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Abstract

Given a subgroup B of a finitely-generated abelian group A, the saturation B

of B is defined to be the largest subgroup of A containing B with finite index.

In this thesis we consider a crucial step in the determination of the Mordell-
Weil group of an elliptic curve, E(K). Methods such as Descent may produce
subgroups H of E(K) with [H : H] > 1. We have determined an algorithm
for calculating H given H, and hence for completing the process of finding the
Mordell-Weil group. Our method has been implemented in MAGMA with two
versions of the programs; one for general number fields K and the other for Q.

It builds upon previous work by S. Siksek.

Our problem splits into two. First we can use geometry of numbers arguments
to establish an upper bound N for the index [H : H]. Second for each remaining
prime p < N we seek to prove either that H is p—saturated, i.e. p{ [H : H], or

to enlarge H by index p.

To solve the first problem,

1. We have devised and implemented an algorithm that searches for points

on E(K) up to a specified naive height bound.

2. We have devised and implemented an algorithm that calculates the sub-

group E,,(K) of points with good reduction at specified valuations.

3. We have implemented joint work with S. Siksek and J. Cremona to calcu-
late an upper bound on the difference of the canonical and naive height

of points on an elliptic curve.

4. We have helped to devise and have implemented joint work with S. Siksek
and J. Cremona to calculate a lower bound on the canonical heights of

non-torsion points on E(K) with K a totally real field.

To solve the second problem,



1. Asin earlier work by Siksek, we use homomorphisms to prove p—saturation
for primes p. We however use the Tate-Lichtenbaum pairing, and we show
that, using this pairing, our method will always prove H is p—saturated

if that is the case.

2. We show that Siksek’s original method will fail for some curves.
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Chapter 1

Introduction

Given a subgroup B of a finitely-generated abelian group A, the saturation B of
B is defined to be the largest subgroup of A containing B with finite index. This
thesis considers the problem of saturation in the group A = E(K), the Mordell-
Weil group of an elliptic curve E defined over a number field K and where
B is the subgroup generated by the known points on the curve. The context
of our problem is, for example, when computing E(K) by 2-descent, where we
normally obtain a set of independent points which generate a subgroup of E(K)
of finite (0odd) index, and wish to extend to a basis for the full group E(K). For
many curves of high rank, however, the exact rank is unknown and we just have
sets of independent points which we know lie on the given curve. Qur method
is flexible enough to calculate the saturation in this case, despite the saturation

not being all of E(K).

The problem divides into two parts, which have involved approximately equal ef-
fort in this thesis: first to determine an upper bound N for the index
n = [B : B], and second to decide, for each prime p less than N, whether

or not B is p-saturated (in the obvious sense.)

We give a set of techniques for solving the first problem, all using geometry

of numbers arguments, and most searching for points of low naive heights on



elliptic curves. Some of these methods rely on working with the points of good
reduction at subsets of the set of valuations of K. We then need to calculate the
index of the subgroup of points with good reduction at these valuations. We

can take the lowest N from all of our methods to use as our upper bound.

For the second problem, the method consists in constructing a group homomor-
phism f : E(K) — FY which is injective on B/pB. Two methods are described
for finding f, both using auxiliary primes g such that p|#E(F;). Both these
methods have been implemented in the programming language MAGMA for
general number fields K and separately® for K = Q. The first method, due to
Siksek, is to map to a subgroup of order p in E(F;) and hence (via an elliptic
curve discrete logarithm) to F,. This has certain drawbacks which are described.
A newer and more elegant method using a map related to the Tate-Lichtenbaum
pairing is described, where the map is to Fy /(IF;)? for N(q) =1 (mod p), and
hence (via a discrete logarithm in IFy) to F,. The resulting algorithm works well
in practice, despite the restriction that only primes N(q) = 1 (mod p), can be
used. We have proved that the use of sufficiently many primes q will always be

sufficient to prove that a p—saturated subgroup of E(K) is indeed p—saturated.

1.1 Structure of the thesis.

A local - global principle of the points on elliptic curves on finite fields ver-
sus number fields is proved in Chapter 2. This is the result we need to show
that our method of p—saturation via the Tate-Lichtenbaum pairing confirms
p—saturation in finite time. Our proof uses Galois Theory, Elementary Group
Theory and Tchebotarev’s Density Theorem. We note that several other au-
thors have produced similar and equivalent results, but felt our proof, which
uses elementary methods and was derived independently, deserved inclusion for

completeness.

1See www.maths.nott.ac.uk/personal/pmxpm for the MAGMA implementation of the al-
gorithms in this thesis.
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In Chapter 3, we describe our method and Siksek’s method [17],[18] of p—saturation,
the second part of our saturation problem defined above. We prove that our
method is always successful in finite time in the case of p—saturated input, and
prove that there are elliptic curves and points for which Siksek’s method fails
while ours succeeds. We also describe the method of Frey-Ruck-Muller [9] for
calculating the Tate-Lichtenbaum pairing. In fact in practice, we use both our
method and Siksek’s method of finding homomorphisms f because this makes

our programs run faster.

Chapters 4, 5, 6 are all concerned with the first part of our saturation problem
defined above; that of determining an upper bound N on n = [B : B]. In
Chapter 4, we provide a statement of the results from a joint paper in progress
of Cremona, Siksek and myself [2]. This paper provides a method for calculating
an upper bound on the difference between naive and canonical height of points
on E(K). In Chapter 5, we describe a method for searching for all points on
E(K) of bounded naive height. In combination with Chapter 4, this means we
have a method for searching for all points of bounded canonical height on E(K),
and hence we can determine a lower bound A on the least canonical height of a
non-torsion point on E(K). Our bound A is a prerequisite for the three different
methods of calculating N described in Chapter 6. Two use the upper bound
and searching of chapters 4 and 5 to obtain A but the third uses analytical
techniques instead and it runs in far less time than sometimes lengthy searching

and calculation of the upper bound.

Finally, in Chapter 7, we bring together the methods of the thesis and demon-
strate the complete saturation process. We also demonstrate a method which

often succeeds in proving that sets of points on elliptic curves are independent.

1.2 Notation

The following notation has been used throughout the thesis:

11



Let E be an elliptic curve given by the Weierstrass equation:

E: Y24a XY +a3V = X3+ a X2+ as X + ag,

where ay,...,a¢ are in the ring of integers O of a number field K. These
inclusions of fields hold: Q € K € K; C K», where Q is the rational numbers.
K is the field of definition of the elliptic curve E, and K;/K and K,/K; are
finite, Galois extensions to be made specific later. Let K denote the algebraic

closure of K.
p is a rational prime; q is a prime ideal of K. Also, F; = Ok/q.
Let ¢, € K denote a p’th root of unity.

We also require the following notation:

Mg the set of all valuations on K,

MY the set of non-archimedean valuations on K,
Mg the set of archimedean valuations on K,

v a valuation on K,

Ny the local degree [K, : Qy].

Our canonical heights are double those in Silverman’s book, [21].

12



Chapter 2

A Local - Global Principle

for points on Elliptic Curves

In this chapter we present theoretical results which prove that the algorithm
for saturating at an individual prime p (see chapter 3) works correctly. Since
our technique of saturation involves projecting points Py, ..., P; on the elliptic
curve E(K), to points on reduced curves over finite fields, it is only natural that

a Local - Global Principle is such a result.

Define the natural maps

A : B(K) - E(F,)

A : B(K)/pE(K) — E(Fy) /pE(F,)

Define S = {q < Ok : q is a prime ideal and E has bad reduction at q}.

13



2.1 Statement of Theorems

Theorem 2.1.1.

(I] %) : E(K)/pE(K) < @) E(Fy)/pE(F
q¢S q¢s
18 injective.

Theorem 2.1.2.

VP € B(K)\pE(K),3q & S : Ao(P) & pE(Fy)

In fact for each such P there are infinitely many such q.

Given Theorem 2.1.1, since E(K) is finitely generated, there clearly exists a
rational integer N > 0 such that

Corollary 2.1.3.

E(K)/pE(K) — @ E(Fy)/pE(Fy) is injective
q¢S,N(q)<N

Theorem 2.1.4. Same as Theorem 2.1.1 restricting to N(q) = 1 (mod p) only.

2.2 Background on methods of proof

We prove all of these theorems using Galois Theory, Group Theory, and the

Chebotarev Density Theorem:

2.2.1 Statement of Chebotarev Density Theorem

Let K> be a finite Galois extension of K and set H = Gal(K2/K). To each
prime q of K unramified in K,/K there exists a conjugacy class of Frobenius
Ko/K

elements of H7 [Kz/K] qDKz - QIQ2 Qg and Vx € DKQ, .CL'[T] =
V@ (mod Q)

14



Theorem 2.2.1. (Chebotarev Density Theorem).[12] Using the above notation,
let 0 € H and suppose that o has ¢ conjugates in H. Then the set of primes
of K which have a prime divisor in Ka whose Frobenius automorphism is o has

density ﬁ .

2.2.2 Motivation for use of Galois Theory in proof

The strategy used in the proof of Theorem 2.1.2 is to consider Galois represen-

tations. Given
P € E(K)\pE(K) (2.1)
we wish to show there exist infinitely many q : N(q) = 1 mod p such that
Aq(P) € E(Fq)\pE(F, ). (2.2)

We have a polynomial equation whose roots correspond to solutions @ € E(K)

of p@Q = P.

(2.1) <= this equation has no rational roots.

(2.2) <= this equation has no roots mod q.

Conditions (2.1) and (2.2) can be reinterpreted in terms of Galois actions.

2.2.3 Definitions of Galois extensions used in the proof of

the Local -Global Principle

Take E(K) and p a prime. Then:

Elp] = {T € E(K) : pT = 0}

15



As an abstract group, E[p] = (Z /pZ)?. This is however a non-canonical isomor-

phism as it relies on a choice of basis for E[p]: Ty, T>.
Elp] is also a Galois module. Take Ky = K(E[p]) = K(z1,y1,22,y2) where

T; = (z;,y;) so that all points in E[p] are defined over Kj.

K3 /K is a finite extension, and is Galois since the algebraic conjugate of any
T in E[p] is also in E[p]. Let G = Gk = Gal(K/K). Then VT € E[p],Vo €
G, T € E[p]. So G acts on E[p]. The kernel of the action is Gk, using the
obvious notation, since, o € G and o acts trivially on E[p] < TY =T; and

T;ZTZ < o fixes Z1,Y1,T2,Y2 < o fixes all of K; <— UGGKl.

Gk /Gk, = Gal(K1/K) is finite and acts faithfully on E[p].

p:Gx/Gr, — AutE[p| = B < GL(2,Z/pL),

Tf = ClaTl + ba-T2,
T; = CaTl + da'T2;
a; b
orp@)=| " 7 |,
¢y dy

p: GK/GKI — GL(25Z/pZ);

deg(K1/K) < |GL(2,Z/pZ)| = (p” = 1)(p” — p)-

Now let Q € E(K) and choose Py € E(K) such that pPy = Q. Note that:

{P € BE)|pP = Q}
— {Py +T|pT = 0}

= P + E[p].

Let

1
K, = K(EQ) = K($17y17"'7mp27yp2)7

16



where

P; = (z4,y;) € Py + E[p] for i = 1,...,p%

We have K1 € K, since VI € E[p|, T = (Po+T)—PF, € E(K>). This is because
(P() + T) S E(K2)7 and P() S E(KQ) So K2 = Kl(PO)

The field extension K3 /K; depends on point () only whilst the extension K; /K

depends on p only, not on Q.

2.3 Proof of the Principle

We prove Theorem 2.1.1 in stages by proving lemmas that imply it. Lemma

2.3.1 is the first such.

Lemma 2.3.1. (Analysis of Galois Groups.) For p a rational prime, set
Ky, = K(I—IJQ) for @ any point chosen on E(K). Then there is an injective
homomorphism p : Gal(Ky/K) — AGL(2,TF,).

We observe that the following holds, although it is not necessary for our proof.

Lemma 2.3.2. (Serre) If E(K) does not have complex multiplication, then for
almost all p, p(Gal(K1/K)) = GL(2,Z[pZ).

Proof. See [16]. O

2.3.1 Some prerequisites and implications of Lemma 2.3.1

Lemma 2.3.3. K1/K and K»/K are unramified outside p and primes of bad

reduction for E.

Proof. 1. Suppose q is a prime of K, which is not a divisor of p nor a prime
of bad reduction for E, with Q being one of its extensions to K;. Then
the condition K;/K is unramified at 9 is equivalent to the extension

K, /K4 being unramified with K; o and K, being the local completions

17



of K; and K at £ and q respectively. [19, Theorem 7.1 on p.184] implies
that K(E[p]) = K; is unramified outside p and primes of bad reduction

for E as required.

2. The field K1 depends on p and E whilst K> depends on the point @) being
divided by p. There are only finitely many fields K because E(K) /pE(K)
is finite. Define L = K([p| 'E(K)), the compositum of all fields K.
Then, [19, Proposition 1.5, p.193] implies that the extension L/Kj is un-
ramified outside of our set. Together with our proof in (1) above that
K, /K is unramified, this proves that K,/K is unramified outside of our

set.

O

Lemma 2.3.4. Take 0 € Gal(K3/K) and p as in Lemma 2.3.1. We have
p(o) :x € F) = Mz +v where M € GL(2,F,) and v € F, Then it follows that:

detp : 0 — det(p(c)) = det(M) € F;

P

is the p’th cyclotomic character of H. This means, Yo € Gal(K /K), G = ;}(")

for some n(0) € F;, where n(c) = det(p(0)).

Proof. 1. For o € Gal(K;/K), a standard result which follows easily from
properties of the Weil Pairing is that det(o) is the cyclotomic character

of H.

2. Identify Gal(K,/K) with a subgroup of AGL(2,F,) by fixing a basis for
E[p]. Each o € Gal(K,/K) has the form z — Mz + v where M =

p(o|K1) € GL(2,F,). So 0 — det M is the cyclotomic character by (1).

O

Remark 2.3.5. Regarding Lemma 2.3.4, the Weil Pairing implies that (, € K.
In what follows, q is a prime of K, and pt N(q). Also q is of good reduction
(so by Lemma 2.3.3, K1/K is unramified at q.)

18



Lemma 2.3.6. det(p(Frobg)) only depends on q.
det(p(Frobg)) = N(q) (mod p).

Proof. Extending the proof of Lemma 2.3.4, taking o = FrobfQ we get det(p(0)) =
N(q) (mod p), since on (, the effect of FrobQ is ¢, — Q,J,V(q).

Note that although Frobgy does depend on which prime 9 above q we take , it
only does so up to conjugacy, so the determinant of p(Frobg) is a well-defined

element of F) depending only on q not on Q. O

2.3.2 Proof of Lemma 2.3.1

For o € Gal(Ky/K;) set T, = P§ — P,.

Note that T, € E[p] since

pT, = pP§ —pPo =(pF)° — (pFo)
=Q°-Q

=0 since Q € E(K).

Moreover for all P € Py + E[p] we have, for o € Gal(K2/ K1),
P'—P=(F+T) - (Po+T)=P -FR =1,

(since T” =T, so o acts on Py + E[p] by translation by T,.

Moreover it is easy to check that the map o — T, is a homomorphism Gal(K>/K;) —

E[p]. As it is clearly injective we have

Gal(K» /K1) — E[p| = (Z /pZ)*.

Thus o € Gal(K>/ K1) acts as a translation.

19



Recall E[p] = (T1,T>). We have that Gal(K,/K) acts faithfully on
Py + E[p] = {P() + T + STQ'(’I’, S) S ]Flz,}

Identifying this set with F2 allows us to identify Gal(K>/K) with a subgroup
of AGL(2,F,). For o € Gal(K»/K),

(PO +'I'T1 +ST2)J = Pg—f-'f'lTl +SIT2 = T0-+P0+TIT1 +SIT2,

where

p(o) =
and here p(o) = p(o|K1). Writing T, = r,T1 + s,T» we have
(P() + 'I"Tl =+ STQ)O. = P() =+ ’f'"Tl =+ S"TQ,

where

So the induced action on v € F2 is

o:v+— Asv+ by,

To
where A, = p(o|K1) € GL(2,F,) and b, = €
So

ot

20



2.3.3 A Group Theoretical Result

Proposition 2.3.7. Let H < AGL(2,F,) have the property that every h € H
has a fired point (in the natural action of AGL(2,F,) on F). Then H has a
fized point. Moreover it is enough to assume that every h € HNASL(2,F,) has

a fized point.

Lemma 2.3.8. If H has an orbit of size n, {Py, Ps,...,P,} and ptn then H

has a fized point Py = L(PL + P, + ...+ P,)

Proof of Lemma 2.3.8: Clear. O

2.3.4 Proof of Proposition 2.3.7

H acts on F2 since H < AGL(2,F,). All elements of H have a (possibly differ-
ent) fixed point. Define Hy=HNASL(2,F,). Define (4,v) (A € GL(2,F,) and v €
F2) to denote the element of AGL(2,F,) which acts upon € F2 according to
z — Az +v. Consider the group homomorphism ¢ : AGL(2,F,) - GL(2,F,)
mapping (4,v) — A. For any non-identity element L € Ker¢ then L is a trans-
lation so L ¢ H as L has no fixed point and so ¢ g has a trivial kernel. Hence
H = ¢(H) < GL(2,F,)

= [H|[|GL(2,F,)| = (0* = 1)(»* —p) = (p — 1)*p(p +1)

If p does not divide |H| then the size of all orbits in F (which divide |H|) are
coprime to p and so by lemma 2.3.8, there is a fixed point as required. If p| |H|
then p||H0| (since |H/H0||p —1.) By Cauchy’s Theorem, Hy has an element h
of order p. By assumption h has a fixed point z € ]Ff,.

|H|

(h) < Stabg(z) = |Orbu (z)| = |Staby ()]’

is coprime to p.

Hence there is an H-orbit of size coprime to p, which by lemma 2.3.8 concludes

the proof. O
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2.3.5 A Remark to the proof of this theorem.

The crucial fact about H which we needed is that ord,(|H|) < 1 so the Sylow-
p-subgroup of H is cyclic. A cyclic Sylow-p-subgroup is necessary so that we

can choose a generator h € Ho with fixed point z € F> and hence |Orby ()| is

coprime to p.

2.3.6 Proof of Theorem 2.1.1

(This is an application of the Proposition 2.3.7.)

K, /K is unramified away from p, and factors of the conductor of E by lemma
2.3.3. By Chebotarev, each h € H = Gal(K3/K) has the form Frob(Q) for

infinitely many prime ideals Q <1 K> : Q¢ p and Q 1 cond(E).

H acts on {P : pP = }. This means H has a fixed point P <= @ € pE(K).
Writing each element h € H as a Frobenius associated to a prime £ it is clear
that h has a fixed point in its action on {P € E(K) : pP = @} if and only if it
has a fixed point in its action on {P € E(Fq) : pP = A\q(Q)} it has if and only
if A\q(Q) € pE(Fq). This completes the proof.0]

2.3.7 Proof of Theorem 2.1.2

Follows immediately from proof of Theorem 2.1.1 above noting that the Frobe-

nius Density Theorem gives infinitely many such ¢.0]

2.3.8 Proof of Theorem 2.1.4

If @ is in the kernel of all the maps

E(K) = E(K)/pE(K) - E(Fy)/pE(Fy)

for ¢ S,N(q) = 1 (mod p) then in the notation of the proof of Theorem 2.1.1

above, we have that each h € H N ASL(2,F,) has a fixed point since (from

22



det p = x) we see that det(p(Frob(q))) = 1 (mod p) < N(q) =1 (mod p)

Hence Proposition 2.1.4 follows, using the last part of Proposition 2.3.7.00

2.4 Alternative proofs of the Local - Global Prin-

ciple for points on Elliptic Curves.

After we proved Theorem 2.1.1 in 2001, several other papers came to our at-
tention which proved the same (or similar) results independently in different

contexts. We now discuss some of these.

Cassels and Flynn’s book, “Prolegomena to a middlebrow arithmetic of curves
of genus 2”7, [1, Chapter 6, section 9, page 61, “A Pathology”] says “we construct
a curve C of genus 2 and an element A of its jacobian, both defined over Q, such
that (1) A is not divisible by 2 over Q, but (2) A is divisible by 2 over every Q,
and over R. It is not difficult to see that the analogous behaviour is impossible

in genus 1.”

The last sentence claims what our result says, with K = Q, and p = 2 that
a point on an elliptic curve over Q is divisible by 2 over Q if and only if it is
divisible by 2 over all @, and over R. Our result is more general, in that it
replaces 2 by a general prime, and allows certain subsets of the Q,. Cassels and

Flynn demonstrate here that our result cannot be extended to genus 2.

Our next result is from R. Dvornicich and U. Zannier, “Local-global divisibility
of rational points in some commutative algebraic groups”, [6]. The context here
is of a commutative and connected algebraic group defined over a number field;
this would include abelian varieties as a special case, and elliptic curves a special

case of that. One of their results is:

Theorem 2.4.1. Let E be an elliptic curve defined over a number field K. If
a point P € E(K) is divisible by p in almost all E(K,), then it is divisible by p
in E(K).
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G.J. van der Heiden at Groningen (NL) also proves the same result in his paper
[11] in which the main emphasis is on whether a similar result is true for Drinfeld

modules (which it is not in general).
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Chapter 3

p-Saturation of Points on an

Elliptic Curve.

Definition 3.0.2. We write E(K) = E(K)/Tor(E(K)), with T being the quo-

tient map.

Suppose we have s independent points, P; ... P,, on an elliptic curve E of rank

r over K. These could be obtained by 2-descent for example.
Let G = E(K), s <r, H=(r(P,),...,7(P,)) < E(K).

We have developed a computer program ! which finds s independent points
P!, ..., P! where 7(P}),...,7(P!) span a subgroup H' of E(K) with [H' : H]
finite and maximal. The program uses our algorithms which are described here
and are either original or are improvements of those devised by Prof Cremona’s

previous student, Samir Siksek. Note that my method will clearly not find all

of B(K)if s <r.

Definition 3.0.3. Suppose p is a rational prime, and L < G. L is said to be
p-saturated in G if 3J : L < J < G with [J : L] = p.

1See www.maths.nott.ac.uk/personal/pmxpm for the MAGMA implementation of the al-
gorithms in this thesis.
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Definition 3.0.4. With the same notation, L is said to be saturated in G if

3J: L <J <G with [J : L] finite and bigger than 1.

Remark 3.0.5. Clearly, using the same notation, H is saturated iff it is p —

saturated Vp where p is a rational prime.

In later chapters, we use geometry of numbers arguments and often searching
for points of low canonical heights to obtain an upper bound on {p : (Py,..., FPs)
is not p-saturated}. In this chapter we describe our algorithm for saturating at

a given rational prime p and give examples.

To check p-saturation for given p, we need to prove there are no non-trivial

solutions to:
s t
pQ = ZaiPi +ijTj, (31)
i=1 j=1

where T} : j < 2 are a basis for the p-power torsion points of E(K).

=L vectors (a,b) :

The direct method of solving equation 3.1 is to check all pj:
0 < a;,b; < p — 1 representing all 1-dimensional subspaces of IF;“ and see if

equation (3.1) has a solution.

The direct method is simple to understand and program?, but it has a disad-

vantage that it takes too long for p or s large.

We define:
V,={@Db) withaeF,,beF,:ifa=a (modp) and b=b (mod p) then
s t
ZaiPi + Zb]’Tj € pE(K)}
i=1 =1

It is clear that V), is an F,- linear subspace of ]F;“, and that (P,...,P;) is

p-saturated if and only if V,, = {0}.

2See section 3.4 below for how to check whether a given point in E(K) actually lies in
pE(K) i.e. can be divided by p
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Our approach is to seek group homomorphisms ,, : E(K ) = F,. Then for all

(a,b) € V,, we have

> a@n(P) + Y bipn(Ty) = 0. (32)

So V}, C Kert,, where 1, : F**t — F, is the induced map.

If we can construct several such maps 11,2, ... then V, C [ Ker(t,,). Ideally,
each v, cuts down the dimension of (| Ker(¢,) by 1 and after s+t steps we will
show that V;, = 0. In any case, we will reduce the number of possible vectors

d

— where d = dim( Ker(yn)).

(a,b) to test down to &

3.1 Theory of using the Tate-Lichtenbaum Pair-

ing to find group homomorphisms

We show how our homomorphisms ,, are defined using the Tate-Lichtenbaum
pairing, and we identify the exact kernel of v, which is used to prove that our

method is an improvement on Siksek’s method in Section 3.3.

The Tate-Lichtenbaum pairing uses the isomorphism that exists between E(IF,)
and the class group of divisors of degree zero on E, by which P € E(F;) is

mapped to the class (P) — (00).

Proposition 3.1.1. (Tate-Lichtenbaum pairing) For p|N(q) — 1, E an elliptic

curve over Fy for q < O(K) there is a non-degenerate bilinear pairing:

E(Fq)[p] x E(Fq)/pE(F,) — Fy /T

defined as follows:

Take points P € E(Fy)[p] and P' € E(Fy). Define Dp and Dp: to be coprime
divisors in the class of (P)—(o0) and (P'")—(00) respectively. Since pP = O it

follows that p.Dp 1is the divisor of a function Fp, on E. The Tate -Lichtenbaum
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pairing is given by

N(q)-1

Oép:(P,P,)I—)FDP(DP/) P E]F*/ka.

Proof. Theorem from [8]. O

Equivalently to proposition 3.1.1, for each T' € E(F,) of order p there is a

surjective homomorphism:
fr: E(Fy) — F, /(F3)?, where P = o, (T, P)

with kernel containing pE(F,). If T and T5 are independent points of order p

then fr, and fr, are independent i.e. neither is a power of the other.

Hence the number of independent such maps is 0, 1,2 according to the p-rank

of |E(Fq[p])|- (See [19, Corollary 6.4 (b), page 89].)

3.1.1 Another equivalent definition of fr

Given T € E(Fy)[p|, we can define the function Fr € F, (E) up to multiplication
by a constant by

div(Fr) = p(T) — p(c0).

We define fr(P) for P € E(F;) to be Fr evaluated on the divisor (P) — (00) €
Pic°(E) using the usual association of points on E(K) with divisors in Pic?(E).
We have that fr(P) is well-defined modulo Fy/Fy? by this definition by Weil
duality: i.e. we can choose any divisor D linearly equivalent to (P)—(o0) and fr

gives the same answer modulo Fy /Fy? whether evaluated on D or on (P)—(00).

To evaluate fr(P), choose a non-identity point P’ € E(F;) such that P 4 P’
and P’ are both neither of T', Og. Since (P'4+ P)— (P')—(P)+(00) is a principal

divisor, (P) — (o0) and (P 4+ P') — (P') are linearly equivalent. Hence
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FT(P + Pl)
p)y="2f\" T2

fr(P) Fr(P)

noting that this is well-defined in Fy /Fg® by choice of P'.

There exists a p-isogeny ¢r to another elliptic curve E' [19, Proposition 4.12,

page 78] with dual isogeny q?)T such that

¢r : E — E', with Ker(¢r) = (T) < E(F,)
and
¢r:E - E

with

¢rér = [plp, and, ¢rér = [plE.

3.1.2 Identifying Kernel of Tate-Lichtenbaum maps

Lemma 3.1.2.

Ker(fr) = ¢r(E'(Fy)) < E(Fy).
Proof. We will first show that 3g € Fq (E’) : quBT = gP. We may need to scale
f to achieve this. This will prove that ¢r(E'(Fy)) C Ker(fr).
Choose S € E'(F,) with ¢7(S) = T. Let {TY,...,To} = Ker(¢7(E' (Fy))).

Consider

div(frér) = ¢4 (p(T) — p(c0))

=p(Y(SeT) - (T})

i=1

=pD,

where D is Fy-rational since the Galois action G = Gal(Fy/F,) will permute
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the preimages of T (since both T and ¢ are [Fy-rational) which are the S + T

and so G takes D to itself.

D=3%" (SeT}) — (T}) is principal because
pS = ¢r(9r(S))
=¢r(T) = 0.
So D = div(g) for some g € Fy(E").
div(frer) = p.div(g) = div(gP),
fT¢A>T = ¢gP for constant c.

Scaling fr gives

frér =g
as required.

We next show that

[B(F,) : $r(F'(F,))] = 1 or p.
We know from [19, Ex 5.4 page 145] that |E(Fy)| = |E'(Fy)|. Thus

;o |B(F,)|

E(F,) : E'(F, = ———

(B : b2 )] =

_ BB Kerdr (B'(Fy))
(B (F, )|

= |Kergr(E'(Fy))]

=1lorp.

As fr is a Tate-Lichtenbaum map and hence non-degenerate, Ker(fr) has index

p and so Ker(fr) = ¢r(E' (Fq)) by the above result. O
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3.2 Our application of the theory of

Tate-Lichtenbaum maps.

In their paper, [9], Frey-Ruck-Muller use the Tate-Lichtenbaum pairing to re-
duce a discrete logarithm problem on an elliptic curve over a finite field to a
discrete logarithm problem over a finite field. This is of use in work on Elliptic

Curve Cryptosystems.

We however use the Tate-Lichtenbaum pairing to calculate the group homomor-

phisms 1,, as defined at the beginning of this Chapter 3.

Theorem 3.2.1. Suppose that Py, ..., P, are p-saturated in E(K) Then, when
we generate linear equations (3.2) for all prime ideals q < K : N(q) < Ng for
Ny incremented from 0, using the Tate-Lichtenbaum pairing, we shall prove our

points are p-saturated in finite time.

Proof. Define {tp q.y : y € 1,...,y0} to be the maps fay, : E(Fy) — F, derived
from the Tate-Lichtenbaum pairing @, composed with a discrete logarithm map
B: Fy/Fg" — F,. Here, yo is one of 0, 1,2 according to the p—rank of E(F,)[p]-
Since [, Ker(¢p,q,y) = pE(Fq) by proposition 3.1.1 it follows that the set of

linear equations in {a;,b;}
{Z ai¥p,q,y(Aq(F3)) + Z bi¥p,ay(Aq(T;) =0:y=1,...,90} (33)
i J

is solved iff ) a;Aq(P;) + Y b Aq(T;) € pE(F,).

Taking Ny as in corollary 2.1.3, we see that if we form our linear equations for
all g with N(q) < No and with N(q) = 1 mod p then for any simultaneous
solutions {a;,b;}, we have > a;Aq(FP;) + > bjAq(T;) € pE(Fy) for all q in this
range, and so by the injection of corollary 2.1.3, >~ a;P; + > b;T; € pE(K).
As we are in the p-saturated case, a;,b; € pZ, meaning that the only common
solution to equations 3.3 taking all g in this range is the trivial solution. Thus

in finite time we prove V,, = 0 as required. |
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In practice, we will apply this algorithm without knowing whether or not the
given points are p-saturated. If the algorithm doesn’t terminate after a very
short time, then it is almost certain that the candidate generators are not p-
saturated. The current linear equations can in this case be used to restrict
possible solutions to Equation (3.1), which can be searched through as in the

direct method.

Remark 3.2.2. In the proof above, (), Ker(vp,q,y) = pE(Fy). This is a sub-
group of E(Fy) of index p* when |E(Fq)[p]| = p®. However, Ker(vp q.y) is a
subgroup of index p as in lemma 3.1.2, so using just one homomorphism Vp 4.4

in the algorithm would not suffice in this proof.

3.2.1 Evaluating Tate-Lichtenbaum pairing to obtain the
Un

We explain here how to calculate the maps used in the proof of theorem 3.2.1.
We only consider q where E(Fy) has a p-torsion point, P.

We need to calculate the Tate-Lichtenbaum pairing for as many q : N(q) =
1 mod p, as are necessary on the r+s points in {P;,T;}. We believe that the

most efficient way to do this is to use the idea in the Frey-Ruck-Muller paper

[9]-

3.2.2 Summary of method in Frey-Ruck-Muller paper [9]
for evaluating Tate-Lichtenbaum pairing.

We choose Dp = (P) — (00). We assume that Dp: is prime to all prime divisors

(r.P) for 0 < r < p. First a group law is defined on the set {r.P : 0 < r < p}x]F’s:

(r1.P,ay) @ (r2.P,az2) := ((r1 + r2).P,a1a2h(Dpr)),

where h is a function whose divisor satisfies:

div(h) = (r1.P) + (r2.P) — ((r1 + r2).P) — (00).
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It can be shown that this is a group law, and that in particular:
PO (P, 1) = (OE7FDP (DPI))

Hence in this group by repeated doubling and adding, one can evaluate Fp, (Dpr)

in O(logp) steps.

3.3 Shortcomings of Siksek method for finding

the group homomorphisms.

The Siksek method is as follows. Given E(K), a prime ideal ¢, and rational
prime p such that |E(Fy)| is divisible by p, but not by p?, we construct a group
homomorphism 7 : E(Fy) — F} with P € E(Fy) by

P), (3.4)

where v is a discrete logarithm on E(Fy)[p] to F/ .

The method has the advantage that it is not necessary for N(q) = 1( mod p).
In my implementation of this algorithm in MAGMA, I have encoded both the
Siksek method of calculating homomorphisms as well as the Tate-Lichtenbaum
pairing method. The Siksek method may not however, on its own, identify a

set of p—saturated points as being p—saturated. I discuss this now.

Theorem 3.3.1. Suppose we have E(Q) with the following properties:

1. There exists a p—isogeny ¢ : E — E', where E' and ¢ are defined over Q.
2. The dual isogeny, ¢ has kernel (T"Y < E'(Q) of order p.
3. E(Q) has rank 1 with generator P of the torsion-free group E(Q).

4. P is in the image of é(E’(Q))

Then T(Aq(P)) = 0 for any g a rational prime coprime to p and with 7 : E(F,;) —
FF

o, as in equation 8.4 and A\, : E(Q) — E(F,) is the reduction map.
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Thus if setting ¢ = p does not generate a homomorphism which establishes
p—saturation by the Siksek method, then p—saturation will never be established

by this method.

Proof. Take g coprime to p. The p—isogenies on E(Q) reduce to p—isogenies
on E(F;). Also for g coprime to p, then E(Q)[p] maps injectively under A,
to E(Fy)[p], see [19, Proposition 3.1 b), page 176]. As in the proof of lemma
3.1.2, [E(F,) : $(E'(F,))] = |Ker¢(E'(F,))| = p. We have that Ker(r) is of
index p since image has order p. Since the Sylow-p-subgroup of E(F,) has order
p, there is a unique subgroup of index p and so Ker(r) = ¢(E' (Fy)). Hence
A¢(P) € Ker(7) as required. O

3.3.1 Examples of where Siksek method fails.

A 3—saturation example.

We take the elliptic curve E:
y? + zy = 2° — 24432 — 1471934

over Q which is in the Cremona Database on MAGMA, referenced “254A3”.

This has a 3—isogeny, ¢, to a curve E'

sy gy gs 3391 39634253
yraw= 3 27

which is isomorphic to curve “254A2” from the Cremona Database.
The dual isogeny, ¢ has kernel {(812 : 9881 . 1) (812, 10693 . 1) ((): 1 : ()} of
order 3.

The generators of the Mordell-Weil group of E and E' modulo torsion are P =

__ 36131 . 361307 . f _ (_ 4153 . _ 1081 .
(=500 “gooo : 1) and P' = (="* : —F55 - 1).

Since ¢(P') = P, it follows that P € ¢(E'(Q)).
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Thus this example fulfils the conditions of our theorem. When we ran our pro-
grams with this example using Siksek’s method, we indeed found that 3—saturation
was impossible to confirm with any reasonable range of auxiliary primes q. How-
ever, using Tate-Lichtenbaum maps we have demonstrated that the curve and

points are 3—saturated.

Some 2—saturation examples.

Repeating our analysis with the following curves and their generators gives that

these cannot be proved 2—saturated with the Siksek method.

The curves are listed by their reference in the Cremona Database:

65A1,82A42,102A42, 11241, 117A2, 12841, 130A1.

3.4 Finishing off saturation manually.

This section uses the same method as [18]. If the saturation process has not
been successful in proving V}, = 0 then it will leave us with a non-zero subspace

V, = N Kery, of F** containing V.

We define a projective subset of Vp’ which we denote by S, with the following

properties:

1. if (a1,...,ar,b1,...,b5) € Sp, then |a;|, |bi| < (p —1)/2 unless p = 2 in

which case a;,b; =0 or 1,

2. for every (@i,...,ar,b1,...,bs) € V, \ {0}, there exists exactly one
(@1,...,ap,b1,...,bs) €Sy such that

@i, .-, @ryb1,...,bs) = Blas,...,ar,bi,...,bs) mod p) for some B € F,,.

It is clear that all that remains is to check for all (ag,...,ar,b1,...,bs) € Sy, if
T S
Z a; P; + Z bjTj = pQ (35)
i=1 j=1

35



for some @) € E(K).

For each (by,...,br4s) € S, the equation 3.5 has up to p? solutions in E(K)
and a simple MAGMA function allows us to find these solutions via the division

polynomial.

In our algorithm, if there is no solution to equation (3.5) then our points are
p— saturated and the algorithm terminates. Otherwise we choose a solution,
(). We are then able to replace one of the P; with @ and can then repeat the
whole algorithm at p to see if our points are now p—saturated. This process will
finish in finite time because the index of (P,..., P,) in its saturation is finite

and with each round of the algorithm, the index decreases by a factor p.

3.5 Special case of saturation at p = 2

In Cremona’s paper [3], 2-saturation is covered and he has a proof that his
method will prove 2-saturation in finite time for 2-saturated inputs. The method
relies on discrete calculations, finding roots of cubics and evaluating quadratic

characters modulo primes. Our method generalises this to arbitrary primes p.

3.6 Examples of proving Saturation at a given

rational prime

3.6.1 Curve of rank at least 24 over QQ

This example was found by the N.S.A using methods that they have not dis-
closed. Our points were obtained by applying LLL-reduction to the points in

the release.
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y* +zy +y = 2° — 120039822036992245303534619191166796374x

+ 504224992484910670010801799168082726759443756222911415116

with 24 independent points:

(2005024558054813068 : —16480371588343085108234888252: 1),
(—4690836759490453344 : —31049883525785801514744524804 : 1),
(4700156326649806635 : —6622116250158424945781859743 : 1),
(6785546256295273860 : —1456180928830978521107520473 : 1),
(6823803569166584943 : —1685950735477175947351774817 : 1),
(7788809602110240789 : —6462981622972389783453855713 : 1),
(27385442304350994620556 : 4531892554281655472841805111276996 : 1),
(54284682060285253719/4 : —296608788157989016192182090427/8 : 1),
(—94200235260395075139/25 : —3756324603619419619213452459781/125: 1),
(—3463661055331841724647/576 : —439033541391867690041114047287793/13824 : 1),
(—6684065934033506970637/676 : —473072253066190669804172657192457/17576: 1),

(—956077386192640344198/2209 : —2448326762443096987265907469107661/103823 : 1),
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(—27067471797013364392578 /2809 : —4120976168445115434193886851218259/148877: 1),
(—25538866857137199063309/3721 : —7194962289937471269967128729589169/226981 : 1),
(—1026325011760259051894331 /108241

: —1000895294067489857736110963003267773/35611289 : 1),
(9351361230729481250627334 /1366561

: —2869749605748635777475372339306204832/1597509809 : 1),
(10100878635879432897339615/1423249

: —5304965776276966451066900941489387801/1697936057 : 1),
(11499655868211022625340735/17522596

: —1513435763341541188265230241426826478043 /73349586856 : 1),
(110352253665081002517811734 /21353641

: —461706833308406671405570254542647784288/98675175061 : 1),
(414280096426033094143668538257 /285204544
266642138924791310663963499787603019833872421/4816534339072: 1),
(36101712290699828042930087436,/4098432361

: —2995258855766764520463389153587111670142292/262377541318859 : 1),
(45442463408503524215460183165/5424617104

: —3716041581470144108721590695554670156388869,/399533898943808 : 1),
(983886013344700707678587482584 /141566320009

: —126615818387717930449161625960397605741940953 /53264752602346277 : 1),
(1124614335716851053281176544216033 /152487126016

: —37714203831317877163580088877209977295481388540127/59545612760743936 : 1).

We give below the calculations to prove that this set of points is saturated at
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p = 3. At each rational prime ¢ with #E(Fy) divisible by p, we use either the

Siksek method or the Tate-Lichtenbaum method of finding a homomorphism

©¥n. These are applied to the 24 points to generate a row of a 24x24 matrix

in Z/3Z. Note that two rows of the matrix are derived for ¢ = 43, where the

Tate-Lichtenbaum method has been used. The program checks that new rows

are independent of previous rows.

p= 3 g=
[0, 1,0
p= 3 g=
[0, 0,0
p= 3 g=
[2,1, 1
p= 3 g=
[0, 1,0
p= 3 g=
[0, 1, 2
p= 3 g=
[1, 2, 2
p= 3 g=
[1, 0, 1
p= 3 g=
[2, 2,1
p= 3 g=
[ 1, 0, 2
p= 3 g=
[1, 2, 2
p= 3 g=
[1, 1, 2

p= 3 g=

37 #E(Fq)= 48 new

43 #E(Fq)= 54 new
2,1,1,1, 2,2, 2,
43 #E(Fq)= 54 new
1, 1, 0, 0, 1, 1, 2,
47 #E(Fq)= 60 new
0, 2,2,2,1,1, 2,
61 #E(Fq)= 72 new
0, 0, 2, 0,1, 2, 2,
71 #E(Fq)= 87 new

1, 2,2,2,1, 2, 2,

113 #E(Fq)= 123

row 6

2, 0, 0, O,

new row

0,1, 1,0, 1, 2, 0, 0, O,

127 #E(Fq)= 135

new row

0,1, 0, 2,0, 0, 0,1, 0,

131 #E(Fq)= 147

new row

1, 2,1,2,2,1, 2,2, 2,

163 #E(Fq)= 174
1, 0, 0, 2, 2, 2, 2,
179 #E(Fq)= 204
2,1, 0,2, 0,0, 0,

181 #E(Fq)= 204
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[0, 1, 2,
p= 3 g=
[1, 1, 2,
p= 3 g=
[1, 0, O,
p= 3 g=
[1, 0, 2,
p= 3 g=
[0, 1, 2,
p= 3 g=
[1, 0, 1,
p= 3 g=
[0, 0,1,
p= 3 g=
[ 2, 2, 0,
p= 3 g=
[1, 0, O,
p= 3 ga=
[o, 1, 2,
p= 3 ga=
[o, 1, 1,
p= 3 g=
[1, 0, 1,
p= 3 g
[1, 1, 1,

saturation

0, 2,2, 1,0, 2,
211 #E(Fq)= 237
1, 0, 2, 0, 2, 1,
223 #E(Fq)= 246
2,1, 1,0, 2, 2,
233 #E(Fq)= 264
2,1, 1,0, 0, 1,
251 #E(Fq)= 267
2,1,2,0,1, 2,
263 #E(Fq)= 264
2,0,0,1, 2,2,

281 #E(Fq)= 264

307 #E(Fq)= 315
0, 2,1, 2, 2,0,
311 #E(Fq)= 330
2,1, 2, 0, 0, 2,
317 #E(Fq)= 336
0,2,2,1,0, 2,
347 #E(Fq)= 375
1, 2, 0, 2, 2, 2,
359 #E(Fq)= 384
0,1, 2,1,1, 1,
373 #E(Fq)= 393

2,2,0,2,0, 1,

complete at p = 3.

0, 0, O,
new row
2, 2, 1,
new row
1, 0, O,
new row
0, 2, 2,
new row
2,1, 0,
new row
2, 0, 2,

new row

new row
2, 0, 2,

new row

new row
2,1, 2,
new row

2, 0, 2,

Further results for this curve are in section 6.4.3
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3.6.2 Curve of rank at least 2 over a number field.

The curve is over number field K given by:

K = Q[f] where ° +56° +50 —1 =0

with equation:

and points:

E:y? =2° + (—300° — 1006 + 30)x? + (5000* —
60062 4 50062 — 17006 + 300)z + (40006*

— 280006° — 570006 + 11000)

(—256* + 100° — 12567 + 250 — 10 : 2756* — 256% + 14256 — 50 : 1),

(—208* + 906% — 2062 + 1808 — 30 : 8008* + 2006° + 12006% — 2006 : 1).

This curve and set of points is from a paper by Halberstadt and Kraus [10]. In

their paper they needed to demonstrate that this example is saturated.

We saturate at p = 5. The sieving for curves over number fields works exactly

the same as over QQ except that we look through the ideals that are prime factors

of the rational primes q.

p=5

p= 5 g=
#E(FQ)=

p= 5 g=
#E(FQ)=

7 Q = Prime Ideal of R: (7,11+t)
10 newrow 1 = [1, 1]
43 Q = Prime Ideal of R: (43,76+t)

50 newrow 2 = [1, 4]

saturation complete at p = 5.
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Chapter 4

Calculation of Upper
Bound for the Difference
between Naive and

Canonical Height.

I enclose the results here from a joint paper in progress, [2], co-authored by
Cremona, Siksek and myself. Siksek originally derived a method for calculating
an upper bound for the difference between naive and canonical heights of points
on an elliptic curve in his thesis [17]. We implemented that method as part of
our saturation algorithm. We observed inefficiencies in the method, in particular
whether the local contributions to the bound at finite primes could be obtained
simply from the Kodaira symbol. Siksek also had thought of this - see concluding
remarks of [18, p.1536]. After a meeting of the three of us, Siksek then drew on
our examples and experience of how the method could be improved and worked
out the details of calculating local contributions from Tate’s Algorithm and it

is this work I summarise here.
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4.1 Statement of the Difference in Heights Bound

Theorem.

The following notation is relevant to non-archimedean valuations v.

ky the residue field corresponding to v,
Oy ring of integers in K,
Qv the cardinality of the residue field k,,.

Let E be an elliptic curve given by the Weierstrass equation

E: y* + a1y + azy = 2° + a2a” + a4z + ag, (4.1)

where a1,...,ag are in the ring of integers O g of K. We define the usual

associated constants (see [19, page 46]) as follows.

by = a2+ 4as,
by = 2a4+ ayas,
be = a3+ 4as,
bs = alas+ 4azae — ajasay + azal — a3,
A = —b3bg — 8b] — 27bZ + 9babybs.
Let
f(P) = 4x(P)? + byx(P)? + 2bsz(P) + bg (42)
g(P) = z(P)* - byz(P)? — 2bgx(P) — bs.
Define the function &, : E(K,) — R by
1 if P=0,

max{|f(P)|v,|g(P)|v}
max{1,|$(P)|v}4

otherwise.

It is easy to see that @, is a continuous and hence bounded function on E(K,)
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[ Kodaira type of EI"™ at v | Tamagawa index ¢, | Qy |

any 1 0
L., m even 2orm m/4
Ln, m odd m (m? —1)/4m
111 2 1/2
v 3 2/3
I3 2or4 1
I 2 1
I 4 (m+4)/4
v* 3 4/3
I+ 2 3/2

(the boundedness follows immediately from the fact that E(K,,) is compact with
respect to the v-adic topology). Define

et= inf ®,(P), ;1= sup &,(P), (4.4)

PeEE(K,) Y PcE(K,)

where the exponents —1 have been chosen to simplify the formulae appearing
later. In [18, Lemma 2.3, page 1508] it is shown that €, exists (i.e. the infimum

is not 0) and satisfies €, > 1. A similar argument shows that ¢, exists.

We define naive height h(P) : P € E(K) in Chapter 5. The canonical height

~

h(P) is defined by

lim 4-Nh([2V]P).

N—oo

For each non-archimedean valuation v, let E™" be a minimal model for E over
K,, and let A™" be the discriminant of E™". Thus we can take E™" = F
and A" = A for almost all non-archimedean valuations v, and they are always
equal if the model E is global minimal. For non-archimedean valuations v define
the constants a,, according to the Kodaira type of E™" and the Tamagawa index

¢, as in the table above.
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Theorem 4.1.1. For all P € E(K),

1 N 1
3[K . Q] UE%IO{O Ty log‘sv < h(P) - h(P) < 3[K . Q] Ue%? Ny IOgCU
1 1 min
‘g L (0 + gordu(araz™) tog(a,)

Definition 4.1.2. We refer to the upper bound in the above theorem as the
Cremona-Prickett-Siksek bound (C.P.S.) in this thesis.

The following theorem is a byproduct of the proof of Theorem 4.1.1. In essence
it says that the bounds are sharper if we restrict ourselves to points that have
everywhere good reduction. This result has proved highly useful in the bounding

of the saturation index bound in Chapter 6.

Theorem 4.1.3. Suppose P € E(K). If P € Eq(K,) for all non-archimedean

valuations v then

1 N
3K -Q Z ny log 6, < h(P) — h(P) _3[K 3 Z Ny log €.

vEME? vEME?

4.2 The Real Contributions

To be able to compute the bounds in our Theorem 4.1.1 we need a method for
determining ¢, and €, for archimedean valuations v. In this section we give
such a method for real valuations v. Thus suppose that v is a real valuation;
in other words, there is an embedding o : K — R such that |a|, = |o(a)| for all
a € K. To ease the notation, we will henceforth think of all elements of K as

lying in R via this embedding o.

Write

fl@) = 423 + bya? + 2bsz + bg,

g(x) = z*— byx® — 2bgx — bs.
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and let

F(z) =2'f(1/z),  G(z) =2*9(1/2).

Define

D = {ze[-1,1]: f(z) >0},
D' = {ze[-1,1]: F(z) > 0}.
The following lemma is elementary.

Lemma 4.2.1. Define constants d, d' by

d = infyepmax{|f(z)],|9(z)|},
d = infzeD'max{‘F(m)|:|G($)|}:

and constants e, €' by

e = sup,epmax{|f(z)],|g(z)|},
e/ = sup,cp max{|F(z)|,|G(z)|}.

Then €, = min(d,d')~! and &, = max(e,e')~ 1. where €, and &, are as defined

in 4.4.

It is clear that D, D' can be written as finite unions of disjoint closed intervals.
Moreover the problem of determining d,, and €, has been reduced to the problem

of determining d, d', e, e'. This is straightforward by the following lemma.

Lemma 4.2.2. If f, g are continuous real functions and I is a closed interval
then the infimum and supremum of the continuous function max {|f(X)|, |¢(X)|}

over the interval I are attained at two of the following points

(1) an end point of I,
(#) at one of the roots of f, g, f + g, [ — g in the interval I,

(i%3) at a turning point of one of the functions f, g.
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4.3 The Complex Contributions

In this section we consider the determination of §,, and ¢,, for complex archimedean
valuations v. As in the previous section, think of all elements of K as lying in

C via a suitable embedding.

Let f, g, F, G be as in the previous section, and now let D = {z € C: |z| < 1}

be the unit disc. The following lemma is elementary.

Lemma 4.3.1. Define constants d, d' by

d = inf,epmax{|f(2)|,|g9(z)|},
d = inf.epmax{|F(z)],|G(2)|},

and constants e, €' by

e = sup,cpmax{|f(z)],|g(2)|},
e/ = sup,cpmax{|F(2)|,|G(2)|}.

Then €, = min(d,d')~! and §, = max(e,e')".

Write z = z+iy and f = fi1+if2, g = g1 +ig2 where f;, g; are real polynomials

inz, y.

Lemma 4.3.2. The supremum of the function max {|f(2)|,|g(2)|} on the region
D is attained at a point z = x + iy that satisfies one of the following pairs of

simultaneous equations:

e i+ fi=9+95, 2+y’=1,

2 2 2 2

° ya(f%:fz) _xa(f%‘;‘fﬂ =0, 22 +y2 =1,
2, 2 2, 2 .

o ya(gé:h) _ ma(glaﬁ;yg) -0, 22 +y? =1.

The infimum of the function max{|f(2)|,|9(z)|} on D is attained at a point

z = z + iy satisfying one of the above pairs of simultaneous equations or at a
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point z = x + iy belonging to the interior x> + y? < 1 and satisfying these two

simultaneous equations:

Ot +f3)0(gi +93) (f2+1£3) (98 +93)
2, #2_ 2, 2 i 3 1t9) Ui 2) 91 +9) _ o
fi+f5=91+g, 97 By By 97 0

To compute d, d', e, €' and hence €,, 6, we need to solve pairs of polynomial
equations in two variables. These can be solved using elimination theory. Once
these pairs of equations are solved we need to discard any solutions that do not

belong to D.

4.4 Silverman’s bound

Silverman gives an upper bound [20] on the difference between the naive and
canonical height of points on E(K). This is quick to calculate on a computer,
and so we have implemented both the Silverman and the C.P.S. bound and take

the lowest upper bound of the two.

Theorem 4.4.1. (Silverman) Let E(K) be an elliptic curve given by a Weier-
strass equation (4.1). Let A be the discriminant of the equation (4.1) and let j

be the j—invariant of E. Further let

o 2 ifba #0,
1 ifby=0.
Define ’height of E’ by
1 1 . 1 b2 1 *
W(B) = 75h(8) + Theoi) + ghao(72) + 3 log(2")
where fort € K,
hoo = 1 Z Ny log(max(1, |t],))
o [K . @] vEMIO(O v g ) v
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Then for all P € E(K),

h(P) = h(P) < 11—2h(j) + 2u(E) +1.922.

Proof. See [20]. O

4.5 Examples and Numerical Comparisons

Our examples only illustrate calculation of the C.P.S. upper bound, as the lower

bound has no application in this thesis.

Example 1. Consider the (randomly chosen) curve
E: v =2 + (14 5z + (3+1)

over the field K = Q(7).

We seek an upper bound for h — h using our Theorem 4.1.1. The discriminant
of the curve is

1280 + 4448i = —i(1 + 4)'°(40 + 139i),

where the last factor is prime. Since the discriminant was not divisible by
any 12-th powers we saw that the curve is global minimal. Our computer
program gave us the C.P.S. (Cremona, Prickett, Siksek) upper bound derived

from implementing this chapter of

h(P) — h(P) < 0.1149
for all P € E(K). Silverman’s bounds for the same curve are
h(P) — h(P) < 5.7584.

Example 2. Consider the curve E from Halberstadt and Kraus [10] which we
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have already used in section 3.6.2.

y? = 2 + (=300% — 1006 + 30)z* + (5000* — 6006° + 50062

— 17000 + 300)z + (40006* — 280006° — 570006 + 11000)

over Number Field K given by

K = Qlz]/(2° + 52° + 5z — 1).

The Silverman bound is 11.4279 for the difference of heights, and this was

calculated very quickly.

The C.P.S (Cremona, Prickett, Siksek) upper bound on the other hand took
longer to calculate, since it was necessary to calculate Groebner bases for the

complex and real prime valuations.

There are four complex valuations and one real valuation. The C.P.S upper
bound for all points was calculated to be 15.7283, larger than the Silverman

bound.

Next, we calculated the C.P.S. upper bound for the height difference for ev-
erywhere good reduction points. This was calculated to be 0.8850 since only
archimedean primes contribute and most of the contribution in the previous case

was from the non-archimedean primes. These two runs took % hour to execute.
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Chapter 5

Searching for points on

E(K) of bounded naive

height

Our aim is to describe an algorithm which finds all points on E(K) of bounded

logarithmic naive height < b, given b € R .

Using the method of chapter 4 to bound the difference d between naive and
canonical height, we will then have found all points of E(K) of bounded canoni-
cal height < b—d if that quantity is positive. The lower bound on the canonical

height of points is used in chapter 6 as a vital part of our Saturation Algorithm.
We require the following notation in addition to that defined in section (1.2).

For each non-archimedean or archimedean valuation, v we define n,, = [K,, : Q]

where K, is the completion of K by this valuation.

We write MY and M for the sets of non-archimedean and archimedean valu-

ations on K respectively, with Mg denoting their union.

The standard definition (see [19, pp.207] of naive logarithmic height of the point
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h(P) = h(z) = m 3" 1 max{0,log |z} (5.1)

with associated naive height:

H(z) = exp(h(z)) = H max{1, |z|, } &

and I also define

H®@) = [ max{1, o]},
veEM®

H(2) = ] max{1,]z.} 7,
vEMY

with
H(z) = H®(z)H(2).
For non-archimedean valuations we define for consistency,

—ordy (x)

|zly = N(p) ™™

For real archimedean valuations, v, take corresponding embedding o : K — R
and define

|zl =[l 2% [l=,

where || . ||r is the absolute value. For complex archimedean valuations, v, take

corresponding embedding a : K < C and define
|zl =[l 2 [|c,

where || . ||c is the absolute value.

Suppose h(P) = h(zx) < bforb € Rt. Let B = exp(b[K : Q]). Hence H(z)¥*¥ < B.
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It follows that
|z|l, < B7w V. (5.2)

Now, H(z) > H°(z) since H®(z) > 1 and so Ho(z)K*® < B. But taking
(z) = ab™', (a,b < O coprime ideals) it is clear that H°(z)¥*¥ = N(b) and
N(b) < B.

We search for all such ideals b : N(b) < B, assisted by the fact that b is a
perfect square ideal since it is the denominator ideal of the x coordinate of a
point. We find corresponding ideals ¢ such that b.c = (d) for principal ideals
(d),d € Ok. Hence for any P : h(P) =h((z : y : 1))= h(z) < b, it follows that

(z) = ac(d) ! for some a,c, and d chosen by our algorithm.

For each archimedean valuation v; there is a corresponding injection o; : K —

C, considering R as a subset of C for the real archimedean valuations.

Taking each d in turn from our list, and letting g; = £/ d’? we have

I 95 llc < Bl d” |lc,

g,] :Ztiﬂ-;j;

where m; is an integral basis for ¢ and ¢; € Z. Writing ¢t = (¢;) and P = (7}")
and g = (g;) gives us that
tP =g.

P is clearly invertible since o; are independent and injective and the 7; are

independent.

Hence we can write

t=gP L

This is the crux of our algorithm. For each d in our list and corresponding c,

we construct P. We have the bound on g that || g; |l[c< B || d% ||c.
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Hence

-1
cll P lic -

It lle=I1 > g:Pj ic< Y i llell Pt lle< BY [l d

Thus we can consider each integer vector ¢ with this bound, and hence determine

each g and hence each possible x.

Lastly for each point P = (z : y : 1) found using the algorithm, we check that
h(P) < b using Equation (5.1).

5.1 Example of searching for points.

Let E be an elliptic curve taken from Serf’s thesis [15],
2 1 3 2 1 1
Yy +23:y+§(—\/5—3)y=a: -2z +§(\/5+1)x+§(—\/5—1)

defined over number field

K =Q(V5)

We searched for points of naive height less than or equal to 1. This implied

searching for points with denominators given by ideals of norm bounded above

by exp(2) = 7.389.

No denominator ideals were found, and so we searched over the algebraic integers

only, which gave the following points:

Point Naive Height
AW5+5):v/5+1:1) 0.805
(z(V5+1):0:1) 0.241
(0:1:1) 0
G(-v5+1):/5:1) 0.241
AW5+3):1(/5+1):1) 0.481

(0 :1:1) is the point with smallest canonical height (0.212)with naive height
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bounded above by 1 and ((—v/5+1) : v/5 : 1) is the everywhere good reduction

point (see Chapter 6) with smallest canonical height given these constraints.

5.2 Using searching for points in our Saturation

Algorithm

In conjunction with the upper bound on the difference between naive and canon-
ical heights from Chapter 4, we now have an algorithm for finding the finite

sets!:

 {P € E(K):h(P) <},
o {PcE,(K):h(P)<c},

and hence for determining A, Ay, > 0 such that:

e {PcE(K):0<h(P) <A\ =0,

e {PeE,(K):0<h(P)<Ay}=0.

This means that a saturation index bound can be calculated as in Chapter 6.

!We define Eq4-(K) in Chapter 6, section 6.2.1.
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Chapter 6

The Saturation Algorithm

Definition 6.0.1. The indez of saturation of L = (Pi,...,P,) < E(K) is
[L : L] where L is the saturation of L.

We calculate a bound on the index of saturation (saturation index bound) by
geometry of numbers arguments. Three methods for calculating it are given
in this section and we use whichever is the lowest of the three answers in our
programs. Chapter 4 is a prerequisite for this work, for relating bounds on naive

height to bounds on canonical height.

6.1 Full Search to find Saturation Index Bound

The following subsection is an abbreviated version of [18, section 3]. I include
lemmas without proofs.

Define E(K) = E(K)/Tor(E(K)) where Tor(E(K) is the torsion subgroup of
E(K). Suppose Py, ..., P, generate a sublattice of E(K) which has index of
saturation, n. Suppose n > 1. We define the height pairing matrix of Py, ..., P,

as:

H(Py,...,P.) = (P, P}))ij=1,..r
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where for all P,Q € E(K):

(P,Q) := = (h(P + Q) — h(P) — h(Q)).

DN | =

Definition 6.1.1. The regulator, R(Pi,...,Ps), is defined to be the absolute
value of the determinant of the height pairing matrizx H(Py,...,Ps). The reg-
ulator R(M) = R(Q1,...,Q:) where M is a sublattice of points on E(K), of

rank t with a basis Q1, ..., Q.

Remark 6.1.2. Clearly whichever basis is chosen in Definition 6.1.1 will give

the same regulator since two bases are related by a matriz of determinant £1.

Remark 6.1.3. Note that if L' 2 L and [L' : L] < oo then

Taking L = (P, ..., Ps) if the index of saturation is n then it follows by remark
6.1.2 that
1

Lemma 6.1.4. (Hermite, Minkowski and others) Suppose

f&x) =Y figmins, (6.1)

i,j=1
where (f; ;) is a symmetric positive definite matriz with determinant

D= det(fi,j) > 0. (6.2)

Then there exists a positive constant v, such that

8=
~~
e
(oY)
S—r

inf < YD
m # Olr%ntegralf(m) = Tw
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Moreover we can take

and for w > 9

Lemma 6.1.5. Let E be an elliptic curve defined over a number field K. Let
L=(Pi,...,P,), a sublattice of E(K) of rank w. Let R(L) be the regulator of
the saturation of L. If the rank w is > 1 then there ezists a point Q in L of

infinite order such that

gl

Theorem 6.1.6. Let E be an elliptic curve defined over a number field K.
Suppose that E(K) contains no point Q of infinite order with canonical height
iL(Q) < X where X\ is some positive real number. Suppose that Py,..., P, gen-
erate a sublattice of E(K) of rank w > 1. Then the index of saturation, n of

Pi,...,P, in E(k) satisfies

ngR(Pl,...,Pw)%(%’”)%, (6.4)
where
n=17%= %a’)’z =27 =4
v5=8,72—%4, 7=64,75 =2°,
and for w > 9
= (TG +1*
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6.1.1 Example.

We have calculated a saturation index bound for the sublattice H of points on
5 1 3 5 1 1
v+ 5(Vo+3)y =2 + Vo2 + S (—Vo - Do+ (V5 - 1)

over

K =QV5)

where H is spanned by
1 1 1
: 5(—\/5—1) :1), (5(—\/3+ 1): 5(—\/5—3) :1)

using the methods of this section.
This curve is taken from [15],[5].

The Silverman bound for all points is 5.982 and the C.P.S bound for all points
is 0.284.

A lower bound on the canonical height of points is 0.016 found by searching up
to naive height b = 0.3. Note this is equal to 0.3 — 0.284 since no points were

found with smaller canonical height.
The regulator of the two points given is 0.059.
This gives a saturation index bound of 17 = [0.059%% x (—2—.)].

0.016 x+/3

6.2 Calculation of Index of Everywhere Good

Reduction Subgroup.

The height bounds calculated in Chapter 4 are generally much smaller for points
with good (non-singular) reduction at all non-archimedean primes. Thus we
have reduced the saturation problem to considering only the subgroup of points

with such good reduction, hence taking advantage of these small bounds when

59



we calculate an index of saturation bound. The initial stage is to calculate the

index of the everywhere good reduction subgroup.

6.2.1 Notation and background.

We use the notation in section 1.1, together with the following:
Let v € Mk be a valuation.

Let E°(K,) be the connected component of E(K,). For v a complex valuation,
(or if v is a real valuation with o : K — R being the associated real embedding,
and o(A) < 0) then this is all of E(K,). If v is real and o(A) > 0 then
[E(R) : E°(R)] = 2. Otherwise, for v non-archimedean, E°(K,) = {P €
E(K,) : P has good reduction at v}.

We define C, = E(K,)/E°(K,), the component group at v.
Proposition 6.2.1. The group E(K)/E°(K) is finite. If E has split multiplica-

tive reduction then it is cyclic. In all other cases it has order at most 4.

Proof. See [19, Corollary 15.2.1 p.359]. O

Definition 6.2.2. The Tamagawa number, ¢, = |Cy|.

If E has good reduction at v then E(K,) = E°(K,) and so C, = 0 giving
cy = 1.

Remark 6.2.3. ¢, < oo for all v € Mk and ¢, =1 for almost all v € Mk.

Definition 6.2.4. E,.(K) = E(K) Nyemyx E°(K,). This is the subgroup of

points on E(K) of good reduction at all valuations.

Definition 6.2.5. If H is a sublattice of E(K) then we define Hy, = H N
E,.(K).

It is clear from the above that by the definition of E,,.(K),

E(K)/E,(K) =~ P E(K.,)/E°(K.), (6.5)

vEMK
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and that @, ¢, E(K,)/E°(K,) is a finite abelian group of order I, c,.

6.2.2 Calculating [H : H,,].

s
\H/

Given the curve E(K) and the set of s points Pi,...,P; € E(K) which span

We have the diagram of inclusions:

the subgroup H of E(K), we need to calculate [H : H,,].

Definition 6.2.6. A Tamagawa prime for E(K) is a rational prime dividing

II,c,.

We need to assume that the index of saturation [H : H] is not divisible by
any Tamagawa primes. It is easy to ensure this via saturation at all Tamagawa
primes using the method of Chapter 3 on the individual primes. This is possible

as Tamagawa primes are in practice small.
It follows from (6.5) that

H/H, — @ C..

Also,

[H : Hyg, || |[H : FQT:“

by the second isomorphism theorem, and since H is saturated at all Tamagawa

primes, and only these primes divide the order of F/Fgr, it follows that

|[H : Hy,]| = [[H : Hyr]|-

Since we have generators of H we can use MAGMA to calculate the index of
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the gr-subgroup. We do this by constructing a matrix M with rows referenced
by the points Py, ..., P; and columns by the valuations v; for which C, is non-

trivial.

As we have observed, (), is usually cyclic but for the other possibility that

C, = Cy x Cy we need two columns for that valuation v in our matrix.

We define u,, as the natural map

byt H— Cy.

We can choose a map v, : Cy, — Z/mZ or Z [2Z x Z/27. With this choice fixed,
we can represent the image of a point P; under u,,; as one element of Z /mZ for

some integer m or as two elements of Z /27Z.

6.2.3 Brief description of method of calculating v,, .,

In the case C, 2 C3 x (3, and hence is cyclic, the key is to find a point G
whose image under p,,; generates ., (H). We do this iteratively by choosing G

in turn whose image generates the images of all of Py,..., P, : t < s.

Having at stage t pre-calculated G;_1 and the order of its image, v;—1, we
calculate m;, the order of p,, (F;), by testing multiples of P; to see if they lie in
E,,(K). Taking chosen multiples of G;_; and P; we can construct points R, and
Si with images pu.,; (R¢), po; (St) of coprime order p; and oy, with pioy = v 17;.
We can then use the extended Euclid’s algorithm to calculate a new G whose

image p.,,;(G¢) generates images fi,,; (R¢), i, (S¢) and hence fi,, (Gi—1), pho; (Pr).
Thus in particular, G; generates <,uvj (Pr),- vy o (Pt)> as required.

In the case C, = (s x (3, we take the points giving the first two different non-
zero images as the generators Gi and Ga2. Then all other points give images
equal to that given by one of 0,G1,G2,G1 + G2 and we can represent these

images in terms of those of the generators.

62



In both cases, having obtained our generators it is an easy matter to take a
discrete log of the images of points P, ..., P; with respect to our generators.

This gives a map from H — Z /mZ or Z |27 x Z [2Z as required.

,From the p,, we obtain the homomorphism H — &C,, as ®u,. Hence [H : Hy,]

is the order of the image of this.

MAGMA is able to calculate this order, having inbuilt functions to calculate

the order of a group with prescribed generators.

6.2.4 Note on use of the index in our algorithms.

We need both the index of the Everywhere Good Reduction Subgroup defined
above and also the index of the subgroup that has good reduction at all non-
archimedean valuations but not necessarily at archimedean valuations. The
latter is easily calculated by repeating the above analysis but replacing Mk,
the set of valuations of K with M the set of non-archimedean valuations of

K.

6.2.5 Example.

We again use the curve E of rank at least 24 over Q produced by the N.S.A:

y? + zy +y = 2° — 120039822036992245303534619191166 796374z

+ 504224992484910670010801799168082726759443756222911415116

The set of 24 independent points that we use is listed in section 3.6.1. They
span H, a subgroup of E(Q). We calculate the index [H : H,,]:
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Bad primes 2 3 5 11 13 17 29 31 41 pet pu?
Tamagawa Numbers | 2 9 2 6 2 2 2 3 2 1 1
Kodaira Symbols L Iy I, Iy b L L It I, oL L
P 11 1 2 1 1 1 0 O 0 0
P, i 7 1 2 0 0 1 0 O 0 0
Ps 0o 51 0 1 0 0 1 0 0 0
Py 01 1 4 1 0 0 2 1 0 0
Ps 0 3 1 3 1 1 1 1 0 0 0
Py 0o 5 1 5 1 0 0 2 1 0 0
P 0 6 1 2 1 0 0 2 0 0 0
Py 0 8 1.3 0o 1 1 2 1 0 0
Py o 7 1 4 1 1 0 1 0 0 0
Pyg 13 0 2 0 1 1 1 1 0 0
Py 0o 0 o 4 1 1 1 2 1 0 0
Py 0 1.0 3 0 1 1 1 0 0 0
Py 1 4 0 0 1 1 0 2 0 0 0
Py 12 1 1 0 1 0 2 1 0 0
Py 16 1 1 1 1 0 2 0 0 0
Pyg 0o &8 1 5 0 0 0 1 1 0 0
Py i3 0 1 1 1 0 2 0 0 0
Pyg 11 1 0 1 1 1 2 O 0 0
Py 0 2 0 4 1 0 0 1 0 0 0
Py 0o 2 1 2 0 0 1 1 1 0 0
Py 1 2 1 4 0 1 1 2 0 0 0
Pso 0 4 0 4 0 1 1 1 1 0 0
Pos 1 0 0 0 0 1 1 2 0 0 0
Pyy 1 4 1 5 1 1 2 1 2 0 0

We include for completeness the matrix recording whether each of the 24 points

1458619970494582607679296750333015081
2264240973182971699094661154229360236070105974082503
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are in the good reduction subgroup over the real valuation vg only or not.

Image of point in C,,

1 o00o0110O00110O010UO0111U0UO0 11

We calculated that [H : H,,] = 10368, excluding and = 20736 including the
archimedean primes when calculating the Everywhere Good Reduction Sub-

group. The exponent of the groups is 18.

Remark 6.2.7. The program ran in seconds although for this example, the
bad primes had to be calculated previously by factorising the discriminant, a
factorisation that takes many hours on our computer. We anticipate that if our
method is applied to curves with large discriminant, factorising that discriminant

may prove a stumbling block.

6.3 Search of Everywhere Good Reduction Sub-

group to calculate Saturation Index Bound.

The theory of Section 6.1 can be amended in a straightforward way to restrict
to just everywhere good reduction points. The advantage of these is that the
upper bound on the difference between naive and canonical heights is much less

since there are no contributions from finite primes.
We use the notation of Subsection 6.2.

Suppose we have the diagram of inclusions:
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where H = (P, ..., P;) is the subgroup generated by the points that are known

on the curve.

We ensure as in Section 6.2 that m = [H : H] is not divisible by Tamagawa

primes by saturating H at these primes.
Thus we know that n = [H : H,,], which is a product of Tamagawa primes, is
coprime to [H : H]. It follows that [H : H] = [Hg, : Hy.).

Proposition 6.3.1. The index of saturation (n) is bounded above as follows

n=[H:H)=[Hy: Hy < [H:HyR(Pr,...,P)5 (L)%,

Note that FgT is chosen to have good reduction with respect to all non-archimedean
valuations only. This is because the difference in heights bound calculated in sec-

tion 4 tends to be much lower for points with such good reduction.

The quantity on RHS of the above inequality is a saturation index bound.

Proof. The result follows using Equation 6.4 in Theorem 6.1.6, noting that the
sublattice Hy, has regulator [H : H,,]?R(Py, ..., P;). O

6.3.1 Example.

We apply the method of this subsection to the elliptic curve defined by

y? = 2® — 379340164z + 2858976058624

over Q obtained from Cremona. We wish to saturate the subgroup H of the

Mordell-Weil group spanned by the following independent points

(11550 : —135632 : 1), (11830 : 164248 : 1), (9086 : —402976 : 1),
(11116 : —125636 : 1), (14000 : 540568 : 1), (7728 : 623672 : 1),

(1456 : 1519784 : 1), (—19712 : 1636208 : 1).
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The index of good reduction for H (= [H : H,,]) was found to be 1 excluding

and including the real valuation.
The Silverman bound for all points is 17.9748,

The C.P.S. bound for all points is 6.8712, whilst the C.P.S. bound for everywhere

good reduction points is 3.8856.

After searching for points up to naive logarithmic height 13, we obtained a
lower bound on the canonical height of points with everywhere good reduction

at non-archimedean primes of 6.1288 (yg = 2.0000.)

This gives a saturation index bound of 3 = [1 x 113614.59420-5 x (%)%J.

In a few seconds of computer time we established that the subgroup spanned
by these points is saturated by saturating at primes 2 and 3 using the method

of Chapter 3.

6.4 Finding a Saturation Index Bound without

any searching.

In this section we only consider E(K) over K which are totally real. Otherwise

this method cannot be applied. This method is joint work with Samir Siksek.

Our method gives a lower bound on the canonical height of good reduction
points on E(K) without searching for points. The problem with searching is
that sometimes it may take too long, whereas this method is very fast to execute
on a computer. However the method may return a negative real number for the
bound, which although giving a true statement does not help us. We ran the
method of this section on the curves from Cremona’s Tables [4] in the below

table to gain insight into the method.
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conductor range | number of curves | proportion giving positive bound

1 — 8000 27250 54%
8000 — 12000 15438 61%
12000 — 20000 32859 64%

This analysis of these 70,000 curves leads us to believe that our method is a

useful complement, to the other techniques in this thesis.

Our canonical height and local heights will be double those in Silverman’s book

[21].

Theorem 6.4.1. Let K be a totally real field and let E be a Weierstrass elliptic
curve with coefficients ay, . . .,ag € O . Suppose that the point P € E(K) satis-
fies P € E°(K,) for all valuations v including the archimedean ones. For each
archimedean valuation, v, fir (compatible) isomorphisms K, = R and K, = C.

Consider the isomorphisms:

%

C C
EC) = =]
((C) ZUJU,]_ + Zwu,2 Z + ZTU,

where wy,1 = least positive real period, w, > = least period ¢ Zw,,, and 7, =
point in fundamental domain for SL(2,7Z) equivalent to wy2/wy,1.

Define

__ 2miT
qv =€ Y

Mg < ={v € MR : |wya| < |woel},

Mg ={v € Mg : lwy1| > |wy 2]}

Then it follows that

~ 1 1 I “ 4 9
h(P) 2610g|NOI‘mK/QA| —2log2+ ——+ Z (W m(ry)  4g| )

K:Q 4z 3 1— |qo|
1 —mlm(r,) 21+ |Qv|2)>
TK:Q %ﬁ( 6 el )
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Proof. Recall that [21, Chapter VI]:

iL(P) = [Kl Q UEZMK nyAy(P) = mvezjwo nv)\U(P)"'mve%m Av(P).

Here n,, = 1 for all archimedean places since K is totally real. We will bound
the non-archimedean and archimedean sums separately. Recall that P has ev-

erywhere good reduction. Then
1 -1
Ao(P) = logmax {1, a(P)|u} - ¢ 10g|Aly > - 10g|Al-

for all non-archimedean v (see [21, Theorem VI.4.1]). Hence

1
(K :Q

1 1
Z Ny Ay (P) > —Elog H ARy = 610g|NormK/QA|

veEMY, veEMY

using the product formula. The rest follows from the lower bounds for the

non-archimedean contributions given in the following lemma. O

Lemma 6.4.2. Let E be an elliptic curve defined over R. Let T be the period

of E belonging to the usual fundamental domain in the lattice E = 5 +CZTU. Let

q=e¥7 If P € EO(R) then

Ar(P) > mim(r) —2log2 — léﬂq||q|

> —0.49.

Proof. Let z be the image of P under the isomorphism E(C) — C/(Z + Z7).

Now the local height function

"7+ 71

is given by

logg| —2log |1 —u| =2} log|(1 —¢"u)(1 —¢"u™")];
n>1
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where By(T) = T? — T +1/6, and u = €*™* and q = >™" (see [21, Theorem
V1.3.4]).

To prove the Lemma we want to calculate or estimate each of the terms in the

formula for A(z) above:

6.4.1 Case I: Real Weierstrass period of F(K) has smallest

or equal modulus

In this case,
W
T=—
w1

lies in the fundamental domain. Since P € E°(R), and z is a real multiple of

the image of P under F = m therefore Im(z) = 0. Hence, Im(7) is either

> 1 if wy is pure imaginary or > %> otherwise.

First: —B, ngf))) log |q| = =T

Second: u is on the unit disc and hence |1 — u| < 2. Hence —2log|1 — u| >

—2log2.

Third: Note that
(1=q"u)(1—q"u )| = [1=¢"(u+u ") +¢*"| < 1+2[q|" +|gl*" = (1+]q")?.

Since 7 is in the usual fundamental domain, it follows that Im(7) > +/3/2.

Hence 0 < |q| < e~™3 TIn particular, as |g| < 1 we see that
log (1 — ¢"u)(1 — ¢"u™")| < 2log(1 + |g|") < 2q|™.

Finally
—4lq|

23 log (1~ q"u)(1 — q"u )| > o

n>1

The Lemma follows at once in this case from these three estimates and the

above inequalities for Im(7) and |g|.
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6.4.2 Case II: Real Weierstrass Period of E(K) has great-

est modulus

Here we do not know that Im(z) = 0 and have no inequalities for Im(7) but we
can still bound our expressions. We may assume that z lies in the fundamental
domain given by periods 1 and 7.

Since Im(z) < Im(7), hence |u| > |g|- It follows immediately that, |u +u~1| <

la+q7'|

First: Since By(z) > —5, it follows that —Bs (i:gfg) log |q| > — T,

Second: u is on the unit disc and hence |1 — u| < 2. Hence —2log|1 — u| >

—2log2.

Third: Note that
(1= g"u)(1 = g"u™) =1 =g (u+u") + ¢ < (L+ g™ (1 +|g["").

Hence:
—2(1+1g*)

_2;10g|(1 — )=t 2 =g

The Lemma follows at once in this case from these three inequalities.

6.4.3 Example 1.

We again use the curve E of rank at least 24 over Q produced by the N.S.A:

y2 + 2y +y = 2° — 120039822036992245303534619191166796374

+ 504224992484910670010801799168082726759443756222911415116

The set of 24 independent points that we use is listed in section 3.6.1. They

span H, a subgroup of E(Q).
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Our programs calculated: [H : H,,| = 10368 over all archimedean valuations in
My.

[H : H,] = 20736 over all valuations in Mg.

The C.P.S bound for all points is 16.644 and for e.g.r. points only is 0.926.
The Silverman bound is 71.279.

The lower bound on canonical height of g.r points over all of Mg derived from

method of this subsection is 39.315.

The lower bound on canonical height of g.r. points over all of M(% derived from

searching for points is 11.074.

The lower bound on canonical height of all points was not possible to calculate

as the corresponding C.P.S bound is too high.

The saturation index bound N given by the above is given by

6.734

N < 20736 x (1.049 x 10%6)%5 x (39 31E

)12 = 1.354 x 108.

Unfortunately, this thesis does not provide a practical method to saturate these
points on E(Q) since the saturation index bound is too high to saturate at all

primes p lower than it in a reasonable time.

Nonetheless this example demonstrates that the method of bounding the in-
dex of saturation without searching does form another useful tool to achieve

saturation of points on curves.

6.4.4 Example 2.

We apply the method of this section to the elliptic curve defined by

y? = 2 + 2429469980725060x> + 275130703388172136833647756388x

over Q.
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We wish to saturate subgroup H of the Mordell-Weil group spanned by the

following points:

(4859338299729438 : 416471863148635757166984 : 1),
(—1655376807922479 : 40813982316182312504037 : 1),
(—13783163903211906/25 : 2559282848641379326053672/125: 1),
(2189707338529593 : 150832925221536994856391 : 1),
(117386244964836 : —8209204785115731247572: 1),
(3501548111333769 : —271445468504099342225871 : 1),
(179104002703038 : 11530632350958995292984 : 1),
(2189707338529593/4 : —258329262728233934936469/8 : 1),
(—24962853836057298 /121 : —8189783230960490403311592/1331 : 1),
(—224665684524515682/121 : —50920605906253027348270104/1331 : 1),
(—168194075588658 : —4206475773834951036168 : 1),
(460117958010393006/25 : 332187458504007678367557096,/125: 1),
(—1528299258985359 : —41041213012764481739733: 1),

(—13139608245811133778/11881 : 46953115647042586503277115928/1295029 : 1).

The curve and points are from work of Stephane Fermigier [7]. At rank 14, the
curve has the highest proved rank of any curve. Other curves such as the N.S.A.

curve (3.6.1) earlier have higher but unknown rank.

The index of good reduction for H (= [H : H,,]) is found to be 1024 excluding

and including the real valuation.
The Silverman bound for all points is 85.133,

The C.P.S. bound for all points is 45.273, whilst the C.P.S. bound for everywhere

good reduction points is 10.513.

After searching for points up to naive logarithmic height 14, we obtained a
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lower bound on the canonical height of points with everywhere good reduction
at non-archimedean primes of 3.4868 (14 = 4.3036) using the method of section
6.3.

However the method of this section gives a lower bound on the canonical height
of points with everywhere good reduction at all primes of 30.4940 which is a
vastly better bound for our purposes.

This gives a saturation index bound of 13375 = 1024 x (1.372 x 10'4)%® x

4.3036 | 14
(30?232) 2.

In 1.5 days of computer time we established that the subgroup spanned by these
points is saturated, by saturating at all rational primes up to 13375 using the

method of Chapter 3.
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Chapter 7

Examples of uses of

prograirnns.

7.1 Proving sets of points independent.

We give here a complementary use of our saturation algorithm as described in
Chapter 3 to give a method of proving that points P, ..., Ps; on elliptic curve

E(K) are independent, i.e. that if

ZaiPi =0

for a; € Z, then every a; = 0.

In Chapter 3, we found methods of proving that there were no non-trivial solu-

tions to equation (3)
s t
3 pQ=)_alPi+) bTj,
i=1 7j=1

where T} : j < 2 are a basis for the p—power torsion points of E(K).

The difference between our application of equation (3) here and in Chapter
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3 is that here we do not assume that the P; are independent when we solve
the equation. (Recall that in Chapter 3 we solve equation (3) by calculating
homomorphisms ¢ : E(K) — F,.)

Theorem 7.1.1. Suppose for given E/K and given Py, ..., P; we choose p such
that there are no p—torsion points on E/K (always possible because Torsion
Subgroup is finite) and such that equation (8) has no non-trivial solutions (not

always possible 1). Then P, ..., P, are independent.

Proof. Suppose Py, ... P, are dependent. Then we can choose

ZaiPi =0

with not all a; =0, a; € Z and also with ) a; minimal.

Suppose also that equation(3) has no non-trivial solutions. Thus p divides all
a;. Let b; = % € Z. The point Y b;P; is a p-torsion point and must hence be

the 0 by choice of p. Hence we have

> biP=0
with not all b; =0, b; € Z but Y b; < Y a; which gives a contradiction. O

This method of proving points independent is composed of discrete calculations,
whereas the alternative method of calculating the regulator of the points involves
judging whether a real value is non-zero, thus requiring knowledge of the error

in the Canonical Height function.

The condition of equation (3) having no non-trivial solutions is a stronger con-
dition than Pi,... P being independent. For these reasons, both this method
and the regulator method do not always prove that independent points are

independent.

le.g. take any E/K, P = P, = P € E(K) and p = 2 then 2Q = Py + P> has solution
Q=P
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We now demonstrate our method and compare it with the regulator method.

All three examples are run on curves from Serf’s thesis [15].

7.1.1 Example 1
For the elliptic curve

Y2+ (—Vs+ Doy =2° + (—V5—-2)z — 1
we found these points

(é(3\/5—9) : %(—5\/5+6) : 1),
(-1: —/5:1),

(=95 + 18 : —41V/5 + 90 : 1)

to be independent in 0.43 seconds by our method and in 1.36 seconds by the

regulator method.

7.1.2 Example 2

For the elliptic curve
1
y2—2xy+2y:w3+§(\/3+1)x2+\/5x—2

we found these points

(%(—3\/5 -9): %(—4\/5 —23):1),
(-1: %(—\/5— 3):1),
(—13v/5 +28: %(167\/5 —379): 1)

to be independent in 0.429 seconds by our method and in 1.32 seconds by the

regulator method.
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7.1.3 Example 3

For the elliptic curve
1 1
v =2y + (Vo4 Dy =2"+ S (-Vb- 52"+ S(V5 - 3)z

we found these points

(%(3\/5— 1) é(2\/5+5) 1),
(%@/5— 1) : %(3\/5— 5):1),

1

(2 (—23v/5 + 51) : %(141\/5 —315):1)

to be independent in 0.51 seconds by our method and in 1.48 seconds by the

regulator method.

7.2 Searching for points of bounded naive height

We searched for points on the curve from Serf’s thesis [15]
2 1 3 2, 1 1
Yy +2my+§(—\/5—3)y=a: -2z +§(\/5+1)$+§(—\/5—1)

over

K = Q(V5)

up to naive height bound 1.30. This took time 19.6 seconds.

The program determined that no denominators were needed in the search; only

algebraic integers needed to be searched.

The least canonical height of a point with naive height less than 1.30 is 0.21174
for point (0,1), and the least canonical height of a point of everywhere good
reduction at non-archimedean valuations with naive height less than 1.30 is

0.38176 for the point ((—v/5 +1),V/5).
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Secondly, we searched for points on another curve from Serf’s thesis [15]:
Y2+ 2zy —2V2y = 2° + (—V2 + 1)2® + (—2v2 - 2)z + (—2V2 + 2)

up to naive height bound 1.30. This took time 26.6 seconds.
The program searched for points with denominator 2.

The least canonical height of a point with naive height less than 1.30 was 1.1639

for the everywhere good reduction point at non-archimedean valuations (v/2+1 :

V2-2:1).

7.3 Calculation of bounds on difference between

naive and canonical height.
1. We used the elliptic curve from Halberstadt and Kraus, [10] defined by

y? = 2% + (-30a® — 100 + 30)22+
(5000 — 6000 + 5000 — 1700a + 300)z+ (7.1)

(4000a* — 280000 — 57000a; + 11000)

over

K =Qa)

where o is aroot of £® +5t3 + 5t —1 =0

The time taken to calculate height bounds was 874.9 seconds. The C.P.S.
bound for egr points is 0.885 and was for all points 15.728. The Silverman
bound is 11.428.

2. We used the elliptic curve defined by

y? =z — 9217z + 300985
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over Q.

The Silverman bound is 11.441, the C.P.S. bound for egr points is 0.000,
and the C.P.S. bound for all points is 0.462.

3. We used the elliptic curve defined by
y? = 2% — 2406042 + 45804256

over Q.

The Silverman bound is 13.425, the C.P.S. bound for egr points is 2.534
and the C.P.S. bound for all points is 3.747.

4. We used the elliptic curve defined by
y? = 23 — 4954801z + 4270189489

over Q.

The Silverman bound is 16.156, the C.P.S. bound for egr points is 3.134,
and the C.P.S. bound for all points is 3.596.

7.4 Calculation of Everywhere Good Reduction

Index.

1. We used the elliptic curve from Serf’s thesis [15] given by
v’ =% + (—V13 + 2)2 + (—V13 + 2)z + (V13 - 2).

E(K) has rank 2 and we considered the sublattice given by the points

(%(x/ﬁ—3):—1:1),
(V13+1: V13 -4:1).
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The programs took 9 seconds to calculate the EGR indices for this sublat-
tice. Both the EGR index at archimedean valuations and the EGR index

at all valuations were found to be 3.

. We used the elliptic curve from Serf’s thesis [15] given by
P =24+ (-3 -2)2 -3z + (3V/3-2)

over

K =Q(V3).

E(K) has rank 2 and we considered the sublattice given by the points

(—vV3-2:5V3+10:1),
1

(57 (—1405v/3 +1756) : 1/1331(~77612V/3 + 160325) : 1).

The programs took 3 seconds to calculate the EGR indices for this sublat-
tice. Both the EGR index at archimedean valuations and the EGR index

at all valuations was found to be 1.

7.5 Saturation.

We saturated the elliptic curve, E, cited by Thomas Kretschmer in [13, page

633] given by

y* + zy = 2 — 5818216808130z + 5401285759982786436

over Q.

The curve, E, was also used in Samir Siksek’s thesis [17] to demonstrate calcula-

tions of an upper bound on naive height minus canonical height. He gave eight

independent points on the curve which when 3-saturated give these points:
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(1145136 : 489626526 : 1), (987594 : 785948706 : 1), (1284264 : —218219910: 1),
(1573410 : 376054914 : 1), (1365048 : 51389034 : 1), (1467138 : —152933892: 1),

(1368480 : —45144546 : 1), (1437384 : —90242214 : 1).

John Cremona proved that E has rank 8 by using 2-descent.

By using the method of section 6.4, which involves no searching for points, we
obtained a saturation index bound of 509. Lastly, £ was proved saturated by
saturating for all primes p up to 509. The process took 5 minutes. Since E has
rank 8, the set of 8 independent points above was hence proved to be a basis

for E(K)/Erors(K).

This example demonstrates how the method of section 6.4 can be essential to
achieve saturation. In this example, searching for points takes too long to be

practical.
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