Kantara Initiative Test Plan
Version: 3.3
SAML 2.0 Test Criteria

[image: image1.png]kantara A

||||||||||

Test Plan for Kantara Initiative Test Event Test Criteria
SAML 2.0

Version:

 3.3
Date:

 2010-07-21

Editor:

Kyle Meadors, Drummond Group Inc.

Contributors:

The full list of contributors can be referenced here: http://kantarainitiative.org/confluence/display/iopwg/Participant+Roster
Status: This document is a Kantara Initiative Interoperability Work Group (IOPWG) Draft Report, and has not yet been approved by the IOPWG. (See section 3.9 and 4 of the Kantara Initiative Operating Procedures.)
Abstract:

This document describes the test steps to achieve the Kantara Initiative Interoperability Certification designation for various SAML 2.0 modes and profiles.

Filename:
Kantara_Initiative_SAML_Test Plan_Draft_Report_v3.3.doc

Notice:

This document has been prepared by Participants of Kantara Initiative. Permission is hereby granted to use the document solely for the purpose of implementing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce portions of this document for other uses must contact Kantara Initiative to determine whether an appropriate license for such use is available.

Implementation or use of certain elements of this document may require licenses under third party intellectual property rights, including without limitation, patent rights. The Participants of and any other contributors to the Specification are not and shall not be held responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights. This Specification is provided "AS IS," and no Participant in Kantara Initiative makes any warranty of any kind, expressed or implied, including any implied warranties of merchantability, non-infringement of third party intellectual property rights, and fitness for a particular purpose. Implementers of this Specification are advised to review Kantara Initiative‘s website (http://www.kantarainitiative.org/) for information concerning any Necessary Claims Disclosure Notices that have been received by the Kantara Initiative Board of Trustees.

Copyright: The content of this document is copyright of Kantara Initiative. © 2010 Kantara Initiative.

Contents
61
INTRODUCTION

61.1
Overview of Test Plan

61.2
Test Plan History

61.3
SAML Conformance Modes

71.4
eGov 1.5 Profile

71.5
eGov 2.0 Profile

71.6
POST Binding

82
Technical requirements

82.1
Trading Partner Requirements

82.2
Metadata

82.3
IdP Authentication

92.4
Trivial Processing

92.5
Authentication Contexts

102.6
Name Identifier Formats

102.7
XML Signatures

112.8
XML Encryption

112.9
Attribute Profiles

112.10
Consensus Items

143
TEST CASES

143.1
Overview of Test Case Description

143.2
Test Cases Associated with Conformance Modes

153.2.1
Test Case A: Web SSO and SLO – Redirect Binding

173.2.2
Test Case B: Web SSO – Artifact Binding and SLO – SOAP Binding

203.2.3
Test Case C – NameID Management – Redirect Binding

233.2.4
Test Case D – NameID Management – SOAP Binding

273.2.5
Test Case E – POST Binding

313.2.6
Test Case F – IdP Proxy

353.2.7
Test Case G – Name Identifier Mapping

363.2.8
Test Case H – IDP Introduction

383.2.9
Test Case I – Single Session Logout

403.2.10
Test Case J – Unsolicited <Response> and “Transient” NameID

423.2.11
Test Case K – Multiple SP Logout

453.2.12
Test Case L – Force Authentication and Passive Authentication

473.2.13
Test Case M – SAML Authentication Authority

493.2.14
Test Case N – SAML Attribute Authority

513.2.15
Test Case O – SAML Authorization Decision Authority

533.2.16
Test Case P – Error Testing

563.2.17
Test Case Q – Requested AuthnContext

583.2.18
Test Case R – User Consent

593.2.19
Test Case S – Assertion Attribute

613.2.20
Test Case T – Unspecified Format

623.2.21
Test Case eGov2-1 - Production of IOP-compliant Metadata

623.2.22
Test Case eGov2-2 - Consumption of IOP-compliant Metadata

653.2.23
Test Case eGov2-3 - Support for "Metadata Extension for Entity Attributes" Profile

673.2.24
Test Case eGov2-4 - Publication

683.2.25
Test Case eGov2-5 - Import from File

693.2.26
Test Case eGov2-6 - Import from URL

713.2.27
Test Case eGov2-7 - Verification by Known Key

723.2.28
Test Case eGov2-8 - Verification by Certificate Validation

733.2.29
Test Case eGov2-9 - Confirm support for NameIDPolicy of 'persistent' & 'transient'

743.2.30
Test Case eGov2-10 - IDP Discovery

753.2.31
Test Case eGov2-11 - Support for AssertionConsumerServiceURL, ProtocolBinding, and AttributeConsumingServiceIndex

763.2.32
Test Case eGov2-12 - Confirm Identity Provider verification of AssertionConsumerServiceURL value

784
REFERENCES

784.1
Normative References

INTRODUCTION
1.1 Overview of Test Plan
This document is the Kantara Initiative SAML 2.0 Test Criteria Test Plan, which contains the scope of the technical requirements for Kantara Initiative certification of SAML 2.0. This document is intended to be publicly viewable through the Liberty Alliance website as well as prospective test participants. The document is reviewed and authored by the Interoperability Work Group (IOPWG) of Kantara Initiative.

The contents of this document include the test cases for SAML 2.0 certification as well as additional technical information relevant to testing. The test cases include different test steps, which as a whole cover the requirements of the SAML profiles [SAMLProf] and SAML conformance modes [SAMLConf].
1.2 Test Plan History

This test plan version is the first SAML 2.0 test plan produced by Kantara Initiative. However, it significantly builds off of the Liberty Alliance SAML 2.0 test plan. Previous versions of the Liberty Alliance SAML 2.0 testing procedures can be found at projectliberty.org.

1.3 SAML Conformance Modes

This test plan document contains test cases that cover the many of the operational conformance modes of SAML 2.0 and the specific features that are required or optional for each mode. The details of each mode are provided in [SAMLConf], and the conformance modes a listed here:

· IdP – Identity Provider

· IdP Lite – Identity Provider Lite

· SP – Service Provider

· SP Lite – Service Provider Lite

· IdP Extended – Identify Provider Extended

· SP Extended – Service Provider Extended

· SAML Attribute Authority (Requester/Responder)

· SAML Authorization Decision Authority (Requester/Responder)

· SAML Authentication Authority (Requester/Responder)

Each conformance mode requires different test cases, but some test cases cover multiple conformance modes. The required test cases for each conformance mode are noted in the Test Case section of this document.

Certification in conformance modes IdP Extended and SP Extended can only be given if a participant has met the certification requirements of IdP mod and SP mode, respectively.

1.4 eGov 1.5 Profile

The eGov 1.5 Profile is a conformance profile developed by the Kantara Initiative eGovernment Work Group. The test cases within this test plan to achieve eGov certification are based on the requirements stated in the eGov 1.5 profile. The eGov 1.5 profile and other associated documents should be consulted for further explanation of the eGov requirements.

http://www.projectliberty.org/liberty/strategic_initiatives/egovernment
1.5 eGov 2.0 Profile

The eGov 2.0 Profile is a conformance profile developed by the Kantara Initiative eGovernment Work Group. The test cases within this test plan to achieve eGov certification are based on the requirements stated in the eGov 2.0 profile. The eGov 2.0 profile and other associated documents should be consulted for further explanation of the eGov requirements.
http://kantarainitiative.org/confluence/download/attachments/42140355/kantara-report-egov-saml2-profile-2.0.pdf
1.6 POST Binding

Although the POST binding is not included in the SAML SCR, it is permitted with the SAML specification and has some user deployment. POST Binding is an optional Liberty designation conformance mode. It involves use of POST binding for AuthnRequest, Name ID Management and SLO. Certification in the POST Binding mode is done through successfully completing this Test Case E – POST Binding.

2 Technical requirements
2.1 Trading Partner Requirements

All participants are required to establish testing partner relationships with each other. In doing so, participants will be able to do full-matrix testing where every participant is capable of sending and receiving all test cases with each other for aligned conformance modes. Testing is done remotely over the Internet. Participants are responsible for creating their own certificates, distributing their network information to each other and configuring their firewalls to allow all other participants access to their product-under-test.
2.2 Metadata

There are no normative requirements in [SAMLConf] regarding the content or processing of metadata as described in [SAMLMeta]. However, for purposes of this certification event, implementations are required to:

· Furnish correct metadata, and

· Process metadata furnished by other testing partners

While metadata is not specified for SAML Attribute Requesters, interoperability with SAML Authorities is very difficult without it, and for this certification event it is required that SAML Attribute Requesters provide metadata as described in the draft metadata extension specification [SAMLMetaExt].

2.3 IdP Authentication

SAML does not normatively specify any requirements for user authentication at IdP for Web SSO. In fact, user authentication is explicitly described as “out of scope” [SAMLProf]. However, for purposes of interoperability testing, it is required that IdP implementations offer at least one of these authentication methods:

· HTTP Basic Auth

· HTTP Form Post

· HTTP Get

Similarly, it is required that user agents be able to authenticate using at least one of these methods.
2.4 Trivial Processing

Several features specified by SAML (e.g., IdP Proxy) can be implemented such that any request simply returns an error response. While this trivial behavior is, strictly speaking, in conformance with the specifications, it is not meaningful in the context of interoperability testing. Except where explicitly indicated (e.g., for certain Name Identifier formats) all testing steps will require non-trivial responses in order to be deemed successful.

2.5 Authentication Contexts

Some of the SAML Modes rely on a well-defined ordering of authentication contexts. The SAML specifications do not normatively specify an ordering [SAMLAuthnCxt] and leave the comparison decisions up to the implementation [SAMLCore]. However, for purposes of testing we will arbitrarily define an ordering of authentication contexts to be used in the tests. This arbitrary listing of authentication class URIs, in order of increasing strength, is:

· any defined authentication context not listed below

· urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession

· urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol

· urn:oasis:names:tc:SAML:2.0:ac:classes:Password
· http://incommonfederation.org/assurance/bronze
· http://idmanagement.gov/icam/2009/12/saml_2.0_profile/assurancelevel1
This ordering should be observed by all implementations testing SAML modes where authentication contexts must be compared. The overall concept of the testing of the Authentication Authority is to create several different assertions using different authentication contexts. Then these are queried using the query terms (“exact”, “better”, “maximum”, “minimum”) and a reference authentication context.

NOTE: Complete implementation of these authentication contexts is not required. These authentication context URIs should simply be asserted in requests and responses to demonstrate interoperability of authentication context processing rules. Arbitrary URI <AuthnContextClassRef> must be supported [SAMLCore] [IAP].
2.6 Name Identifier Formats

The following Name Identifier Formats are defined by [SAMLCore]:

· Unspecified

· Email

· X.509 Subject

· Windows

· Kerberos

· Entity

· Persistent

· Transient

Every implementation is required to accept messages containing any of these formats, but [SAMLCore] only requires that the last two be processed.

2.7 XML Signatures

The [SAMLConf] does not specifically indicate where XML Signatures are required, but the underlying specifications in [SAMLProf] make signing required for certain profiles. Specifically, these are:

· Web SSO: The assertion element(s) in the <Response> MUST be signed for the HTTP POST binding.

· Single Logout: The <LogoutRequest> and <LogoutResponse> MUST be signed for the HTTP redirect binding.

· Name Identifier Management: The <ManageNameIDRequest> and <ManageNameIDResponse> MUST be signed for the HTTP redirect binding.

NOTE: When a test step refers to a “signed SAML Response message” this implies the assertion element itself is signed per the requirements in [SAMLProf].

SP and IdP implementations may indicate via metadata a desire for requests or responses to be signed for other bindings than those indicated above. While such stipulations in metadata may not be binding, participants are strongly encouraged to adhere to these requests and may be required to do so to insure interoperability.

2.8 XML Encryption

[SAMLConf] stipulates several different encryption algorithms and key transport mechanisms that MUST be implemented. However, these testing procedures do not require demonstration of support for all these combinations and instead rely on successful interoperability as a measure of conformance. Implementations should take care to ensure that elements to be encrypted include any XML namespace prefix declarations so that, when decrypted, the element will remain valid independent of context. One method for achieving this is described in [ExcXMLCan], but other approaches will work.

NOTE: While the <ds:KeyInfo> and <xenc:EncryptedKey> elements are not required in the SAML specifications or related schemas, these elements MUST be included in messages for interoperability testing. There is no normative mechanism for exchanging these keys out-of-band. The precise location of these elements in the message is underspecified; the most common practice among interoperable SAML implementations is that in each encrypted element there be one <xenc:EncryptedKey> element in parallel with the <xenc:EncryptedData>, and that this <xenc:EncryptedKey> be inferred as the relevant key information for decryption without relying on any references within the subelements. An erratum has been created to clarify this; see PE43 in [SAMLErrata]. For this certification event, this most common practice stated above SHOULD be done.

Finally, encryption coupled with deflation and URL encoding may create URLs that exceed the maximum length supported by some browsers. Consequently, encryption is contraindicated for the MNI HTTP-Redirect testing steps.

2.9 Attribute Profiles

[SAMLConf] makes no normative statements about which Attribute Profiles in [SAMLProf] are required to be supported by SAML Attribute Authority or a SAML Requestor. This document only describes testing procedures for the Basic profile, and does not describe any testing procedures regarding the other profiles.

2.10 Consensus Items

Consensus Items contains standards/implementation issues the product test group reached consensus on in previous Liberty Alliance test events in order to achieve interoperability among those product test groups. In order to maintain interoperability with previously tested versions, the consensus items will be observed in this test event.

· An Assertion element does not need to be constructed so that namespace definitions can be validated apart from the enveloping Response message. This was confirmed by OASIS SSTC.

· The Product Test Group accepted this approach for implementing and resolving signatures of Artifact Resolution messages, given the wording from [SAMLCore], section 5.3…

A. As the test group is using SSL Server-Side Authentication, the responder does not have to sign the <ArtifactResponse> as the responder has authenticated itself.

B. A responder MAY also add a signature to the <ArtifactResponse> and any requester MUST be able to accept it.

C. Because of the SHOULD key word from section 5.3, requesters need to add XML Signature to the <ArtifactResolve> message.

· If a responder is authenticated through SSL, the XML signature can be omitted from the SLO Response.

· If an XML Signature is applied to any part of a SAML message, it MUST be verified.

· SAML partner MAY add a valid SPNameQualifier and NameQualifier when building a LogoutRequest even if the IDP omitted them from the NameID included on the assertion.

· After consulting with OASIS SSTC, it was agreed that if a SP (SP-B) returns a non-Success status in a LogoutResponse to an IDP and the IDP is able to terminate the authenticated session, the IDP is to send to any other session SP (SP-A) a LogoutResponse with a top-level status of Success and a second-level status of PartialLogout. If SP-B does return a Success status to the IDP, the IDP, assuming it is able to terminate the session itself, returns to SP-A a Success status.

· In an authentication request message, an interoperable implementation must accept a requested authentication context listed in the <RequestedAuthnContext> element if it can meet the authentication context requirements of the specified element and not require that such information be specified out-of-band.

· DSAwithSHA1 signature algorithm not supported. Section 4.1 of [SAMLConf] states that the DSAwithSHA1 signature algorithm, while recommended, is not required by SAML 2.0. Participants are only to use digital certificates with the required RSAwithSHA1 signature algorithm.

· Ignore EncryptionMethod elements in metadata. There is some confusion of interpretation implementation of the EncryptionMethod metadata elements described in Section 2.4.1.1 of [SAMLMeta]. After confirming with OASIS SSTC, EncryptionMethod is to be ignored.

· Encryption with NameIDPolicy and ID Encryption. A question had arisen on interpreting NameIDPolicy from [SAMLCore] in lines 2136-2142. It was decided that if NameIDPolicy of AuthnRequest says ID is to be encrypted, it must be encrypted in the assertion and if NameIDPolicy of AuthnRequest does not state the ID is to be encrypted, the IDP MAY still encrypt the ID based on its policy, specifically its policy with the SP.

· SSL Server-side Authentication Only for SOAP connections. To insure all participants used the same security settings, it was agreed to only use SSL server-side authentication for SOAP connections and not to use SSL client-side authentication.

3 TEST CASES

3.1 Overview of Test Case Description
Each test case is setup with the first part listing an overview of the test steps in the test case. The second part describes the details of the individual test steps to carry out the test case. The test step overview lists the sequence of test steps along with a general description of the message or action or configuration setting required. The test step details provide more information on the expected test steps.

3.2 Test Cases Associated with Conformance Modes

In order to achieve certification in one or more of the Liberty SAML Conformance Modes, the associated test cases must be completed with all test participants with aligning modes. For example, a product testing for an IdP conformance mode must complete Test Cases A, B, C, D, H, I, J, K, L and P against all products testing for a SP conformance mode and SP Lite conformance mode. The specific pairing among participants will be given at the beginning of the certification event. A conformance mode may not require completion of all the test steps in the associated test cases. The individual test cases provide details of test steps that may or must be omitted depending on the conformance mode.

	Conformance Mode
	Test Cases

	IdP
	A, B, C, D, H, I, J, K, L, P

	IdP Extended
	F, G

	IdP Lite
	A, B, H, I, J, K, L, P

	SP
	A, B, C, D, H, I, J, K, L, P

	SP Extended
	F, G

	SP Lite
	A, B, H, I, J, K, L, P

	POST
	E, P

	SAML Attribute Authority (Requester/Responder)
	N

	SAML Authorization Decision Authority (Requester/Responder)
	O

	SAML Authentication Authority (Requester/Responder)
	M

	eGov 1.5 profile
	A, B, H, I, J, K, L, P, Q, R, S, T

	eGov 2.0 profile
	All eGov 1.5 test cases plus eGov2-1 through eGov2-12

3.2.1 Test Case A: Web SSO and SLO – Redirect Binding

Preconditions:
· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: IdP, SP, IdP Lite, SP Lite, eGov
Step 1: AuthnRequest, Redirect Binding, Federate

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 2: Assertion Response, POST binding

Description: User provides assigned credentials for authentication. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdP.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 3: SLO Request, IdP-Initiated, Redirect Binding

Description: IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP Redirect binding.SP logs out User session. SP returns a signed LogoutResponse message to IdP using HTTP Redirect binding.

SP CONFIRM: Receives signed LogoutRequest through HTTP Redirect binding.

SP CONFIRM: User logged out at SP.

IdP CONFIRM: Receives signed LogoutResponse through HTTP Redirect binding.

IdP CONFIRM: User logged out at IdP.

Step 4: AuthnRequest, Redirect Binding, Already Federated

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 5: Assertion Response, POST binding

Description: User provides assigned credentials for authentication. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdP.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 6: SLO Request, SP-Initiated, Redirect Binding

Description: SP logs out User session. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message to SP using HTTP Redirect binding.

SP CONFIRM: User logged out at SP.

IdP CONFIRM: Receives signed LogoutRequest through HTTP Redirect binding.

IdP CONFIRM: User logged out at IdP.

SP CONFIRM: Receives signed on LogoutResponse through HTTP Redirect binding.

3.2.2 Test Case B: Web SSO – Artifact Binding and SLO – SOAP Binding

Preconditions:
· Metadata exchanged and loaded

· Encryption enabled for Assertions

· Encryption enabled for NameIDs in SLO messages

· User Identities Not Federated

NOTE: The SAML Conformance specification states that SOAP Binding for SLO is optional for SP Lite and IdP Lite applications. SP Lite and IdP Lite participants may choose to use Redirect Binding for test steps performing SLO actions instead of SOAP Binding.
Conformance Modes: IdP, SP, IdP Lite, SP Lite, eGov

Step 1: AuthnRequest, Redirect Binding, Federate

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 2: Assertion Response, HTTP Artifact

Description: User provides assigned credentials for authentication. IdP creates assertion of User. <Response> message is associated with an artifact. IdP returns artifact in a through HTTP Redirect binding.

SP CONFIRM: Artifact is sent by IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 3: Artifact Resolution, SOAP Binding

Description: SP sends ArtifactResolve message to IdP referencing artifact through synchronous SOAP binding. IdP confirms artifact and returns <Response> message to SP in ArtifactResponse message.

SP CONFIRM: Receives ArtifactResponse message containing <Response> message with signed assertion of User.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: Receives ArtifactResolve message.

Step 4: SLO Request, IdP-Initiated, SOAP Binding

Description: IdP logs out User session. IdP sends a signed LogoutRequest message to SP using synchronous SOAP binding. SP logs out User session. SP returns a signed LogoutResponse message to IdP using synchronous SOAP binding.

IdP CONFIRM: User logged out at IdP.

SP CONFIRM: Receives signed LogoutRequest through SOAP binding.

SP CONFIRM: User logged out at SP.

IdP CONFIRM: Receives signed LogoutResponse through SOAP binding.

Step 5: Redirect Binding, Already Federated
Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 6: Assertion Response, HTTP Artifact
Description: User provides assigned credentials for authentication. IdP creates assertion of User. <Response> message is associated with an artifact. IdP returns artifact in a through HTTP Redirect binding.

SP CONFIRM: Artifact is sent by IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 7: Artifact Resolution, SOAP Binding
Description: SP sends ArtifactResolve message to IdP referencing artifact through synchronous SOAP binding. IdP confirms artifact and returns <Response> message to SP in ArtifactResponse message.

SP CONFIRM: Receives ArtifactResponse message containing <Response> message with signed assertion of User.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: Receives ArtifactResolve message.

Step 8: SLO Request, SP-Initiated, SOAP Binding
Description: SP logs out User session. SP sends a signed LogoutRequest message to IdP using synchronous SOAP binding. IdP logs out User session. IdP returns a signed LogoutResponse message to SP using synchronous SOAP binding.

SP CONFIRM: User logged out at SP.

IdP CONFIRM: Receives signed LogoutRequest through SOAP binding.

IdP CONFIRM: User logged out at IdP.

SP CONFIRM: Receives signed on LogoutResponse through SOAP binding.

3.2.3 Test Case C – NameID Management – Redirect Binding

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: IdP, SP

Step 1: AuthnRequest, Redirect Binding, Federate

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 2: Assertion Response, POST binding

Description: User provides assigned credentials for authentication. IdP provides assertion of User and IdP returns a SAML Response message through HTTP POST binding.

SP CONFIRM: IdP returns SAML Response through HTTP POST binding.

SP CONFIRM: Receives signed assertion is returned from IdP.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 3: MNI Request, IdP-Initiated, Redirect binding

Description: IdP sends signed ManageNameIdRequest message requesting to use a new NameID (value chosen by the IdP at time of test execution) for the User to the SP using HTTP Redirect binding. SP accepts the new NameID for the User. SP returns signed ManageNameIdResponse message using HTTP Redirect binding.

SP CONFIRM: Receives signed ManageNameIdRequest on HTTP Redirect binding.

SP CONFIRM: New NameID is accepted.

IdP CONFIRM: Receives signed ManageNameIdResponse on HTTP Redirect binding.

Step 4: SLO Request, SP-Initiated, Redirect Binding

Description: SP logs out User session. SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message to SP using HTTP Redirect binding.

SP CONFIRM: User logged out at SP.

IdP CONFIRM: Receives signed LogoutRequest through HTTP Redirect binding.

IdP CONFIRM: New NameID from Step 3 is used in LogoutRequest.

IdP CONFIRM: User logged out at IdP.

SP CONFIRM: Receives signed on LogoutResponse through HTTP Redirect binding.

Step 5: AuthnRequest, Redirect Binding, Already Federated

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 6: Assertion Response, POST binding

Description: User provides assigned credentials for authentication. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdP.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 7: MNI Request, SP-Initiated, Redirect binding

Description: SP sends signed ManageNameIdRequest message requesting to use a new NameID (value chosen by the SP at time of test execution) for the User to the IdP using HTTP Redirect binding. IdP accepts the new NameID for the User. IdP returns signed ManageNameIdResponse message using HTTP Redirect binding.

IdP CONFIRM: Receives signed ManageNameIdRequest on HTTP Redirect binding.

IdP CONFIRM: New NameID is accepted.

SP CONFIRM: Receives signed ManageNameIdResponse on HTTP Redirect binding.

Step 8: SLO Request, IdP-Initiated, Redirect Binding

Description: IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP Redirect binding. SP logs out User session. SP returns a signed LogoutResponse message to IdP using HTTP Redirect binding.

IdP CONFIRM: User logged out at IdP.

SP CONFIRM: Receives signed LogoutRequest through HTTP Redirect binding.

SP CONFIRM: New NameID from Step 7 is used in LogoutRequest.

SP CONFIRM: User logged out at SP.

IdP CONFIRM: Receives signed LogoutResponse through HTTP Redirect binding.

Step 9: AuthnRequest, Redirect Binding, Already Federated

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 10: Assertion Response, POST binding

Description: User provides assigned credentials for authentication. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdP.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 11: MNI-Terminate from SP

Description: SP sends signed ManageNameIdRequest message with the <Terminate> element to the IdP using HTTP Redirect binding. Federation for User is terminated. IdP returns signed ManageNameIdResponse message using HTTP Redirect binding.

IdP CONFIRM: Receives signed ManageNameIdRequest with <Terminate> element on HTTP Redirect binding.

IdP CONFIRM: Federation of User is terminated.

SP CONFIRM: Receives signed ManageNameIdResponse on HTTP Redirect binding.

SP CONFIRM: Federation of User is terminated.

3.2.4 Test Case D – NameID Management – SOAP Binding

Preconditions:

· Metadata exchanged and loaded

· Encryption enabled for Assertions

· Encryption enabled for NameIDs in MNI messages

· Encryption enabled for NameIDs in SLO messages

· User Identities Not Federated

NOTE: The SAML Conformance specification states that SOAP Binding for MNI is optional for SP applications. SP participants may choose to use Redirect Binding for test steps performing MNI actions instead of SOAP Binding.

Conformance Modes: IdP, SP

Step 1: AuthnRequest, Redirect Binding, Federate

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 2: Assertion Response, HTTP Artifact

Description: User provides assigned credentials for authentication. IdP creates assertion of User. <Response> message is associated with an artifact. IdP returns artifact in a through HTTP Redirect binding. SP sends ArtifactResolve message to IdP referencing artifact through synchronous SOAP binding. IdP confirms artifact and returns <Response> message to SP in ArtifactResponse message.

SP CONFIRM: Artifact is sent by IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 3: Artifact Resolution, SOAP Binding

Description:

SP CONFIRM: Receives ArtifactResponse message containing <Response> message with signed assertion of User.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: Receives ArtifactResolve message.

Step 4: MNI Request, SP-Initiated, SOAP binding

Description: SP sends signed ManageNameIdRequest message requesting to use a new NameID (value chosen by the SP at time of test execution) for the User to the IdP using SOAP binding. IdP accepts the new NameID for the User. IdP returns signed ManageNameIdResponse message using same synchronous SOAP binding.

IdP CONFIRM: Receives signed ManageNameIdRequest on SOAP binding.

IdP CONFIRM: New NameID is accepted.

SP CONFIRM: Receives signed ManageNameIdResponse on SOAP binding.

Step 5: SLO Request, IdP-Initiated, SOAP Binding

Description: IdP logs out User session. IdP sends a signed LogoutRequest message to SP using synchronous SOAP binding. SP logs out User session. SP returns a signed LogoutResponse message to IdP using synchronous SOAP binding.

IdP CONFIRM: User logged out at IdP.

SP CONFIRM: Receives signed LogoutRequest through SOAP binding.

SP CONFIRM: User logged out at SP.

IdP CONFIRM: Receives signed LogoutResponse through SOAP binding.

Step 6: Redirect Binding, Already Federated

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 7: Assertion Response, HTTP Artifact

Description: User provides assigned credentials for authentication. IdP creates assertion of User. <Response> message is associated with an artifact. IdP returns artifact in a through HTTP Redirect binding.

SP CONFIRM: Artifact is sent by IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 8: Artifact Resolution, SOAP Binding

Description: SP sends ArtifactResolve message to IdP referencing artifact through synchronous SOAP binding. IdP confirms artifact and returns <Response> message to SP in ArtifactResponse message.

SP CONFIRM: Receives ArtifactResponse message containing <Response> message with signed assertion of User.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: Receives ArtifactResolve message.

Step 9: MNI Request, IdP-Initiated, SOAP binding

Description: IdP sends signed ManageNameIdRequest message requesting to use a new NameID (value chosen by the IdP at time of test execution) for the User to the SP using SOAP binding. SP accepts the new NameID for the User. SP returns signed ManageNameIdResponse message using same synchronous SOAP binding.

SP CONFIRM: Receives signed ManageNameIdRequest on HTTP Redirect binding.

SP CONFIRM: New NameID is accepted.

IdP CONFIRM: Receives signed ManageNameIdResponse on HTTP Redirect binding.

Step 10: SLO Request, SP-Initiated, SOAP Binding

Description: SP logs out User session. SP sends a signed LogoutRequest message to IdP using synchronous SOAP binding. IdP logs out User session. IdP returns a signed LogoutResponse message to SP using synchronous SOAP binding.

SP CONFIRM: User logged out at SP.

IdP CONFIRM: Receives signed LogoutRequest through SOAP binding.

IdP CONFIRM: User logged out at IdP.

SP CONFIRM: Receives signed on LogoutResponse through SOAP binding.

Step 11: Redirect Binding, Already Federated

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'persistent'.

Step 12: Assertion Response, HTTP Artifact

Description: User provides assigned credentials for authentication. IdP creates assertion of User. <Response> message is associated with an artifact. IdP returns artifact in a through HTTP Redirect binding.

SP CONFIRM: Artifact is sent by IdP.

IdP CONFIRM: User identity has been federated with SP.

Step 13: Artifact Resolution, SOAP Binding

Description: SP sends ArtifactResolve message to IdP referencing artifact through synchronous SOAP binding. IdP confirms artifact and returns <Response> message to SP in ArtifactResponse message.

SP CONFIRM: Receives ArtifactResponse message containing <Response> message with signed assertion of User.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: Receives ArtifactResolve message.

Step 14: MNI-Terminate, IdP-Initiated

Description: IdP sends signed ManageNameIdRequest message with the <Terminate> element to the IdP using SOAP binding. Federation for User is terminated. IdP returns signed ManageNameIdResponse message using same synchronous binding.

SP CONFIRM: Receives signed ManageNameIdRequest with <Terminate> element on SOAP binding.

SP CONFIRM: Federation of User is terminated.

IdP CONFIRM: Receives signed ManageNameIdResponse on SOAP binding.

IdP CONFIRM: Federation of User is terminated.

3.2.5 Test Case E – POST Binding

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: POST Binding

Step 1: SSO, Federate, POST Binding

Description: User does Single Sign-On at SP with Persistent Name Identifier and AllowCreate set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

IdP CONFIRM: User has been federated

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 2: MNI Request, IdP-Initiated, POST binding

Description: IdP sends signed ManageNameIdRequest message to the SP using HTTP POST binding. SP returns signed ManageNameIdResponse message using HTTP POST binding.

SP CONFIRM: Receives signed ManageNameIdRequest on HTTP POST binding.

IdP CONFIRM: Receives signed ManageNameIdResponse on HTTP POST binding.

Step 3: SLO Request, SP-Initiated, POST Binding

Description: SP sends a signed LogoutRequest message to IdP using HTTP POST binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

IdP CONFIRM: Receives signed LogoutRequest on HTTP POST binding.

SP CONFIRM: Receives signed LogoutResponse on HTTP POST binding.

Step 3: SSO, Already Federated, POST Binding

Description: User does Single Sign-On at SP with AllowCreate set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 4: SLO Request, IdP-Initiated, POST Binding

Description: IdP logs out User session. IdP sends a signed LogoutRequest message to SP using HTTP POST binding. SP returns a signed LogoutResponse message.

IdP CONFIRM: Receives signed LogoutRequest on HTTP POST binding.

SP CONFIRM: Receives signed LogoutResponse on HTTP POST binding.

Step 5: SSO, Already Federated, POST Binding

Description: User does Single Sign-On at SP with AllowCreate set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 6: MNI-Terminate, IdP-Initiated

Description: IdP sends signed ManageNameIdRequest message with the Terminate element to the SP using HTTP POST binding. Federation for User is terminated. SP returns signed ManageNameIdResponse message using HTTP POST binding.

SP CONFIRM: Receives signed ManageNameIdRequest with Terminate flag on HTTP POST binding.

SP CONFIRM: Federation of User is terminated.

IdP CONFIRM: Receives signed ManageNameIdResponse on HTTP POST binding.

IdP CONFIRM: Federation of User is terminated.

Step 7: SSO, Federate, POST Binding

Description: User does Single Sign-On at SP with Persistent Name Identifier and AllowCreate set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

IdP CONFIRM: User has been federated

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 8: MNI Request, SP-Initiated, POST binding

Description: SP sends signed ManageNameIdRequest message to the IdP using HTTP POST binding. IdP returns signed ManageNameIdResponse message using HTTP POST binding.

IdP CONFIRM: Receives signed ManageNameIdRequest on HTTP POST binding.

SP CONFIRM: Receives signed ManageNameIdResponse on HTTP POST binding.

Step 9: SLO Request, IdP-Initiated, POST Binding

Description: IdP sends a signed LogoutRequest message to SP using HTTP POST binding. SP logs out User session. SP returns a signed LogoutResponse message.

SP CONFIRM: Receives signed LogoutRequest on HTTP POST binding.

IdP CONFIRM: Receives signed LogoutResponse on HTTP POST binding.

Step 10: SSO, Already Federated, POST Binding

Description: User does Single Sign-On at SP with AllowCreate set to FALSE. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 11: SLO Request, SP-Initiated, POST Binding

Description: SP sends a signed LogoutRequest message to IdP using HTTP POST binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

IdP CONFIRM: Receives signed LogoutRequest on HTTP POST binding.

SP CONFIRM: Receives signed LogoutResponse on HTTP POST binding.

3.2.6 Test Case F – IdP Proxy

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: IdP Extended, SP Extended

Background on IdP Proxy

Refer to Section 3.4.1.5 of [SAMLCore] for more background. The IdP Proxy feature requires two IdP implementations and one SP implementation. If we have participants A and B, the following diagram depicts the roles of the test participants, assuming that IdPA and SPB are the implementations under test:

To complete this Test Case, the IdP under test must receive an authentication request for a User it can not authenticate but a User that the supporting IdP can authenticate. This coordination of User accounts must be done prior to executing the test case.

Step 1: ProxyCount=0

Description: SP sets ProxyCount=0 where proxy is disallowed.

SP CONFIRM: SP has disallowed proxy.

Step 2: AuthnRequest from SP to IdPA, Redirect Binding, Federate

Description: User/SP attempts Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to TRUE. SP communication to the IdPA for the SAML Authentication Request is through HTTP Redirect binding. IdPA does not recognize User and thus can not authenticate user.

IdPA CONFIRM: ProxyCount is set to 0.

IdPA CONFIRM: User is not authenticated.

Step 3: Response Failure

Description: Being unable to authenticate User, IdPA returns SAML Response with error indicating AuthnRequest failed.

SP CONFIRM: IdPA returns SAML Response indicating authentication error.

Step 4: ProxyCount is Removed and IdP List is set

Description: SP removes ProxyCount where proxy is allowed. SP configures <IdPList> to include IdPB.

SP CONFIRM: SP has removed ProxyCount to allow proxy.

SP CONFIRM: SP has set <IdPList> to include IdPB.

Step 5: AuthnRequest from SP to IdPA, Redirect Binding, Federate

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to TRUE. SP communication to the IdPA for the SAML Authentication Request is through HTTP Redirect binding. IdPA does not recognize User but recognizes it can proxy the AuthnRequest to IdPB.

IdPA CONFIRM: ProxyCount is not set.

IdPA CONFIRM: User is not authenticated.

IdPA CONFIRM: AuthnRequest contains <IdPList> which includes IdPB.

Step 6: AuthnRequest from IdPA to IdPB, Redirect Binding, Federate

Description: IdPA proxies AuthnRequest to IdPB through HTTP Redirect binding.

IdPB CONFIRM: Receives AuthnRequest from IdPA.

IdPB CONFIRM: ProxyCount is set to 0.

IdPB CONFIRM: <IdPList> includes IdPB.

Step 7: Assertion Response from IdPB to IdPA, POST binding

Description: User provides assigned credentials to IdPB for authentication. IdPB provides assertion of User and returns a signed SAML Response message to IdPA through HTTP POST binding.

IdPA CONFIRM: Receives SAML Response through HTTP POST binding.

IdPA CONFIRM: Valid assertion is returned from IdPB.

IdPA CONFIRM: <AuthnStatement> contains <AuthenticatingAuthority> referencing IdPB.

Step 8: Assertion Response from IdPA to SP, POST binding

Description: IdPA inserts assertion of User it received from IdPB and returns a signed SAML Response message to SP through HTTP POST binding.

SP CONFIRM: Receives SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdPA.

SP CONFIRM: <AuthnStatement> contains <AuthenticatingAuthority> referencing IdPB.

Step 9: SLO Request, IdP-Initiated, Redirect Binding

Description: IdPA logs out User session. IdPA sends a signed LogoutRequest message to SP using HTTP Redirect binding.SP logs out User session. SP returns a signed LogoutResponse message to IdPA using HTTP Redirect binding.

IdPA CONFIRM: User logged out at IdPA.

SP CONFIRM: Receives signed LogoutRequest through HTTP Redirect binding.

SP CONFIRM: User logged out at SP.

IdPA CONFIRM: Receives signed LogoutResponse through HTTP Redirect binding.

Step 10: ProxyCount=1 and IdP List is set

Description: SP makes ProxyCount set to 1. SP configures <IdPList> to include IdPB.

SP CONFIRM: SP sets ProxyCount to 1.

SP CONFIRM: SP has set <IdPList> to include IdPB.

Step 11: AuthnRequest from SP to IdPA, Redirect Binding, Federate

Description: User/SP does Single Sign-On with Persistent Name Identifier to Federate with AllowCreate is set to TRUE. SP communication to the IdPA for the SAML Authentication Request is through HTTP Redirect binding. IdPA does not recognize User but recognizes it can proxy the AuthnRequest to IdPB.

IdPA CONFIRM: ProxyCount is set to 1.

IdPA CONFIRM: User is not authenticated.

IdPA CONFIRM: AuthnRequest contains <IdPList> which includes IdPB.

Step 12: AuthnRequest from IdPA to IdPB, Redirect Binding, Federate

Description: IdPA proxies AuthnRequest to IdPB through HTTP Redirect binding.

IdPB CONFIRM: Receives AuthnRequest from IdPA.

IdPB CONFIRM: ProxyCount is set to 0.

IdPB CONFIRM: <IdPList> includes IdPB.

Step 13: Assertion Response from IdPB to IdPA, POST binding

Description: User provides assigned credentials to IdPB for authentication. IdPB provides assertion of User and returns a signed SAML Response message to IdPA through HTTP POST binding.

IdPA CONFIRM: Receives SAML Response through HTTP POST binding.

IdPA CONFIRM: Valid assertion is returned from IdPB.

IdPA CONFIRM: <AuthnStatement> contains <AuthenticatingAuthority> referencing IdPB.

Step 14: Assertion Response from IdPA to SP, POST binding

Description: IdPA inserts assertion of User it received from IdPB and returns a signed SAML Response message to SP through HTTP POST binding.

SP CONFIRM: Receives SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdPA.

SP CONFIRM: <AuthnStatement> contains <AuthenticatingAuthority> referencing IdPB.

Step 15: SLO Request, IdP-Initiated, Redirect Binding

Description: IdPA logs out User session. IdPA sends a signed LogoutRequest message to SP using HTTP Redirect binding.SP logs out User session. SP returns a signed LogoutResponse message to IdPA using HTTP Redirect binding.

IdPA CONFIRM: User logged out at IdPA.

SP CONFIRM: Receives signed LogoutRequest through HTTP Redirect binding.

SP CONFIRM: User logged out at SP.

IdPA CONFIRM: Receives signed LogoutResponse through HTTP Redirect binding.

3.2.7 Test Case G – Name Identifier Mapping

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: IdP Extended, SP Extended

Background on Name Identifier Mapping Feature

The name identifier mapping feature requires that an IdP provide an indirect reference for a principal at SPA in response to a request from SPB. Assuming again that teams A and B are testing IdPA and SPB, it is necessary for the principal to federate her identity at both SPB and SPA with IdPA. This can be depicted as follows:

Step 1: SSO at SPA
Description: User does Single Sign-On at SPA with Persistent Name Identifier. SPA communicates Authentication Request through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SPA successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User has been federated with SPA.

SPA CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SPA CONFIRM: User has been federated with IdP.

Step 2: SSO at SPB
Description: User does Single Sign-On at SPB with Persistent Name Identifier. SPB communicates Authentication Request through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SPB successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User has been federated with SPB.

SPB CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SPB CONFIRM: User has been federated with IdP.

Step 3: NameIDMappingRequest from SPB
13. SPB sends signed NameIdMappingRequest message over a SOAP binding to the IdP requesting an alternative name identifier for User. IdP maps the request to the User name ID federated with SPA. IdP returns the encrypted name ID federated with SPA in a signed NameIdMappingResponse message using a SOAP binding.

IdP CONFIRM: Receives signed NameIdMappingRequest for name ID federated with SPB.

SPB CONFIRM: Receives NameIdMappingResponse for name ID federated with SPA.

SPB CONFIRM: Receives Encrypted NameID.

3.2.8 Test Case H – IDP Introduction

Preconditions:
· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

NOTE: The SAML Conformance specification states that IdP Discovery is optional for SP and SP Lite applications. SP and SP Lite participants may option out of this test case.

Conformance Modes: IdP, SP, IdP Lite, SP Lite, eGov

Background

Two IdP actors are needed to execute this test case. Test administrator will provide specific instructions on setup and actor roles at time of test case execution.

Step 1: Clear Cookies

Description: Cookies are cleared from User Browser

USER CONFIRM: User has cleared cookies from browser.

Step 2: IdPA is added to CDC

Description: User logins at IdPA. Cookie is set in common domain with IdPA appended to list of IdPs.

IdPA CONFIRM: User logged in, cookie is set in common domain and IdPA appended to end of IdP list in cookie.

Step 3: IdPB is added to CDC

Description: User logins at IdPB. IdPB appended to list of IdPs in CDC.

IdPB CONFIRM: User logged in and IdPB appended to end of IdP list in CDC.

Step 4: SSO to IdPA using CDC, HTTP Redirect

Description: User/SP does Single Sign-On using a common domain cookie. SP reads cookie. For eGov profile testing, SP must present to the User a list of IdPs and allow User to select IdPA for authentication. For non-eGov profile testing, depending on SP implementation, either the User is presented list of IDPs and selects IdPA for authentication or SP redirects User to IdPA for authentication. SP communication to the IdPA for the signed authentication request is through HTTP Redirect binding. IdPA provides signed assertion of User and IdP returns a SAML Response message through HTTP POST binding.

IdPA CONFIRM: SP successfully communicated signed SAML Authentication Request through HTTP Redirect binding.

SP CONFIRM: Cookie was read and IdPA and IdPB were present in CDC.

SP CONFIRM: IdPA returns signed assertion through HTTP POST binding.

SP CONFIRM: For eGov profile, SP presents list of IdPs for authentication and IdPA and IdPB must be present on list.

Step 5: SLO, SP-Initiated, HTTP Redirect

Description: SP does SLO. SP sends a signed LogoutRequest message to IdPA using HTTP Redirect binding. IdPA returns a signed LogoutResponse message. User is logged out.

IdPA CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

SP CONFIRM: User is logged out.

Step 6: CDC is removed

Description: User closes browser. CDC is removed.

User CONFIRM: CDC is removed once browser is closed.

3.2.9 Test Case I – Single Session Logout

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: IdP, SP, IdP Lite, SP Lite, eGov

Step 1: SSO creates Session A for User

Description: User creates Session A through Single Sign-On with Federate where AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User has been federated.

IdP CONFIRM: User has been logged in through Session A.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 2: SSO creates Session B for User

Description: User creates new Session B, generally through second browser instances, through Single Sign-On. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User has been logged in through Session B.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 3: SLO from SP for Session A

Description: User logs off of Session A at the SP. SP sends a signed LogoutRequest message to IdP for Session A using HTTP Redirect binding. IdP examines <SessionIndex> and determines the logout request is for Session A. User is logged out of Session A, but User remains logged in through Session B. IdP returns a signed LogoutResponse message for Session A.

IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

IdP CONFIRM: User logged out of Session A.

IdP CONFIRM: User remains logged in through Session B.

SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

SP CONFIRM: User logged out of Session A.

SP CONFIRM: User remains logged in through Session B.

Step 4: SSO creates Session C for User

Description: User creates Session C through Single Sign-On with Federate where AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User has been federated.

IdP CONFIRM: User has been logged in through Session C.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 5: SLO from IdP for Session C

Description: User logs off of Session C at the IdP. IdP sends a signed LogoutRequest message to SP for Session C using HTTP Redirect binding. SP examines <SessionIndex> and determines the logout request is for Session C. User is logged out of Session C, but User remains logged in through Session B. SP returns a signed LogoutResponse message for Session C.

SP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

SP CONFIRM: User logged out of Session C.

SP CONFIRM: User remains logged in through Session B.

IdP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

IdP CONFIRM: User logged out of Session C.

IdP CONFIRM: User remains logged in through Session B.

3.2.10 Test Case J – Unsolicited <Response> and “Transient” NameID

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: IdP, SP, IdP Lite, SP Lite, eGov

Step 1: Unsolicited <Response>, HTTP Post Binding, “transient” NameID

Description: User does Single Sign-On at IdP. IdP provides assertion of User and makes Name ID format “transient”. IdP sends a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: User has been federated.

SP CONFIRM: NameID format is “transient”.

SP CONFIRM: IdP sends signed SAML Response through HTTP POST binding.

Step 2: SLO from SP

Description: SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

Step 3: Unsolicited <Response>, Artifact Binding, “transient” NameID

Description: User does Single Sign-On at IdP. IdP provides assertion of User and makes Name ID is format “transient”. <Response> message is communicated through Artifact binding. The IdP and SP resolve the artifact via a SOAP binding. SP consumes the <Response> message.

IdP CONFIRM: Artifact resolution is properly done.

IdP CONFIRM: User has been federated

SP CONFIRM: NameID format is “transient”.

SP CONFIRM: IdP sends signed SAML Response through HTTP Artifact.

SP CONFIRM: Artifact resolution is properly done.

Step 4: SLO from IdP

Description: IdP sends a signed LogoutRequest message to SP using HTTP Redirect binding. SP logs out User session. SP returns a signed LogoutResponse message.

SP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

IdP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

3.2.11 Test Case K – Multiple SP Logout

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: IdP, SP, IdP Lite, SP Lite, eGov
Step 1: SSO from SPA
Description: User at SPA performs Single Sign-On (any profile) to IdP.

IdP CONFIRM: SPA successfully communicated SAML Authentication Request and IdP sent back Assertion for User.

IdP CONFIRM: User has been federated with SPA
SPA CONFIRM: IdP returns signed SAML Response and User is authenticated.

Step 2: SSO from SPB using same Session ID

Description: User logins to SPB and is authenticated by IdP with same session id.

IdP CONFIRM: SPB successfully communicated SAML Authentication Request and IdP sent back Assertion for User and maintained same session id as in Step 1.

IdP CONFIRM: User has been federated with SPB
SPB CONFIRM: IdP returns signed SAML Response and User is authenticated.

Step 3: SLO from SPA to IdP

Description: User issues SLO from SPA to IdP.

IdP CONFIRM: SPA sends signed LogoutRequest for User.

SPA CONFIRM: A signed LogoutRequest is sent to IdP.

Step 4: LogoutRequest from IdP to SPB
Description: Signed LogoutRequest is sent from IdP to SPB. User is logged out of SPB. After receiving the LogoutResponse from SPB, IdP sends LogoutResponse to SPA.

IdP CONFIRM: Signed LogoutRequest is sent to SPA and receives back signed LogoutResponse.

IdP CONFIRM: No active session for User.

SPB CONFIRM: IdP sends signed LogoutResponse, a signed LogoutResponse is returned and User is logged out.

SPA CONFIRM: Receives signed LogoutResponse from IdP.

Step 5: SSO from SPB to IdP

Description: User at SPB performs Single Sign-On (any profile) to IdP.

IdP CONFIRM: SPB successfully communicated SAML Authentication Request and IdP sent back Assertion for User.

IdP CONFIRM: User has active session.

SPB CONFIRM: IdP returns signed SAML Response and User is authenticated.

Step 6: SSO from SPA using same Session ID

Description: User logins to SPA and is authenticated by IdP with same session id.

IdP CONFIRM: SPA successfully communicated SAML Authentication Request and IdP sent back Assertion for User and maintained same session id as in Step 5.

SPA CONFIRM: IdP returns signed SAML Response and User is authenticated.

Step 7: SLO from SPB to IdP

Description: User does SLO from IdP to SPB.

IdP CONFIRM: SPB is sent signed LogoutRequest for User.

SPB CONFIRM: IdP sends a signed LogoutRequest and User is logged out.

Step 8: LogoutRequest from IdP to SPA
Description: Signed LogoutRequest is sent to SPA from IdP. User is logged out of SPA. After receiving the LogoutResponse from SPA, IdP sends LogoutResponse to SPB.

IdP CONFIRM: Signed LogoutRequest is sent to SPA and receives back signed LogoutResponse.

SPA CONFIRM: IdP sends signed LogoutResponse, a signed LogoutResponse is returned and User is logged out.

SP CONFIRM: Receives signed LogoutResponse from IdP.

Step 9: SSO from SPB to IdP

Description: User at SPB performs Single Sign-On (any profile) to IdP.

IdP CONFIRM: SPB successfully communicated SAML Authentication Request and IdP sent back Assertion for User.

IdP CONFIRM: User has active session.

SPB CONFIRM: IdP returns signed SAML Response and User is authenticated.

Step 10: SSO from SPA using same Session ID

Description: User logins to SPA and is authenticated by IdP with same session id.

IdP CONFIRM: SPA successfully communicated SAML Authentication Request and IdP sent back Assertion for User and maintained same session id as in Step 5.

SPA CONFIRM: IdP returns signed SAML Response and User is authenticated.

Step 11: Local logout at SPB
Description: User does local logout (not SLO) at SPB.

IdP CONFIRM: LogoutRequest for User is not received at this time.

SPB CONFIRM: User is logged out locally.

Step 12: SLO from SPA to IdP
Description: User issues SLO from SPA to IdP.

IdP CONFIRM: SPA sends signed LogoutRequest for User.

SPA CONFIRM: A signed LogoutRequest is sent to IdP. User is logged out.

Step 13: PartialLogout Error
Description: Signed LogoutRequest is sent from IdP to SPB. Because User is already logged out of SPB, a status code of “PartialLogout” is returned in the to the Signed LogoutResponse. IdP sends LogoutResponse to SPA.

IdP CONFIRM: Signed LogoutRequest is sent to SPB and receives back signed LogoutResponse.

IdP CONFIRM: Signed LogoutReponse contains status code of urn:oasis:names:tc:SAML:2.0:status:PartialLogout.

SPB CONFIRM: IdP sends signed LogoutResponse, unable to perform SLO, and a signed LogoutResponse is returned indicating “PartialLogout”.

SPA CONFIRM: Receives signed LogoutResponse from IdP indicating “PartialLogout.”
3.2.12 Test Case L – Force Authentication and Passive Authentication

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

Conformance Modes (Required): IdP, SP, IdP Lite, SP Lite, eGov

Step 1: User Logins at IdP

Description: User logins at IdP and creates and active session

IdP CONFIRM: User logged in.

Step 2: SP sets IsPassive=TRUE
Description: SP is configured to make IsPassive set to TRUE.

SP CONFIRM: SP is configured IsPassive=TRUE.

Step 3: SSO with isPassive=TRUE

Description: User/SP does Single Sign-On SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP provides assertion of User without interacting with the user. IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User does not interact with IdP or IdP must not take control of user interface.

SP CONFIRM: IdP returns assertion in signed SAML Response through HTTP POST binding.

Step 4: SLO from SP

Description: SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

SP CONFIRM: User is logged out.

Step 5: SP sets IsPassive=FALSE

Description: SP is configured to make IsPassive set to FALSE.

SP CONFIRM: SP is configured IsPassive=FALSE.

Step 6: SSO with isPassive=FALSE

Description: User/SP does Single Sign-On SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP interacts with and authenticates the user. IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User does interact with IdP.

SP CONFIRM: IdP returns assertion in signed SAML Response through HTTP POST binding.

Step 7: SLO from SP

Description: SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

SP CONFIRM: User is logged out.

Step 8: User Logins At IdP

Description: User logins at IdP and creates and active session

IdP CONFIRM: User logged in.

Step 9: SP sets ForceAuthn=TRUE

Description: SP is configured to make ForceAuthn set to TRUE.

SP CONFIRM: SP is configured ForceAuthn=TRUE.

Step 10: SSO with ForceAuthn=TRUE

Description: User/SP does Single Sign-On SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. IdP interacts with User and authenticates the User. IdP provides assertion of User. IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: User interacts with IdP and is authenticated.

SP CONFIRM: IdP returns assertion in signed SAML Response through HTTP POST binding.

Step 11: SLO from SP

Description: SP sends a signed LogoutRequest message to IdP using HTTP Redirect binding. IdP logs out User session. IdP returns a signed LogoutResponse message.

IdP CONFIRM: Receives signed LogoutRequest on HTTP Redirect binding.

SP CONFIRM: Receives signed LogoutResponse on HTTP Redirect binding.

SP CONFIRM: User is logged out.

3.2.13 Test Case M – SAML Authentication Authority

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: SAML Authentication Authority

Note: Section [AuthenticationContexts] within this document describes the strength of the AuthnContext classes used for comparison.

Test Steps
Step 1:

Description: User/SP does Single Sign-On with Persistent Name Identifier. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

IdP CONFIRM: User has been federated

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 2:

Description: SAML Requester sets AC comparison to “exact”.

SAML Requester CONFIRM: AC comparison=”exact”.

Step 3:

Description: SAML Requester sends Authentication Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Authentication Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

Step 4:

Description: SAML Requester sets AC comparison to “better”.

SAML Requester CONFIRM: AC comparison=”better”.

Step 5:

Description: SAML Requester sends Authentication Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Authentication Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

Step 6:

Description: SAML Requester sets AC comparison to “minimum”.

SAML Requester CONFIRM: AC comparison=”minimum”.

Step 7:

Description: SAML Requester sends Authentication Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Authentication Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

Step 8:

Description: SAML Requester sets AC comparison to “maximum”.

SAML Requester CONFIRM: AC comparison=” maximum”.

Step 9:

Description: SAML Requester sends Authentication Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Authentication Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

3.2.14 Test Case N – SAML Attribute Authority

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: SAML Attribute Authority

Step 1:

Description: User/SP does Single Sign-On with Persistent Name Identifier. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

IdP CONFIRM: User has been federated

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 2:

Description: SAML Responder sets attribute query to no attributes.

SAML Responder CONFIRM: Attribute Query No Attributes.

Step 3:

Description: SAML Requester sends Attribute Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Attribute Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

Step 4:

Description: SAML Responder sets attribute query to attribute named.

SAML Responder CONFIRM: Attribute Query Attribute Named.

Step 5:

Description: SAML Requester sends Attribute Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Attribute Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

Step 6:

Description: SAML Responder sets attribute query to attribute value.

SAML Responder CONFIRM: Attribute Query Attribute Value.

Step 7:

Description: SAML Requester sends Attribute Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Attribute Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

Step 8:

Description: SAML Responder sets attribute query to attribute named. SAML Responder enables attribute for encryption.

SAML Responder CONFIRM: Attribute Query Attribute Named.

SAML Responder CONFIRM: Encryption assertion enabled.

Step 9:

Description: SAML Requester sends Attribute Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Attribute Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

3.2.15 Test Case O – SAML Authorization Decision Authority

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: SAML Authorization Decision Authority

Step 1:

Description: User/SP does Single Sign-On with Persistent Name Identifier. SP communication to the IdP for the SAML Authentication Request is through HTTP POST binding. IdP provides assertion of User and IdP returns a signed SAML Response message through HTTP POST binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP POST binding.

IdP CONFIRM: User has been federated

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

Step 2:

Description: SAML Requester enables HTTP Basic Authentication.

SAML Requester CONFIRM: HTTP Basic Authentication enabled.

Step 3:

Description: SAML Responder sets Authorization Query to never permitted which means subject is never authorized for access.

SAML Responder CONFIRM: AuthzQuery Resource=never

Step 4:

Description: SAML Requester sends Authorization Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Authorization Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

Step 5:

Description: SAML Responder sets authorization query to maybe permitted if authentication is matched which means subject is authorized if it is a “particular” subject.

SAML Responder CONFIRM: AuthzQuery Resource=maybe

Step 6:

Description: SAML Requester sends Authorization Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Authorization Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

Step 7:

Description: SAML Responder sets Authorization Query to always permitted which means subject is always authorized.

SAML Responder CONFIRM: AuthzQuery Resource=always

Step 8:

Description: SAML Requester sends Authorization Query to SAML Responder through SOAP binding. SAML Responder returns SAML Response.

SAML Responder CONFIRM: SAML Requester sent Authorization Query.

SAML Requester CONFIRM: SAML Responder returned the SAML Response.

3.2.16 Test Case P – Error Testing

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: IdP, SP, SP Lite, eGov, POST

NOTE: Test Steps 2-11 involve the Liberty Error Test Tool. Metadata for conducting these tests will be exchanged.

Step 1:

Description: Successful SSO using Artifact Resolution as described in Steps 1-3 of Test Case B are done. Once those steps are complete, the SP reissues the same <Artifact> in a new <ArtifactResolve> message. The IdP recognizes the reissued <Artifact> and refuses it. <ArtifactResponse> is returned with no embedded message.

IdP CONFIRM: Successful SSO using Artifact Binding.

IdP CONFIRM: Second <ArtifactResolve> message received using same <Artifact> and refused.

SP CONFIRM: <ArtifactResponse> is returned with no embedded message.

Step 2:

Description: Test Harness POSTs an unsolicited SAML Response message containing a valid assertion.

SP CONFIRM: SAML Response was received and assertion accepted.

Step 3:

Description: Test Harness re-POSTs the assertion that was successful during the initialization of this test sequence.

SP CONFIRM: Assertions are not replayed within the validity period of the assertion.

Step 4:

Description: The assertion of the SAML Response from Step 2 is altered and sent without re-signing in a HTTP POST from Test Harness.

SP CONFIRM: SP rejects the message.

Step 5:

Description: The assertion of the SAML Response from Step 2 is sent but signed with the wrong signing key in a HTTP POST from Test Harness.

SP CONFIRM: SP rejects the message.

Step 6:

Description: The Test Harness constructs a SAML Response message with an incorrect Recipient attribute. Recipient attribute is in the <SubjectConfirmationData> element.

SP CONFIRM: SP detects and rejects the message.

Step 7:

Description: The Test Harness sends an altered assertion in the SAML Response. A different Method URN is substituted in the assertion’s <SubjectConfirmation> element other than the required Method of urn:oasis:names:tc:SAML:2.0:cm:bearer.

SP CONFIRM: SP detects and rejects the message.

Step 8:

Description: The Test Harness POSTs a SAML Response containing an assertion which does not contain an <AudienceRestriction> including the SP's unique identifier as an <Audience>.

SP CONFIRM: SP rejects the assertion.

Step 9:

Description: The Test Harness sets the NotOnOrAfter attribute to a date/time that has occurred in past with respect the date/time of executing this test step.

SP CONFIRM: The SP to reject the assertion because of the NotOnOrAfter attribute.

Step 10:

Description: The Test Harness sets the NotBefore attribute to a date/time in the future with respect to the date/time of executing this test step.

SP CONFIRM: The SP to reject the assertion because of the NotBefore attribute.

Step 11:

Description: The Test Harness includes a <Condition> extension element in the <Conditions> element of the assertion that cannot be understood.

SP CONFIRM: The SP rejects the assertion.

3.2.17 Test Case Q – Requested AuthnContext

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: eGov Profile

NOTE: Section [AuthenticationContexts] within this document describes the strength of the AuthnContext classes used for comparison used in this test case.

Step 1: Issue <AuthnRequest> with Assigned <RequestedAuthnContext>

Description: For each iteration in Table Q.1, SP sends an <AuthnRequest> to the IdP. Within <NameIDPolicy>, AllowCreate is set to “true”, and Format is set to urn:oasis:names:tc:SAML:2.0:nameid-format:persistent. The ForceAuthn attribute is set to “true”. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

For each iteration, the SP inserts one or more <RequestedAuthnContext> elements into the <AuthnRequest> message. The authentication context requested and the Comparison attribute setting is defined in Table Q.1. Prior to each iteration, the IdP enables its authenticating context for the User as defined in the table. The expected Status value for the <Response> message is also listed in the table.
The actual URI are to be sent. The table contains only the last segment of each URI for reference.
· urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol

· urn:oasis:names:tc:SAML:2.0:ac:classes:Password

· http://incommonfederation.org/assurance/bronze
· http://idmanagement.gov/icam/2009/12/saml_2.0_profile/assurancelevel1
TABLE Q.1
	Iteration
	SP Requested AC
	Comparison
	IdP Supported AC
	Status Response

	1
	Password
	“exact”
	InternetProtocol
	NoAuthnContext

	2
	Password
	“minimum”
	InternetProtocol
	NoAuthnContext

	3
	Password
	“better”
	InternetProtocol
	NoAuthnContext

	4
	InternetProtocol
	“exact”
	InternetProtocol
	Success

	5
	InternetProtocol
	“minimum”
	InternetProtocol
	Success

	6
	InternetProtocol
	“maximum”
	InternetProtocol
	Success

	7
	InternetProtocol
	“maximum”
	Password
	NoAuthnContext

	8
	InternetProtocol
	“better”
	Password
	Success

	9
	bronze

	“exact”
	bronze

	Success

	10
	assurancelevel1
bronze
	“exact”
	bronze
	Success

	11
	assurancelevel1

bronze
	“exact”
	assurancelevel1

	Success

Note For runs 10 & 11 the SP must send two <RequestedAuthnContext> elements in the <RequestedAuthnContext> each containing one URI in the order specified.
SP CONFIRM: Every iteration from Table Q.1 is executed, and all messages, actions and responses match the results assigned by the table. For each Success response the assertion must contain a <AuthnContextClassRef> element containing the URI from the “IdP Supported AC” column.
IdP CONFIRM: Every iteration from Table Q.1 is executed, and all messages, actions and responses match the results assigned by the table.

3.2.18 Test Case R – User Consent

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: eGov

Step 1: User Consent StatusResponse

Description: IdP must provide means for User to provide authentication consent per the different consent values listed in Table R.1. Consent conditions are listed in section 8.4 of [SAMLCore]. The exact means used is left to the individual IdP. After user provides assigned credentials for authentication, IdP provides assertion of User and returns <Assertion> in an unsolicited signed SAML Response message through HTTP POST binding. The Consent attribute is included in the StatusResponse. The test step is repeated through each iteration in Table R.1

TABLE R.1
	Iteration
	Consent value

	1
	urn:oasis:names:tc:SAML:2.0:consent:obtained

	2
	urn:oasis:names:tc:SAML:2.0:consent:prior

	3
	urn:oasis:names:tc:SAML:2.0:consent:current-implicit

	4
	urn:oasis:names:tc:SAML:2.0:consent:current-explicit

	5
	urn:oasis:names:tc:SAML:2.0:consent:unspecified

SP CONFIRM: IdP sends signed SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdP.

SP CONFIRM: Consent attribute match values in Table R.1

SP CONFIRM: User A identity has been federated with IdP.

IdP CONFIRM: User A identity has been federated with SP.

3.2.19 Test Case S – Assertion Attribute

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: eGov

Step 1: User A, AttributeStatement in Assertion Response

Description: User A requires authentication. SP sends <AuthnRequest> with AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. User A provides assigned credentials for authentication. IdP provides assertion of User A. The attributes in the table below are assigned to User A and are to be returned in a single <AttributeStatement> in the assertion. IdP returns <Assertion> in a signed SAML Response message through HTTP POST binding.

TABLE S.1
	Attribute Name
	AttributeValue (string)
	NameFormat

	LastName
	Wall
	“basic”

	urn:oid:2.5.4.40
	John
	“uri”

	Position
	PG
	“unspecified”

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdP.

SP CONFIRM: Returned attributes match values in Table S.1

SP CONFIRM: User A identity has been federated with IdP.

IdP CONFIRM: User A identity has been federated with SP.

Step 2: User B, No AttributeStatement in Assertion Response

Description: User B requires authentication. SP sends <AuthnRequest> with AllowCreate is set to TRUE. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding. User B provides assigned credentials for authentication. IdP provides assertion of User B. No <AttributeStatement> is returned in the <Assertion>.
SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdP.

SP CONFIRM: No <AttributeStatement> is returned in <Assertion>.

SP CONFIRM: User B identity has been federated with IdP.

IdP CONFIRM: User B identity has been federated with SP.

3.2.20 Test Case T – Unspecified Format

Preconditions:

· Metadata exchanged and loaded

· Encryption disabled

· User Identities Not Federated

Conformance Modes: eGov

Step 1: AuthnRequest, 'Unspecified' NameID format, Redirect Binding, Federate

Description: User/SP does Single Sign-On with AllowCreate is set to TRUE. The with Name Identifier format is set to 'unspecified'. SP communication to the IdP for the SAML Authentication Request is through HTTP Redirect binding.

IdP CONFIRM: SP successfully communicated SAML Authentication Request through HTTP Redirect binding.

IdP CONFIRM: Name ID format is 'unspecified'.

Step 2: Assertion Response, POST binding

Description: User provides assigned credentials for authentication. IdP provides assertion of User. NameID format is set to 'persistent'. In <Assertion>, SessionIndex attribute must be present but SessionNotOnOrAfter must not be present. IdP returns <Assertion> in a signed SAML Response message through HTTP POST binding.

SP CONFIRM: IdP returns signed SAML Response through HTTP POST binding.

SP CONFIRM: Valid assertion is returned from IdP.

SP CONFIRM: NameID format is 'persistent'.

SP CONFIRM: SessionIndex is present.

SP CONFIRM: SessionNotOnOrAfter is not present.

SP CONFIRM: User identity has been federated with IdP.

IdP CONFIRM: User identity has been federated with SP.
3.2.21 Test Case eGov2-1 - Production of IOP-compliant Metadata

Scope

· Verify the ability to produce metadata conformant to the
Metadata IOP. [MetaIOP]
IOP-conformant metadata has a different meaning from metadata intended to be evaluated in a PKIX environment, but syntactically should be identical based on the eGov profile language, so this should be sufficient to test production of metadata for both profiles.

Preconditions

· Implementation configured sufficiently to produce metadata identifying its signing, TLS, and encryption keys.

· Details of expected md:KeyDescriptor content available to tester

Conformance Mode: eGov2

Test Sequence

Step 1. Access published metadata

The metadata produced by the implementation is obtained.

CONFIRM: The content(s) of the md:KeyDescriptor element(s) matches the expected output.

3.2.22 Test Case eGov2-2 - Consumption of IOP-compliant Metadata

Testing is best accomplished with a fixed implementation to test against, as the purpose is not to test actual protocol correctness, but use of the metadata itself.

Scope:
· Verify the ability to process metadata conformant to the Metadata [IOP].

· Verify support for bare keys, self-signed, arbitrary-CA, and expired certificates.

· Check for bypass of CRL or OCSP extensions in certificates.

· Verify ability to match keys between different certificates

· Verify recognition of a removed/revoked key.

· Verify enforcement of validUntil.

Preconditions:
Keys and certificates generated with various characteristics:

• Self-signed, no revocation-related extensions

· Signed by a CA, with revocation-related extensions

· Expired

· Multiple certificates with the same public key

Conformance Mode: eGov2

Test Sequence

Step 1. Test Bare Keys

A. Metadata is prepared for the fixed implementation containing a pair of md:KeyDescriptors both containing a ds:KeyValue containing a ds:RSAKeyValue. The fixed implementation is configured to use one of the keys for signing and/or TLS purposes. The metadata is supplied to the candidate system, and one or more SSO operations is attempted. Bindings should be chosen to exercise both signature verification and TLS authentication if possible.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata.

B. The fixed implementation is switched to use the second of the pair of keys in its metadata.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata.

C. The fixed implementation is switched to use a key that is NOT in its metadata.

CONFIRM: The SSO operations are unsuccessful.

Step 2. Test Self-Signed Certificates

A. Metadata is prepared for the fixed implementation containing a pair of md:KeyDescriptors both containing a ds:X509Certificate, with the certificates self-signed. One of the certificates should be expired. The fixed implementation is configured to use one of the certificates for signing and/or TLS purposes. The metadata is supplied to the candidate system, and one or more SSO operations is attempted. Bindings should be chosen to exercise both signature verification and TLS authentication if possible.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata.

B. The fixed implementation is switched to use the second of the pair of certificates in its metadata.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata.

C. The fixed implementation is switched to use a different certificate that is not in the metadata but contains the same key as one that is.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata.

D. The fixed implementation is switched to use a certificate and key that is NOT in its metadata.

CONFIRM: The SSO operations are unsuccessful.

Step 3. Test CA-Issued Certificates

A. Metadata is prepared for the fixed implementation containing a pair of md:KeyDescriptors both containing a ds:X509Certificate, with the certificates signed by one or more arbitrary CAs. The certificates should, if possible, include a CRL distribution point or OCSP location extension. These endpoints should not exist or be unavailable to the testing environment. The fixed implementation is configured to use one of the certificates for signing and/or TLS purposes. The metadata is supplied to the candidate system, and one or more SSO operations is attempted. Bindings should be chosen to exercise both signature verification and TLS authentication if possible.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata. No delays in processing occur as a result of failed attempts to contact non-existent or unavailable CRL or OCSP endpoints.

B. The fixed implementation is switched to use the second of the pair of certificates in its metadata.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata.

C. The fixed implementation is switched to use a different certificate that is not in the metadata but contains the same key as one that is.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata.

D. The fixed implementation is switched to use a key that is NOT in its metadata.

CONFIRM: The SSO operations are unsuccessful.

Step 4. Verify Revocation and validUntil

A. Metadata is prepared for the fixed implementation containing a md:KeyDescriptor containing a key in one of the supported formats. The fixed implementation is configured to the key for signing and/or TLS purposes. The metadata is supplied to the candidate system, and one or more SSO operations is attempted. Bindings should be chosen to exercise both signature verification and TLS authentication if possible.

CONFIRM: The SSO operations are successful based on the use of the key(s) that appear in the metadata.

B. The metadata is altered to remove the md:KeyDescriptor and the candidate implementation is configured to refresh the appropriate source of metadata.

CONFIRM: The SSO operations are unsuccessful.

C. The metadata is altered to add back the md:KeyDescriptor, but a validUntil attribute is added such that the metadata is expired, and the candidate implementation is configured to refresh the appropriate source of metadata.

CONFIRM: The SSO operations are unsuccessful

3.2.23 Test Case eGov2-3 - Support for "Metadata Extension for Entity Attributes" Profile

Scope:
· Test SP acceptance of SSO based on IdP metadata extension content [MetaAttr]
The proposed tag would be an attribute named "urn:oasis:names:tc:SAML:attribute:assurance-certification" and would appear as follows [IAP]:
<EntityDescriptor entityID="https://idp.example.org/SAML" ... >

 <Extensions>

 <attr:EntityAttributes xmlns:attr="urn:oasis:names:tc:SAML:metadata:attribute">

 <saml:Attribute

 NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

 Name="urn:oasis:names:tc:SAML:attribute:assurance-certification">

 <saml:AttributeValue>

 http://foo.example.com/assurance/loa1

 </saml:AttributeValue>

 </saml:Attribute>

 </attr:EntityAttributes>

 </Extensions>

 <IDPSSODescriptor...>

 ...

 </IDPSSODescriptor>

</EntityDescriptor>
Preconditions:
· SP configured with metadata for candidate IdP containing acceptable LOA "tag".

· SP configured with metadata for candidate IdP not containing acceptable LOA "tag".

· SP configured to require presence of "tag" in metadata for IdPs before it will accept SSO from them.

Conformance Mode: eGov2

Test Sequence

Step 1. Verify use of acceptable IdP

SP-initiated or IdP-initiated SSO is used to produce an assertion response from the candidate IdP.

CONFIRM: SSO is successful.

Step 2. Verify non-use of unacceptable IdP

SP-initiated or IdP-initiated SSO is used to produce an assertion response from the candidate IdP.

CONFIRM: SSO is unsuccessful based on the policy requiring the tag.
3.2.24 Test Case eGov2-4 - Publication

Scope:
· Publication (and maintenance) of metadata via Well-Known-Location resolution profile.

Preconditions:
· An http/https entityID defined that is suitable for dereferencing

· Appropriate configuration of that entityID is completed

· Multiple details of configuration are available to tester (location of a profile endpoint, a key descriptor, etc.)

· Any pre-publishing step required is completed

Conformance Mode: eGov2

Test Sequence

Step 1. Access published metadata

The entityID is dereferenced to obtain the metadata document.

CONFIRM: The metadata is available, and correctly reflects the entityID accessed, and is returned with the correct MIME type (application/xml+samlmetadata). The configuration details expected are found in the metadata.

Step 2. Alter metadata and republish

Alter the configuration (changing an endpoint, a key descriptor, etc.) and republish, then repeat the first test.

CONFIRM: As in (1), but also that the implementation did not require a restart or disruption of service.
3.2.25 Test Case eGov2-5 - Import from File

Scope:
· Metadata consumption via local file

· Ability to detect and ignore invalid metadata

· Support for batches (md:EntitiesDescriptor)

· Ability to update from a changed source without disruption

· Maintenance of valid operation after a change that renders a source invalid.

Preconditions:
· Valid metadata is available to the implementation via a local filesystem path

· The valid metadata contains at least two md:EntityDescriptor elements inside an md:EntitiesDescriptor element

· Invalid metadata is available to the implementation via a (different) local filesystem path

· Appropriate configuration for the use of those paths is applied

· No configuration of the information supplied via metadata is in place prior to import

Conformance Mode: eGov2

Test Sequence

Step 1. Import valid metadata

The implementation is directed in whatever manner is required to import or make use of the valid metadata. A set of SAML interactions is then attempted between the implementation and the metadata subject. A basic test of SP-initiated SSO is sufficient.

CONFIRM: Operation of a defined set of SAML interactions with the metadata subject is successful based on the content of the metadata (correct endpoints used, keys used in accordance with one of the supported metadata profiles, etc.).

Step 2. Import invalid metadata

The implementation is directed in whatever manner is required to import or make use of the invalid metadata. A set of SAML interactions is then attempted between the implementation and the metadata subject. A basic test of SP-initiated SSO is sufficient.

CONFIRM: Import and/or interaction with the metadata subject is unsuccessful.

Step 3. Update valid metadata

The valid metadata is modified in some manner that is detectable via the interactions used to confirm successful import (changing an endpoint, a key descriptor, etc.), but remains valid. If the implementation requires manual intervention to recognize the change, this is done. The SAML interactions are repeated.

CONFIRM: The interactions remain successful but cognizant of the change(s). No restart or other service interruption was required to accommodate the change.

Step 4. Update valid metadata with invalid change.

The valid metadata is modified in some manner that renders it invalid. If the implementation requires manual intervention to recognize the change, this is done. The SAML interactions are repeated.

CONFIRM: The interactions remain successful in accordance with the metadata that existed prior to the change. No restart or other service interruption was required to accommodate the change.
3.2.26 Test Case eGov2-6 - Import from URL

Scope:
· Metadata consumption via multiple http and https sources

· Ability to detect and ignore invalid or unavailable metadata

· Support for caching

· Ability to update via a changed source without disruption

· Maintenance of valid operation after a change that renders a source invalid.

Preconditions:
· Valid metadata is available to the implementation via at least two URLs (one http, one https)

· Invalid metadata is available to the implementation via a different, possibly unavailable, URL

· Appropriate configuration for the use of those URLs is applied

· No configuration of the information supplied via metadata is in place prior to import

Conformance Mode: eGov2

Test Sequence

Step 1. Import valid metadata

The implementation is directed in whatever manner is required to import or make use of the valid metadata. A set of SAML interactions is then attempted between the implementation and the metadata subjects (at least two, one for each source of metadata). A basic test of SP-initiated SSO is sufficient.

CONFIRM: Operation of a defined set of SAML interactions with the metadata subjects is successful based on the content of the metadata (correct endpoints used, keys used in accordance with one of the supported metadata profiles, etc.).

Step 2. Import invalid metadata

The implementation is directed in whatever manner is required to import or make use of the invalid metadata source. A set of SAML interactions is then attempted between the implementation and the metadata subject. A basic test of SP-initiated SSO is sufficient.

CONFIRM: Import and/or interaction with the metadata subject is unsuccessful.

Step 3. Re-import unchanged metadata

The implementation is directed in whatever manner is required to re-import/refresh the valid source of metadata, with the source maintaining the same caching indicator(s). The SAML interactions are repeated.

CONFIRM: The import resulted in no exchange of the metadata document across the network, and the interactions remain successful in accordance with the metadata that existed prior to the re-import.

Step 4. Re-import changed metadata

The valid metadata is modified in some manner that is detectable via the interactions used to confirm successful import (changing an endpoint, a key descriptor, etc.), but remains valid. The implementation is directed in whatever manner is required to re-import/refresh the valid source of metadata. The SAML interactions are repeated.

CONFIRM: The interactions remain successful but cognizant of the change(s). No restart or other service interruption was required to accommodate the change.

Step 5. Update valid metadata with invalid change.

The valid metadata is modified in some manner that renders it invalid. The implementation is directed in whatever manner is required to re-import/refresh the now-invalid source of metadata. The SAML interactions are repeated.

CONFIRM: The interactions remain successful in accordance with the metadata that existed prior to the change. No restart or other service interruption was required to accommodate the change.
3.2.27 Test Case eGov2-7 - Verification by Known Key

Scope:
· Test verification of root level signature via a known key.

Preconditions:
· Any MTI signature algorithm may be used.

· Valid metadata signed by a known key is available at an http or https URL.

· Valid metadata with an invalid signature is available via a different URL.

· The key should not be present inside the signature of the metadata document.

· Appropriate configuration for the use of the URLs and verification with the key is applied.

· No configuration of the information supplied via metadata is in place prior to import

Conformance Mode: eGov2

Test Sequence

Step 1. Import and verify valid metadata

The implementation is directed in whatever manner is required to import or make use of the valid metadata. A set of SAML interactions is then attempted between the implementation and the metadata subject. A basic test of SP-initiated SSO is sufficient.

CONFIRM: Operation of a defined set of SAML interactions with the metadata subject is successful based on the content of the metadata (correct endpoints used, keys used in accordance with one of the supported metadata profiles, etc.).

Step 2. Import and (fail to) verify invalid signature

The implementation is directed in whatever manner is required to import or make use of the metadata with the invalid signature. A set of SAML interactions is then attempted between the implementation and the metadata subject. A basic test of SP-initiated SSO is sufficient.

CONFIRM: Import and/or interaction with the metadata subject is unsuccessful.
3.2.28 Test Case eGov2-8 - Verification by Certificate Validation

Scope:
· Test verification of root level signature via path validation of a signing certificate.

Preconditions:
· Any MTI signature algorithm may be used.

· Two certificates issued by a sample certificate authority are created, one valid, one expired.

· The certificate must be present inside the signature of the metadata document.

· Valid metadata signed by the key in the valid certificate is available at an http or https URL.

· Valid metadata signed by the key in the invalid certificate is available via a different URL.

· Appropriate configuration for the use of the URLs and verification with the issuing CA is applied.

· No configuration of the information supplied via metadata is in place prior to import

Conformance Mode: eGov2

Test Sequence

Step 1. Import and verify valid metadata

The implementation is directed in whatever manner is required to import or make use of the valid metadata. A set of SAML interactions is then attempted between the implementation and the metadata subject. A basic test of SP-initiated SSO is sufficient.

CONFIRM: Operation of a defined set of SAML interactions with the metadata subject is successful based on the content of the metadata (correct endpoints used, keys used in accordance with one of the supported metadata profiles, etc.).

Step 2. Import and (fail to) verify invalid signature

The implementation is directed in whatever manner is required to import or make use of the metadata signed with the invalid certificate. A set of SAML interactions is then attempted between the implementation and the metadata subject. A basic test of SP-initiated SSO is sufficient.

CONFIRM: Import and/or interaction with the metadata subject is unsuccessful.

3.2.29 Test Case eGov2-9 - Confirm support for NameIDPolicy of 'persistent' & 'transient'

Scope:

· Verify SP possibility to specify values of 'persistent' & 'transient' for the NameIDPolicy element in an AuthnRequest

Preconditions:

· Metadata exchanged and imported

· SP and IDP configured to use HTTP-Redirect binding for AuthnRequest

Conformance Mode: eGov2

Test sequence
Step 1. Trigger SP-initiated single sign-on using the HTTP-Redirect binding, specifying at SP that the returned identifier be 'urn:oasis:names:tc:SAML:2.0:nameid-format:persistent'.

CONFIRM: SP offers capability for specifying name identifier format of "urn:oasis:names:tc:SAML:2.0:nameid-format:persistent"

Step 2. Observe HTTP redirect parameters and decode the SAMLRequest value using the DEFLATE algorithm reversal.
CONFIRM: presence of element "NameIDPolicy" with value "urn:oasis:names:tc:SAML:2.0:nameid-format:persistent" on element <samlp:AuthnRequest>
Step 3. Authenticate to IDP using test account

Step 4. Observe response message

CONFIRM: NameID supplied according to NameIDPolicy specified in AuthnRequest
Repeat above test sequence for 'urn:oasis:names:tc:SAML:2.0:nameid-format:transient'.
3.2.30 Test Case eGov2-10 - IDP Discovery

Scope:

· Verify that during web-based SSO that a SP is able to establish an IDP associated with the user.

Preconditions:

· Exchange and import metadata for SP (including extension element for the discovery’s response) and IDP

Test Sequence
Step 1. Trigger the SP to redirect the user agent to the discovery service with an HTTP GET request.

CONFIRM: SP capability for specifying policy of "urn:oasis:names:tc:SAML:profiles:SSO:idp-discovery-protocol:single"

Step 2. Allow user to interact with discovery service to select an IDP by having default setting of <IsPassive> to “false”.

Step 3. The discovery service responds by redirecting the user agent back to the requesting service provider with an HTTP GET request at the location supplied in the <return> parameter in the original request and/ or discovery response element of the metadata.

CONFIRM: SP recognizes the identifier for the selected Identity Provider

Step 4. IdP is reconfigured with <IsPassive> set to “true”. CDC is deleted.

Step 5. User attempts to interact with discovery service and select IDP but <isPassive> set to "true" prevents interaction with the user.

CONFIRM: SP returns no IDP selection

3.2.31 Test Case eGov2-11 - Support for AssertionConsumerServiceURL, ProtocolBinding, and AttributeConsumingServiceIndex

Scope:

· Verify possibility to specify, and presence of, the AuthnRequest attributes AssertionConsumerServiceURL, ProtocolBinding, and AttributeConsumingServiceIndex

Preconditions:

· Metadata exchanged and imported

· Service provider metadata contains indexed AssertionConsumerService entries

· Service provider metadata contains indexed AttributeConsumingService entries

· SP and IDP configured to use HTTP-Redirect binding for AuthnRequest

Conformance Mode: eGov2

Test sequence
Step 1. Trigger SP-initiated single sign-on using the HTTP-Redirect binding, specifying that a particular AssertionConsumerServiceURL be called using a specified ProtocolBinding.

CONFIRM: SP offers capability for specifying the AssertionConsumerService URL
CONFIRM: SP offers capability for specifying the ProtocolBinding to be used
Step 2. Observe HTTP redirect parameters and decode the SAMLRequest value using the DEFLATE algorithm reversal.

CONFIRM: presence of attribute "AssertionConsumerServiceURL" with the URL specified in step 1 as value, on element <samlp:AuthnRequest>
CONFIRM: presence of attribute "ProtocolBinding" with the URL specified in step 1 as value, on element <samlp:AuthnRequest>

Step 3. Trigger SP-initiated single sign-on using the HTTP-Redirect binding, specifying that a particular AttributeConsumingServiceIndex be called.

CONFIRM: SP offers capability for specifying the AttributeConsumingServiceIndex value
Step 4. Observe HTTP redirect parameters and decode the SAMLRequest value using the DEFLATE algorithm reversal.

CONFIRM: presence of attribute "AttributeConsumingServiceIndex" with the index specified in step 3 as value, on element <samlp:AuthnRequest>

3.2.32 Test Case eGov2-12 - Confirm Identity Provider verification of AssertionConsumerServiceURL value

Scope:

· Verify IDP handling of AuthnRequest attributes AssertionConsumerServiceURL and ProtocolBinding

Preconditions:

· Metadata exchanged and imported

· Service provider capable of sending AuthnRequest messages with AssertionConsumerServiceURL and ProtocolBinding attributes

· Service provider metadata contains AssertionConsumerService entries

· IDP configured to provide attribute response

· Valid and known account that can be authenticated using an available authentication method on IDP
Conformance Mode: eGov2

Test sequence
Step 1. Trigger SP-initiated single sign-on specifying an AssertionConsumerServiceURL and ProtocolBinding that matches values in SP metadata.

Step 2. Observe IDP behavior

CONFIRM: IDP accepts AuthnRequest without error

Step 3. Trigger SP-initiated single sign-on specifying an AssertionConsumerServiceURL and ProtocolBinding that do not match values in SP metadata.

Step 4. Observe IDP behavior

CONFIRM: IDP responds with appropriate error message

4 REFERENCES

4.1 Normative References

[ExcXMLCan] John Boyer et al, “Exclusive XML Canonicalization Version 1.0, W3C Recommendation”, W3C (July 2002), http://www.w3.org/TR/xml-exc-c14n/
[IAP] OASIS Committee Draft, Identity Assurance Profiles, Version 1.0, September 2009. http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-assurance-profile-cd-01.pdf
[MetaIOP] OASIS Committee Specification, SAML V2.0 Metadata Interoperability Profile Version 1.0, August 2009. http://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-iop.pdf
[SAMLAuthnCxt] J. Kemp et al, “Authentication Context for the OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS SSTC (March 2005), http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
[SAMLBind] Scott Cantor et al, “Bindings for the OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS SSTC (March 2005), http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
[SAMLConf] Prateek Mishra et al, “Conformance Requirements for the OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS SSTC (March 2005). http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf
[SAMLCore] S. Cantor et al, “Assertions and Protocols for the OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS SSTC (March 2005), http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
[SAMLErrata] Jahan Moreh, “Errata for the OASIS Security 2 Assertion Markup Language (SAML) V2.0, Working Draft 28,” OASIS SSTC (May 8, 2006), http://www.oasis-open.org/committees/download.php/18070/sstc-saml-errata-2.0-draft-28.pdf
 [SAMLMeta] S. Cantor et al, “Metadata for the OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS SSTC (March 2005), http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
[MetaAttr] OASIS Committee Specification, SAML V2.0 Metadata Extension for Entity Attributes Version 1.0, August 2009. http://docs.oasis-open.org/security/saml/Post2.0/sstc-metadata-attr.pdf
[SAMLMetaExt] Tom Scavo et al, “Metadata Extension for SAML V2.0 and V1.x Query Requesters”, OASIS SSTC (Nov 2007), http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-metadata-ext-query-os.pdf

[SAMLProf] S. Cantor et al, “Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS SSTC (March 2005), http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf.
[SAMLSec] Frederick Hirsch et al, “Security and Privacy Considerations for the OASIS Security Assertion Markup Language (SAML) V2.0,” OASIS SSTC (March 2005), http://docs.oasis-open.org/security/saml/v2.0/saml-sec-consider-2.0-os.pdf
[eGov15] Kyle Meadors, Liberty Alliance “eGov Profile for SAML 2.0 Version 1.5,” http://www.projectliberty.org/liberty/content/download/4711/32210/file/Liberty_Alliance_eGov_Profile_1.5_Final.pdf
[eGov2] Scott Cantor, “Kantara Initiative eGovernment Implementation Profile for SAML 2.0 Version 2.0,” Kantara Initiative eGov WG (June 2010) http://kantarainitiative.org/confluence/download/attachments/42140355/kantara-report-egov-saml2-profile-2.0.pdf

Kantara Initiative Working Draft
www.kantarainitiative.org

1
PAGE
Kantara Initiative Report
www.kantarainitiative.org

79

