MGT411 - Money \& Banking Solution Assignment No 1

Question no 1: (Marks: 08)

Mr Ahmad, the director of Supreme Textile Mill (Ltd), is deciding to install a new plant for fiber spinning. Mr Ahmad has a choice to install a plant that will transform the raw cotton into yarn, project costs Rs 2,000,000/- and will generate revenue of Rs 550,000 for the next five years. Assume the company's discount rate/cost of borrowing is 9%.

Calculate IRR for above project by using trial and error method.

Solution:

Spinning Project:

Time	0	1	2	3	4	5
Cash flows	Rs $-2,000,000$	Rs 550,000	Rs 550,000	Rs 550,000	Rs550,000	Rs 550,000

By using 11\% as internal rate

$$
\begin{aligned}
\mathrm{NPV}=0= & - \text { Initial outflow }+\mathrm{CF} 1 /(1+\mathrm{irr})+\mathrm{CF} 2 /(1+\mathrm{irr})^{2}+\mathrm{CF} 3 /(1+\mathrm{irr})^{3}+\mathrm{CF} 4 /(1+\mathrm{irr})^{4}+ \\
& \mathrm{CF5} /(1+\mathrm{irr})^{5}
\end{aligned}
$$

$\mathrm{NPV}=0=-2,000,000+550,000 /(1.11)+550,000 /(1.11)^{2}+550,000 /(1.11)^{3}+$

$$
550,000 /(1.11)^{4}+550,000 /(1.11)^{5}
$$

NPV $=0=-2,000,000+495,495.49+446,392.34+402,155.26+362,302.04+$
326,398.23
NPV $=0=-2,000,000+2,032,743.36$
$\mathrm{NPV}=32,743.36$

By using 12\% as internal rate

$\mathrm{NPV}=0=-$ Initial outflow $+\mathrm{CF} 1 /(1+\mathrm{irr})+\mathrm{CF} 2 /(1+\mathrm{irr})^{2}+\mathrm{CF} 3 /(1+\mathrm{irr})^{3}+\mathrm{CF} 4 /(1+\mathrm{irr})^{4}+$ CF5/(1+irr) ${ }^{5}$
NPV $=0=-2,000,000+550,000 /(1.12)+550,000 /(1.12)^{2}+550,000 /(1.12)^{3}+$
$550,000 /(1.12)^{4}+550,000 /(1.12)^{5}$
NPV $=0=-2,000,000+491,071.43+438,456.63+391,479.14+349,534.94+$ 312,084.77
NPV $=-2,000,000+1,982,626.91$
NPV = -17,373.09

Now we have one positive NPV and one negative NPV, we use following formula for calculation of IRR

$\mathbf{I R R}=$ Lower discount rate + Difference between the two discount rates * (NPV at lower discount rate/difference between the NPV of the two discount rate)
$\operatorname{IRR}=11+(12-11) *(32,743.36 / 32,743.36-(-17,373.09)$
$\operatorname{IRR}=11+(12-11) *(32,743.36 / 50,116.45)$
$\operatorname{IRR}=11+(1 * 0.65)$
$\operatorname{IRR}=11+0.65$

IRR=11.65 Approx

Now applying 11.65, we have NPV near to zero

$$
\begin{aligned}
\text { NPV }=0= & \text {-Initial outflow } \left.+ \text { CF1/(1+irr) }+ \text { CF2/(1+irr) })^{2}+\text { CF3/(1+irr) }{ }^{3}+\text { CF4/(1+irr) }\right)^{4}+ \\
& \text { CF5/(1+irr) }{ }^{5} \\
\mathrm{NPV}=0= & -2,000,000+550,000 /(1.1165)+550,000 /(1.1165)^{2}+550,000 /(1.1165)^{3}+ \\
& 550,000 /(1.1165)^{4}+550,000 /(1.1165)^{5} \\
\mathrm{NPV}=0= & -2,000,000+492,610.84+441,209.89+395,172.31+353,938.48+ \\
& 317,007.15 \\
\mathrm{NPV}=0= & -2,000,000+1,999,938.66 \\
\mathrm{NPV}=0= & \text { Rs }-61.34=\text { near to zero }
\end{aligned}
$$

So IRR of this project is $\mathbf{1 1 . 6 5 \%}$

Question no 2: (Marks: 08)

Find the present value of a coupon bond, having face value Rs 1000/-, coupon rate of 12.5% per annum with 7 years maturity. During current economic conditions investor’s required rate of return is 5\%.

Requirement: Calculate Present value of Coupon Bond.
Solution:
Face Value = Rs 1000
Coupon rate $=12.5 \%$
Required rate $=5 \%$
Years $=7$

```
\(\mathrm{PV}=\mathrm{C} 1 /(1+\mathrm{i})^{+} \mathrm{C} 2 /(1+\mathrm{i})^{\wedge} 2+\mathrm{C} 3 /(1+\mathrm{i})^{\wedge} 3+\mathrm{C} 4 /(1+\mathrm{i})^{\wedge 4}+\mathrm{C} 5 /(1+\mathrm{i})^{\wedge} 5+\mathrm{C} 6 /(1+\mathrm{i})^{\wedge} 6+\)
    C7/(1+i)^7+ Face Value /(1+i)^7
\(\mathrm{PV}=125 / 1.05+125 /(1.05)^{\wedge 2}+125 /(1.05)^{\wedge} 3+125 /(1.05)^{\wedge} 4+125 /(1.05)^{\wedge} 5+\)
    \(125 /(1.05)^{\wedge} 6+125 /(1.05)^{\wedge 7+1000 /(1+1.05)^{\wedge 7}}\)
\(\mathrm{PV}=119.04+113.3787+107.9797+102.8378+97.9407+93.2769+88.83517+710.68\)
PV = Rs. 1433.97
```


Alternative method

```
PV = C x [ { 1-1/( 1 +r )^t } /r ] + [ Face value / (1 +r r)^t]
PV = 125x[ { 1-1/( 1 + 0.05 )^7} / 0.05 ] + [ 1000 / ( 1 + 0.05 )^7]
PV = 125 x [{1-1/1.4071} / 0.05] + [1000 / 1.4071]
PV = 125 x [{1 - 0.7107}/0.05] + [1000/1.4071]
PV = 125 x [0.2893/0.05] + 710.68
PV = 125 x [5.786] + 710.68
PV = 723.25 + 710.68
PV = Rs. 1433.93
```


Question no 3 (Marks: 04)

Prevailing interest rate in the country is 14%, if expected inflation rate is 11% calculate the real interest rate by using fisher equation.

Solution

Real interest rate $=$ Nominal interest rate - expected inflation rate
$r=i-\pi e$
$\mathrm{r}=14-11$
$\mathrm{r}=3 \%$

