk/ wub[
]
 Occasional releases can be found here: 1
 Issues with Wub can be reported here: 2
 Wub tutorial presented at 8th European Tcl/Tk Users Meeting, available from [<a> href
 http://code.google.com/p/wubwikit/downloads/list {http://code.google.com/p/wubwikit/downloads/list}]
 Follow that link and download either eurotcl2009-examples.zip or eurotcl2009-wub-tcllib-examples.zip,
 those two archives contain a PDF file named Lets_Wub.pdf, that is the tutorial.
 [
][
]
 [<h2> {Details:}]
 [<table> class mytable $mytable]
"]
append mypage [<div> id divbody $whereiswub]

}

set myfoot "[
]TclWeb [<i> {powered by Wub}][
][<a> href http://wiki.tcl.tk/15781 {Wub wiki page}]"
set myfoot [<hr>]$myfoot
append mypage [<div> id divfoot $myfoot]

set mypage [<div> $mypage] ;#add page wrapper

dict append r -title "WUB Tutorial" ;# add a page title

set r [Html style $r mysitecss] ;# add style called mysitecss to response r
return [Http Ok $r $mypage] ;# send a HTTP Ok response

 }

proc wtHeader { {username 0} {passwd 0} } {

Build the page header taking the value may be passed from the menulist
if { $username != 0 } {

set pheader [<h2> class wubhead {WUB Tutorial}]
append pheader "[Welcome:] $username[
]Today's Date: [clock format [clock seconds] -format {%d-%b-%Y}]
[
][
][<hr>]"

return [<div> id divtop $pheader]

} else {

set ptitle "
[<h2> class wubhead {WUB Tutorial}][class bwub W]ub\ [class bwub U]nofficial\ [class bwub
B]ootstrap Tutorial[
]
pure-Tcl HTTP 1.1 Server[
][
][<hr>]"

build the form fields in a table for formatting
#set p_html [{USER LOGIN}][
][class slogan {Free authentication}][
][
]
set p_html [{Email : }][<text> usrname id usrname class fld title "email address" tabindex 1][
]
append p_html [{Password: }][<password> usrpasswd id usrpass class fld title "password" tabindex 2][
]
[
]
append p_html [<submit> smtlogin id smtlogin value Login tabindex 3 class lbutton Login]

set pheader [<form> frmlogin action [Query::encode /] method get class login {
[<fieldset> class hdr { [<legend> { FREE AUTHENTICATION }] $p_html }]

}]

return [<div> id divtop [<div> id divtitle $ptitle][<div> id divtopright $pheader]]

}

}

proc /logout {r args} {

set logout [<h2> class wubhead {WUB Tutorial}][
]
append logout "[{Logged Out...Goodbye!}] [
]Exit Time: [clock format [clock seconds] -format {%H:%M:%S}][
]
[
]"
append logout [<p> [<a> href [Query::encode /] {Start Over}]]
set logout [<div> id divtop $logout[<hr>]]
variable isLoggedIn 0

dict append r -title "WUB Tutorial"

set r [Html::style $r mysitecss]
return [Http Ok $r $logout]

}

proc wtGetCountries { } {

set allCountry [<option> value noselect {:: Select Your Country ::}]
foreach {cName} [list Algeria Benin Columbia Denmark ZA] {

append allCountry [<option> value $cName $cName]
}

return [<select> country class fld $allCountry]

}

TclWeb powered by Wub Page 26

proc /mysitecss {r args} {

set css {
a { font-size:12px; font-weight:bold; text-decoration:none; text-underline:none; }
div#divbody { width:100%; height:auto; padding-right:50px; }
div#divfoot { width:100%; height:100px; background-color:#43e8d3; clear:both; text-align:center; border-
radius:5px; padding:20px; margin:5px; }
div#divhome { width:70%; clear:both; padding:20px; margin:5px; }
div#divtop { padding:15px; width:100%; height:180px; background-color:#43e8d3; border-radius:5px; }
div#divtopright { padding-right:135px; margin-right:40px; width:15%; height:auto; float:right; background-
color:#43e8d3; }
div#divmenu { width:18%; height:auto; float:left; }
div#divtable { width:60%; height:auto; float:left; padding:20px; }
div#divtitle { width:20%; height:auto; float:left; padding:20px; }
.bfont { font-size:35px; font-weight:bold; color:#43e8d3; }
.bwub { color:black; font-weight:bold; font-size:16px; }
.frmfld { border:1px solid #43e8d3; border-radius:5px; text-align:left; margin-bottom:10px; height:20px;
 width:190px; }
.tabhead { background-color:#43e8d3; font-weight:bold; }
.img { width:auto; height:120px; padding:20px; margin:2px; }
.imgarch { width:600px; height:600px; clear:both; }
.frmbutton {

border:1px solid #fff; border-radius:5px;
width:100%; height:30px; font-size:14px; font-weight:bold; box-shadow:3px 3px 3px #43e8d3;
right:20px; bottom:20px; background-color:#43e8d3; color:#000000; cursor:grab;

}
.lbutton {

border:1px solid #fff; border-radius:5px;
width:100%; height:30px; font-size:14px; font-weight:bold;
right:20px; bottom:20px; background-color:#43e8d3; color:#fff; cursor:grab;

}
.menu { font-size:12px; }
.mytable { width:100%; height:auto; text-align:center; border:1px solid #43e8d3; }
.tabdetail { border:1px solid #43e8d3; border-radius:5px; }
.wubhead { font-size:18px; font-weight:bold; color:#fff; }
hr { color:#43e8d3; width:100%; height:5px; box-shadow:3px 3px 3px #fff; border:0px; border-radius:3px; }
a:hover { border:0px; background-color:#43e8d3; cursor:grab; font-size:12px; font-weight:bold;

color:#fff; border-radius:5px; box-shadow: 3px 3px 3px grey; padding:4px;
}
#tr:hover { background-color:#43e8d3; font-weight:bold; }

}
return [Http Ok $r $css text/css]

}

namespace export -clear *
namespace ensemble create -subcommands {}

}

TclWeb powered by Wub Page 27

The code below constructed the login form

set pheader [<form> frmlogin action [Query::encode /] method post {
[<fieldset> { $p_html [<legend> { FREE AUTHENTICATION }] }]

}]

 The command takes the form <form> name {attrs} content. In the above code;
<form>: is the command to construct a form
frmlogin: the name assigned to this form
action [Query::encode /]: when the form is submitted, the proc / is called and the
query string values passed to it as arguments.
method post: HTTP method to use POST/GET when submitting the form. The
difference between post and get is POST does not display the query string being sent and
GET displays it in the address bar.

<form> command encapsulates a set of fields which are defined by the <fieldset>
command. <fieldset> command also follow the same convention as <form> command
with name, attributes and then contents. However, we already have the structure of the
form fields in <fieldset> defined in variable p_html.

The commands of the Form utility are quiet straight-forward and easy to use. We also used
the radioset and checkset command in the form in Figure 2.1 to show the syntax is just the
same as those listed above. The usage is as below;

[<radioset> myname id mysex {Male male Female fmale}]

To add a legend to your form, you can use the <legend> command as in;

 <legend> name {attrs} content

The <legend> command defines a caption for the <fieldset> element or command in this
instance.

In the lines of code starting with the comments # construct the form using a variety... we used
the <hidden>, <text>, <password>, <radioset>, <select> and <submit> commands of the Form
utility. There are many more like <file>,<image>, <textarea>, <button>,<reset> etc. For more
details, refer to the package in /$install_dir/Utilities/Form.tcl

TclWeb powered by Wub Page 28

Using jQ

If jQuery is “write less, do more”. That is exactly what jQ is in Wub. You do not have to
know jQuery to use jQ. In a matter of minutes you will be creating fancy pages with tabs,
accordions etc. with little effort.

JQ is implemented as a domain, to start using it, uncomment the lines that start with
/jquery/ in site.config and you're ready to go.

The theme must also be started in your code before applying/using them. Here is the
syntax and how you will use jQ domain to create a tabbed page;

jQ plugin_name req_dict #id

set r [jQ theme $r start]

set r [jQ tabs $r #tab123]

To pass jQ plugin options, you add them after the element id (#tab123) as a straight list as
below;

set r [jQ tabs $r #tab123 active 1]

In our demonstration, we created tabs that contain an accordion in the first, a form in the
second and text in the third tab.

First we will take a look at the page and then the code that created it. Note the page
header is cut off in the images that follow.

Figure 2.3 jQ tabs with jQ accordion

TclWeb powered by Wub Page 29

Fig 2.4 jQ tab with jQ Form

Fig 2.5 jQ tab with plain text

TclWeb powered by Wub Page 30

Prac 2.2 showing procedure in which the above page is constructed;

proc wtMyJQuery { r args } {

build the accordion ui
set accUsage [<p> "

1. The Nub is already configured in site.config. Uncomment the line if not already commented out to look like;
[
]
/jquery/ \{[
]

domain JQ[
]
\}
[
]
2. construct h3 and div tags wrapped in a div with an id[
]
div id myacc h3 myhead div mycontent
[
][
]
3. set r \[jQ accordion #id\]
[
][or][
]
3.1 set r \[jQ accordion #id option value option value option ...\]
[
]

"]

set accDesc [<p> "
Accordion two (index 1) is the current active pane[
][
]
You can use the jQuery UI CSS to style the look and feel of your jQ plugins.
[
][
]

"]

set tab3 [<p> "
[<i> {We deliberately caused an error and got the following error message;}][
]
[
]
-errorcode \{TCL LOOKUP SUBCOMMAND wash\} -errorinfo \{unknown or ambiguous subcommand \"wash\": must be S,
aaccordion, accordion, addtab, autocomplete,
autofill, autogrow, autoscale, boxtoggle, bubbleup, combobox, confirm, container, containers, create,
datatable, datepicker, dict2accordion, do,
do_galleria, draggable, droppable, editable, form, fs, galleria, gallery, gentab, hint, history,
hoverimage, inc, ingrid, jframe, jiggle, jquery,
jtemplates, loadlocal, local, map, multifile, new, nicedit, observer, opts, pnotify, popup,
prescripts, ready, resizable, rest_in_place, savelocal,
script, scripts, selectable, sheet, slider, sortable, stickynote, style, tablesorter, tabs, tc,
theme, timeentry, toolbar, tooltip, track, validate,
weave, or websocket
[
][
]
\while executing[
]
\"jQ wash \$r #tab123\"
[
][
]
It is useful information because it gives us an infinite list of jQ subcommands. You will see accordion and
tabs are part of the above list.

"]

construct a form to be made a jQ form
set wubform [<tr> [<td>][<td> colspan 2 [<i> {*this is a demo form, all field are mandatory}]]]
append wubform [<tr> [<td> colspan 2 [<hidden> hideme id hideme]]]
append wubform [<tr> [<td> "First Name:"][<td> [<text> fname id fname class frmfld title {First Name}]]]
append wubform [<tr> [<td> "Last Name:"][<td> [<text> lname id lname class frmfld title {Last Name}]]]
append wubform [<tr> [<td> "Email Add:"][<td> [<text> email id email class frmfld title {Email Address}]]]
append wubform [<tr> [<td> "Password :"][<td> [<password> passwd id passwd class frmfld title {Password}]]]
append wubform [<tr> [<td> "Re-Password:"][<td> [<password> repeat id repeat class frmfld title {Retype Password}]]]
append wubform [<tr> [<td> "Radioset : "][<td> [<radioset> mysex id mysex {Male male Female fmale}]]]
append wubform [<tr> [<td> "Checkset :"][<td> [<checkset> mysurvey id mysurvey {Newsletter lnews Whitepaper wpaper}]]]
append wubform [<tr> [<td> "Country:"][<td> [wtGetCountries]]]
append wubform [<tr> [<td> colspan 2 [
][
][<submit> subReg id subReg class frmbutton {FREE REGISTRATION}]]]
set wubform [<table> $wubform]

build the form and insert the fields contained in variable 'wubform'
set wubform [
][<form> frmjq id frmjq name frmjq action [Query::encode "?/reg"] method POST {

[<fieldset> { [<legend> { FREE REGISTRATION }] $wubform }]
}]

set wubform [<div> $wubform]

this section constructs the accordion
set accordion [<h3> [Usage]]
append accordion [<div> $accUsage]
append accordion [<h3> [Description]]
append accordion [<div> $accDesc]
append accordion [<h3> [Miscellaneous]]
append accordion [<div> [<i> {Nothing to add, reserved for later use}]]
set accordion [<div> id divaccordion $accordion]

the tabs plugin requires an ordered or unordered list with link to div elements
set jqTab [[<a> href #tab1 {Accordion Tab}]]
append jqTab [[<a> href #tab2 {jQ Form Tab}]]
append jqTab [[<a> href #tab3 {jQ Subcommands}]]
set jqTab [$jqTab]

set wubAcc [{Note the active accordion is second one (index 1) because of;}][
]
append wubAcc "set r \[jQ accordion #divaccordion active 1\]"
set wubAcc $wubAcc[
]$accordion

construct the contents of the all three tabs
append jqTab [<div> id tab1 [<p> $wubAcc]]
append jqTab [<div> id tab2 [<p> $wubform]]
append jqTab [<div> id tab3 [<p> $tab3]]

return [
][
][<div> id tab123 $jqTab]

}

TclWeb powered by Wub Page 31

The proc executed by clicking MyjQ menu item is proc wtMyJQuery above. It is called in the
root proc rather than posting to the proc directly. The page itself contains useful
information on jQ like the complete list of jQ plugins. Once your html elements have been
built like in our proc above, you will apply jQ to your dict as was demonstrated earlier;

set r [jQ plugin_name $r #id]

This concludes our discussion of jQ. The complete site code is distributed with this
document to facilitate your playing around.

TclWeb powered by Wub Page 32

TclWeb powered by Wub Page 33

