"THE GREAT DEBATE": UNUM ARITHMETIC POSITION STATEMENT

Prof. John L. Gustafson

A*STAR-CRC and National University of Singapore

July 12, 2016
ARITH23, Santa Clara California

Why this debate?

Why this debate?

- The End of Error had dozens of reviewers, including David Bailey, Horst Simon, Gordon Bell, John Gunnels...

Why this debate?

- The End of Error had dozens of reviewers, including David Bailey, Horst Simon, Gordon Bell, John Gunnels...
- Kahan has had the manuscript since November 2013 but ceased email conversation about its content in July 2014

Why this debate?

- The End of Error had dozens of reviewers, including David Bailey, Horst Simon, Gordon Bell, John Gunnels...
- Kahan has had the manuscript since November 2013 but ceased email conversation about its content in July 2014
- Then this happened (Amazon.com):

Share $\mathbb{\square}$ (1)

Buy New

$\$ 53.96$
Qty: 1 List Price: $\$ 59.95$

FREE Shipping
Temporarily out of stock.
Order now and we'll deliver when
available. Details
Ships from and sold by Amazon.com. Gift-wrap available.

Yes, I want FREE Two-Day
Shipping with Amazon Prime

The Wrath of Kahan: A Bitter Blog

- Kahan no longer submits papers to journals.

Commentary on "THE END of ERROR - Unum Computing"

Contents
Introduction
§1: Why Approximation $=$ Sin
J-M. Muller's example
My "Monster"
Redefinitions of " \approx "
§2: Oh, Ye'll take the Low Road, and I'll take the High Road.
§3: Interval and Ubound Evaluations of a Polynomia
§4: "Calculus considered evil: Discrete Physics"
Tissier's problem
Photo-Chemical Kinetics
§5: What does Unum Computing cost ?
A bogus analogy
§6: Never Wrong?
Failure Mode I: The Curse of High Dimensions
Failure Mode II: Phantom Unbounded c-Solution
Failure Mode III: Persistent "c-solutions" that Do Not Exist
Failure Mode IV: Illegitimate Unbounded c-Solutions
§7: The Price Paid for Willful Ignorance
A formula misunderstood
"Mindless brute-force ..." labors to produce a crude resul
Clear up a misunderstanding
Far better results much sooner
§8: Flogging a swing
An unacknowledged integral
Unanswered questions: Quality vs. Cost
Malfunction for $\Theta>\pi / 2$
Only grade school algebra
Digression: Compensated Summation
Numerical Results sooner from a 4th Order Method
If Energy is NOT Conserved
A graph for Air Resistance
§9: Puffery instead of Percipience
Physics not discretized
Flags not appreciated
NaNs disparaged
Unum arithmetic is not really closed
§10: A Curate's Egg

The Wrath of Kahan: A Bitter Blog

- Kahan no longer submits papers to journals.
- Instead he prepares diatribes and blogs them, as "work in progress."

Prof. W. Kahan's

Commentary on "THE END of ERROR - Unum Computing" by John L. Gustafson, (2015) CRC Press

Contents
Introduction
§1: Why Approximation = Sin
J-M. Muller's example
My "Monster"
Redefinitions of " \approx "
§2: Oh, Ye'll take the Low Road, and I'll take the High Road.
§3: Interval and Ubound Evaluations of a Polynomia
§4: "Calculus considered evil: Discrete Physics"
Tissier's problem
Photo-Chemical Kinetics
§5: What does Unum Computing cost ?
A bogus analogy
§6: Never Wrong?
Failure Mode I: The Curse of High Dimensions
Failure Mode II. Phantom Unbounded c-Solution
Failure Mode III: Persistent "c-solutions" that Do Not Exist
Failure Mode IV: Illegitimate Unbounded c-Solutions
§7: The Price Paid for Willful Ignorance
A formula misunderstood
"Mindless brute-force ..." labors to produce a crude result
Clear up a misunderstanding
Far better results much sooner
§8: Flogging a swing
An unacknowledged integral
Unanswered questions: Quality vs. Cost
Malfunction for $\Theta>\pi / 2$
Only grade school algebra
Digression: Compensated Summation
Numerical Results sooner from a 4th Order Method
If Energy is NOT Conserved
A graph for Air Resistance
§9: Puffery instead of Percipience
Physics not discretized
Flags not appreciated
NaNs disparaged
Unum arithmetic is not really closed
§10: A Curate's Egg

The Wrath of Kahan: A Bitter Blog

- Kahan no longer submits papers to journals.
- Instead he prepares diatribes and blogs them, as "work in progress."
- This issue is too important to be left to the bickering of two old men.

Prof. W. Kahan's

Commentary on "THE END of ERROR - Unum Computing" by John L. Gustafson, (2015) CRC Press

Contents
Introduction
§1: Why Approximation = Sin
J-M. Muller's example
My "Monster"
Redefinitions of " \approx "
§2: Oh, Ye'll take the Low Road, and I'll take the High Road.
§3: Interval and Ubound Evaluations of a Polynomia
§4: "Calculus considered evil: Discrete Physics" Tissier's problem
Photo-Chemical Kinetics
§5: What does Unum Computing cost?
A bogus analogy
§6: Never Wrong?
Failure Mode I: The Curse of High Dimensions
Failure Mode II. Phantom Unbounded c-Solution
Failure Mode III: Persistent "c-solutions" that Do Not Exist
Failure Mode IV: Illegitimate Unbounded c-Solutions
§7: The Price Paid for Willful Ignorance
A formula misunderstood
"Mindless brute-force ..." labors to produce a crude result
Clear up a misunderstanding
Far better results much sooner
§8: Flogging a swing
An unacknowledged integral
Unanswered questions: Quality vs. Cost
Malfunction for $\Theta>\pi / 2$
Only grade school algebra
Digression: Compensated Summation
Numerical Results sooner from a 4th Order Method
If Energy is NOT Conserved
A graph for Air Resistance
§9: Puffery instead of Percipience
Physics not discretized
Flags not appreciated
NaNs disparaged
Unum arithmetic is not really closed
§10: A Curate's Egg

The Wrath of Kahan: A Bitter Blog

- Kahan no longer submits papers to journals.
- Instead he prepares diatribes and blogs them, as "work in progress."
- This issue is too important to be left to the bickering of two old men.
- He was kind enough to share with me the 38-page attack he wants to post about The End of Error: Unum Arithmetic.

Prof. W. Kahan's

Commentary on "THE END of ERROR - Unum Computing"
by John L. Gustafson, (2015) CRC Press

Contents
Introduction
§1: Why Approximation $=$ Sin
J-M. Muller's example
My "Monster"
Redefinitions of " \approx "
§2: Oh, Ye'll take the Low Road, and I'll take the High Road.
§3: Interval and Ubound Evaluations of a Polynomial
§4: "Calculus considered evil: Discrete Physics" Tissier's problem
Photo-Chemical Kinetics
§5: What does Unum Computing cost?
A bogus analogy
§6: Never Wrong?
Failure Mode I: The Curse of High Dimensions
Failure Mode II: Phantom Unbounded c-Solution
Failure Mode III: Persistent "c-solutions" that Do Not Exist Failure Mode IV: Illegitimate Unbounded c-Solutions
§7: The Price Paid for Willful Ignorance
A formula misunderstood
"Mindless brute-force ..." labors to produce a crude result
Clear up a misunderstanding
Far better results much sooner
§8: Flogging a swing
An unacknowledged integral
Unanswered questions: Quality vs. Cost
Malfunction for $\Theta>\pi / 2$
Only grade school algebra
Numerical Results sooner from a 4th Order Method
If Energy is NOT Conserved
A graph for Air Resistance
§9: Puffery instead of Percipience
Physics not discretized
Flags not appreciated
NaNs disparaged
Unum arithmetic is not really closed
§10: A Curate's Egg

The Wrath of Kahan: A Bitter Blog

- Kahan no longer submits papers to journals.
- Instead he prepares diatribes and blogs them, as "work in progress."
- This issue is too important to be left to the bickering of two old men.
- He was kind enough to share with me the 38-page attack he wants to post about The End of Error: Unum Arithmetic.
- I will respond in part here.

Prof. W. Kahan's
Commentary on "THE END of ERROR - Unum Computing"
by John L. Gustafson, (2015) CRC Press

Contents
Introduction
§1: Why Approximation = Sin
J-M. Muller's example
My "Monster"
Redefinitions of " \approx "
§2: Oh, Ye'll take the Low Road, and I'll take the High Road..
§3: Interval and Ubound Evaluations of a Polynomial
§4: "Calculus considered evil: Discrete Physics" Tissier's problem
Photo-Chemical Kinetics
§5: What does Unum Computing cost?
A bogus analogy
§6: Never Wrong?
Failure Mode I: The Curse of High Dimensions
Failure Mode II: Phantom Unbounded c-Solutions
Failure Mode III: Persistent "c-solutions" that Do Not Exist Failure Mode IV: Illegitimate Unbounded c-Solutions
§7: The Price Paid for Willful Ignorance
A formula misunderstood
"Mindless brute-force ..." labors to produce a crude result
Clear up a misunderstanding
Far better results much sooner
§8: Flogging a swing
An unacknowledged integral
Unanswered questions: Quality vs. Cost
Malfunction for $\Theta>\pi / 2$
Only grade school algebra
Digression: Compensated Summation
Numerical Results sooner from a 4th Order Method
If Energy is NOT Conserved
A graph for Air Resistance
§9: Puffery instead of Percipience
Physics not discretized
Flags not appreciated
NaNs disparaged
Unum arithmetic is not really closed
§10: A Curate's Egg
"Variable bit size is too expensive"
"Variable bit size is too expensive"

- The utag serves as a linked-list pointer for packing

"Variable bit size is too expensive"

- The utag serves as a linked-list pointer for packing
- "Chapter 7: Fixed-size unum storage" pp. 93-102

"Variable bit size is too expensive"

- The utag serves as a linked-list pointer for packing
- "Chapter 7: Fixed-size unum storage" pp. 93-102
- Energy/power savings still possible with unpacked form

"Variable bit size is too expensive"

- The utag serves as a linked-list pointer for packing
- "Chapter 7: Fixed-size unum storage" pp. 93-102
- Energy/power savings still possible with unpacked form
- Here is an example Kahan calls "a bogus analogy":

"Variable bit size is too expensive"

- The utag serves as a linked-list pointer for packing
- "Chapter 7: Fixed-size unum storage" pp. 93-102
- Energy/power savings still possible with unpacked form
- Here is an example Kahan calls "a bogus analogy":

Courier, 16 point
"Unums offer the same
trade-off versus floats
as variable-width versus
fixed-width typefaces:
Harder for the design
engineer and more logic
for the computer, but
superior for everyone
else in terms of
usability, compactness, and overall cost." (page
193)

"Variable bit size is too expensive"

- The utag serves as a linked-list pointer for packing
- "Chapter 7: Fixed-size unum storage" pp. 93-102
- Energy/power savings still possible with unpacked form
- Here is an example Kahan calls "a bogus analogy":

Courier, 16 point
"Unums offer the same trade-off versus floats as variable-width versus fixed-width typefaces: Harder for the design engineer and more logic for the computer, but superior for everyone else in terms of usability, compactness, and overall cost." (page 193)

Times, 16 point
"Unums offer the same trade-off versus floats as variable-width versus fixed-width typefaces: Harder for the design engineer and more logic for the computer, but superior for everyone else in terms of usability, compactness, and overall cost." (page 193)

Willful Misunderstanding

"Bunkum! Gustafson has confused the way text is printed, or displayed on today's bit-mapped screens, with the way text is stored in files and in DRAM memory by word-processor software. ...Text stored in variable-width characters would occupy more DRAM memory, not less, as we shall see." (boldface mine)

Willful Misunderstanding

"Bunkum! Gustafson has confused the way text is printed, or displayed on today's bit-mapped screens, with the way text is stored in files and in DRAM memory by word-processor software. ...Text stored in variable-width characters would occupy more DRAM memory, not less, as we shall see." (boldface mine)

Kahan may be unique in his misreading. Other readers understand that variable width saves display space at the cost of more computing. The analogy is that unums save storage space at the cost of more computing.

Willful Misunderstanding

"Bunkum! Gustafson has confused the way text is printed, or displayed on today's bit-mapped screens, with the way text is stored in files and in DRAM memory by word-processor software. ...Text stored in variable-width characters would occupy more DRAM memory, not less, as we shall see." (boldface mine)

Kahan may be unique in his misreading. Other readers understand that variable width saves display space at the cost of more computing. The analogy is that unums save storage space at the cost of more computing.

The "willful misunderstanding" technique: Misread a statement so it becomes one that can be shown wrong.

Willful Misunderstanding

"Bunkum! Gustafson has confused the way text is printed, or displayed on today's bit-mapped screens, with the way text is stored in files and in DRAM memory by word-processor software. ...Text stored in variable-width characters would occupy more DRAM memory, not less, as we shall see." (boldface mine)

Kahan may be unique in his misreading. Other readers understand that variable width saves display space at the cost of more computing. The analogy is that unums save storage space at the cost of more computing.

The "willful misunderstanding" technique: Misread a statement so it becomes one that can be shown wrong.

Now imagine 38 pages of similar attacks on things that were also not said.

Let's try a classic Kahan example

Find the area of a triangle with sides a, b, c where a and b are only 3 ULPs longer than half the length of c.

$$
a=c / 2+3 \text { ULPs } \quad b=c / 2+3 \text { ULPs }
$$

Let's try a classic Kahan example

Find the area of a triangle with sides a, b, c where a and b are only 3 ULPs longer than half the length of c.

$$
a=c / 2+3 \text { ULPs } b=c / 2+3 \text { ULPs }
$$

Try the formula Area $=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$

Let's try a classic Kahan example

Find the area of a triangle with sides a, b, c where a and b are only 3 ULPs longer than half the length of c.

$$
a=c / 2+3 \text { ULPs } \quad b=c / 2+3 \text { ULPs }
$$

c

Try the formula Area $=\sqrt{s(s-a)(s-b) \underline{(s-c)}}$ where $s=\frac{a+b+c}{2}$

Let's try a classic Kahan example

Find the area of a triangle with sides a, b, c where a and b are only 3 ULPs longer than half the length of c.

$$
a=c / 2+3 \text { ULPs } \quad b=c / 2+3 \text { ULPs }
$$

C

Try the formula Area $=\sqrt{s(s-a)(s-b) \underline{(s-c)}}$ where $s=\frac{a+b+c}{2}$

IEEE Quad Precision (128 bits, 34 decimals): Let $a=b=7 / 2+3 \cdot 2^{-111}, c=7$.

Let's try a classic Kahan example

Find the area of a triangle with sides a, b, c where a and b are only 3 ULPs longer than half the length of c.

$$
a=c / 2+3 \text { ULPs } \quad b=c / 2+3 \text { ULPs }
$$

C

Try the formula Area $=\sqrt{s(s-a)(s-b) \underline{(s-c)}}$ where $s=\frac{a+b+c}{2}$

IEEE Quad Precision (128 bits, 34 decimals): Let $a=b=7 / 2+3 \cdot 2^{-111}, c=7$.
If c is 7 light years long, 3 ULPs is $\sim 1 / 200$ the diameter of a proton. The correct area is about 55 times the surface area of the earth. To 34 decimals:

Let's try a classic Kahan example

Find the area of a triangle with sides a, b, c where a and b are only 3 ULPs longer than half the length of c.

$$
a=c / 2+3 \text { ULPs } \quad b=c / 2+3 \text { ULPs }
$$

C

Try the formula Area $=\sqrt{s(s-a)(s-b) \underline{(s-c)}}$ where $s=\frac{a+b+c}{2}$

IEEE Quad Precision (128 bits, 34 decimals): Let $a=b=7 / 2+3 \cdot 2^{-111}, c=7$.
If c is 7 light years long, 3 ULPs is $\sim 1 / 200$ the diameter of a proton. The correct area is about 55 times the surface area of the earth. To 34 decimals:
$3.147842048749004252358852654945507 \cdots \times 10^{-16}$ square light years.

Quad-precision float result

Quad-precision float result

- IEEE Quad float gets 1 digit right:
$3.634814908423321347259205161580577 \cdots \times 10^{-16}$.

Quad-precision float result

- IEEE Quad float gets 1 digit right:
$3.634814908423321347259205161580577 \cdots \times 10^{-16}$.
- Error is about 15 percent, or 252 peta-ULPs.

Quad-precision float result

- IEEE Quad float gets 1 digit right: $3.634814908423321347259205161580577 \cdots \times 10^{-16}$.
- Error is about 15 percent, or 252 peta-ULPs.
- Result does not admit any error, nor bound it.

Quad-precision float result

- IEEE Quad float gets 1 digit right: $3.634814908423321347259205161580577 \cdots \times 10^{-16}$.
- Error is about 15 percent, or 252 peta-ULPs.
- Result does not admit any error, nor bound it.
- Kahan's approach: Sort the sides so $a \geq b \geq c$ and rewrite the formula as

$$
\text { Area }=\frac{\sqrt{(a+(b+c))(c-(a-b))(c+(a-b))(a+(b-c))}}{4}
$$

Quad-precision float result

- IEEE Quad float gets 1 digit right: $3.634814908423321347259205161580577 \cdots \times 10^{-16}$.
- Error is about 15 percent, or 252 peta-ULPs.
- Result does not admit any error, nor bound it.
- Kahan's approach: Sort the sides so $a \geq b \geq c$ and rewrite the formula as

$$
\text { Area }=\frac{\sqrt{(a+(b+c))(c-(a-b))(c+(a-b))(a+(b-c))}}{4}
$$

This is within 11 ULPs of the correct area, but it takes hours to figure out such an approach.

It also uses twice as many operations, but that's not the issue: it's the people cost of the approach.

Unum approach to the thin triangle

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)
- Fraction can be 1 to 128 bits, plus the hidden bit (higher precision than quad)

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)
- Fraction can be 1 to 128 bits, plus the hidden bit (higher precision than quad)
- Result is a rigorous bound accurate to 31 decimals:

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)
- Fraction can be 1 to 128 bits, plus the hidden bit (higher precision than quad)
- Result is a rigorous bound accurate to 31 decimals:
$3.14784204890042523588526549455070 \cdots \times 10^{-16}<$ Area <
$3.14784204890042523588526549455139 \cdots \times 10^{-16}$

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)
- Fraction can be 1 to 128 bits, plus the hidden bit (higher precision than quad)
- Result is a rigorous bound accurate to 31 decimals:
$3.14784204890042523588526549455070 \cdots \times 10^{-16}<$ Area <
$3.14784204890042523588526549455139 \cdots \times 10^{-16}$
The size of that bound is the area of a square 8 nanometers on a side.

No need to rewrite the formula.

Summary of comparison

Format Capabilities	Quad-precision IEEE floats	Unums, $\{4,7\}$ environment
Dynamic Range	$\sim 6.5 \times 10^{-4966}$ to 1.2×10^{4932}	$\sim 8.2 \times 10^{-9903}$ to $\sim 2.8 \times 10^{9864}$
Precision	~ 34.0 decimal digits	~ 38.8 decimal digits

Summary of comparison

Format Capabilities	Quad-precision IEEE floats	Unums, \{4,7\} environment
Dynamic Range	$\sim 6.5 \times 10^{-4966}$ to 1.2×10^{493}	$2 \sim 8.2 \times 10^{-9903}$ to $\sim 2.8 \times 10^{9864}$
Precision	~ 34.0 decimal digits	~ 38.8 decimal digits
Results on thin triangle	Quad-precision IEEE floats	Unums, \{4,7\} environment
Maximum bits used	128	128
Average bits used	128	90
Result	$\begin{gathered} \text { Area }= \\ 3.6481490842332134725920516 \\ 1580577 \times 10^{-16} \end{gathered}$	$3.147842048749004252358852654945507 \times 10^{-16}$ < Area < $3.147842048749004252358852654945514 \times 10^{-16}$
Type of information loss	Invisible error, very hard to debug	Rigorous bound, easy to debug if needed
Error / bound size	$\sim 4 \times 10^{15}$ meters 2	$\sim 6 \times 10^{-17}$ meters 2

Another "Rewrite it this way" example

From my book, to show why round-to-nearest might not be random and how unums can self-manage accuracy:

```
#include < stdio.h >
float sumtester () {
    float sum; int i;
    sum = 0.0;
    for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
    printf ("%f\n", sum);
}
```


Another "Rewrite it this way" example

From my book, to show why round-to-nearest might not be random and how unums can self-manage accuracy:

```
#include < stdio.h >
float sumtester () {
    float sum; int i;
    sum = 0.0;
    for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
    printf ("%f\n", sum);
}
```

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.

Another "Rewrite it this way" example

From my book, to show why round-to-nearest might not be random and how unums can self-manage accuracy:

```
#include < stdio.h >
float sumtester () {
    float sum; int i;
    sum = 0.0;
    for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
    printf ("%f\n", sum);
}
```

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.
"Compensated Summation will be illustrated by application to a silly sum Gustafson uses on p. 120 to justify what unums do as intervals do, namely, convey numerical uncertainty via their widths."

Another "Rewrite it this way" example

From my book, to show why round-to-nearest might not be random and how unums can self-manage accuracy:

```
#include < stdio.h >
float sumtester () {
    float sum; int i;
    sum = 0.0;
    for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
    printf ("%f\n", sum);
}
```

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.
"Compensated Summation will be illustrated by application to a silly sum Gustafson uses on p. 120 to justify what unums do as intervals do, namely, convey numerical uncertainty via their widths."
(Misreading. Actually, the example was to show how unums can automatically adjust range and precision to get the exact answer.)

Let's try Kahan's suggestion for $\sum_{i=1}^{n}$

Screen shot from Kahan's paper, $n=10^{9}$:
With Compensated Summation All in Floats

```
sum := 0.0; comp := 0.0;
for i=1 to 1000000000 do {
    comp := comp + 1.0; oldsum := sum ;
    sum := oldsum + comp ;
    comp := (sum - oldsum) + comp ;}
sum is \(1000000000.0=10^{9}\) exactly
```


Let's try Kahan's suggestion for $\sum_{i=1}^{n}$

Screen shot from Kahan's paper, $n=10^{9}$:
With Compensated Summation All in Floats

```
sum := 0.0; comp := 0.0;
for i= 1 to 1000000000 do {
    comp := comp + 1.0; oldsum := sum ;
    sum := oldsum + comp ;
    comp := (sum - oldsum) + comp ; }
sum is \(1000000000.0=10^{9}\) exactly
```

Screen shot from Mathematica test for sum up to $n=10$

```
sum = 0.0; comp = 0.0;
For[i=1,i < 10, i++,
    comp = comp + 1; oldsum = sum;
    sum = oldsum + comp;
    comp = (sum - oldsum) + comp;]
sum
2036.
```


Let's try Kahan's suggestion for $\sum_{i=1}^{n}$

Screen shot from Kahan's paper, $n=10^{9}$:
With Compensated Summation All in Floats

```
sum := 0.0; comp := 0.0;
for i=1 to 1000000000 do {
    comp := comp + 1.0; oldsum := sum ;
    sum := oldsum + comp ;
    comp := (sum - oldsum) + comp ; }
sum is \(1000000000.0=10^{9}\) exactly
```

Screen shot from Mathematica test for sum up to $n=10$

```
sum = 0.0; comp = 0.0;
For[i=1,i s 10, i++,
    comp = comp + 1; oldsum = sum;
    sum = oldsum + comp;
    comp = (sum - oldsum) + comp;]
sum
2036. FAIL
```

(Attempting to sum to 10^{9} gives NaN .)

Let's try Kahan's suggestion for $\sum_{i=1}^{n} 1$

Screen shot from Kahan's paper, $n=10^{9}$:
With Compensated Summation

```
sum := 0.0; comp := 0.0;
for i=1 to 1000000000 do {
    comp := comp + 1.0; oldsum := sum ;
    sum := oldsum + comp ;
    comp := (sum - oldsum) + comp ; }
```

sum is $1000000000.0=10^{9}$ exactly

Screen shot from Mathematica test for sum up to $n=10$

```
sum = 0.0; comp = 0.0;
For[i=1,i \leq 10, i++,
    comp = comp + 1; oldsum = sum;
    sum = oldsum + comp;
    comp = (sum - oldsum) + comp;]
sum
2036. FAIL
```

(Attempting to sum to 10^{9} gives NaN .)

- Rewriting code to compensate for rounding is very error-prone; even Kahan didn't get it right.

Let's try Kahan's suggestion for $\sum_{i=1}^{n} 1$

Screen shot from Kahan's paper, $n=10^{9}$:
With Compensated Summation

```
sum := 0.0; comp := 0.0;
for i=1 to 1000000000 do {
    comp := comp + 1.0; oldsum := sum ;
    sum := oldsum + comp ;
    comp := (sum - oldsum) + comp ; }
sum is \(1000000000.0=10^{9}\) exactly
```

Screen shot from Mathematica test for sum up to $n=10$

```
sum = 0.0; comp = 0.0;
For[i=1,i \leq 10, i++,
    comp = comp + 1; oldsum = sum;
    sum = oldsum + comp;
    comp = (sum - oldsum) + comp;]
sum
2036. FAIL
```

(Attempting to sum to 10^{9} gives NaN .)

- Rewriting code to compensate for rounding is very error-prone; even Kahan didn't get it right.
- Approach uses much more human coding effort and three times as many bits to produce a wildly wrong answer.

Let's try Kahan's suggestion for $\sum_{i=1}^{n} 1$

Screen shot from Kahan's paper, $n=10^{9}$:
With Compensated Summation

```
sum := 0.0; comp := 0.0;
for i=1 to 1000000000 do {
    comp := comp + 1.0; oldsum := sum ;
    sum := oldsum + comp ;
    comp := (sum - oldsum) + comp ; }
sum is \(1000000000.0=10^{9}\) exactly
```

Screen shot from Mathematica test for sum up to $n=10$

```
sum = 0.0; comp = 0.0;
For[i=1,i \leq 10, i++,
    comp = comp + 1; oldsum = sum;
    sum = oldsum + comp;
    comp = (sum - oldsum) + comp;]
sum
2036. FAIL
```

(Attempting to sum to 10^{9} gives NaN .)

- Rewriting code to compensate for rounding is very error-prone; even Kahan didn't get it right.
- Approach uses much more human coding effort and three times as many bits to produce a wildly wrong answer.
- Examples like this need to be tested, not merely asserted.

Kahan's "Monster" Revisited

Verbatim:

$\begin{array}{ll}\text { Real variables } & \mathrm{x}, \mathrm{y}, \mathrm{z} ; \\ \text { Real Function } & \mathrm{T}(\mathrm{z}):=\{\text { If } \mathrm{z}=0 \text { then } 1 \text { else }(\exp (\mathrm{z})-1) / \mathrm{z}\} ; \\ \text { Real Function } & \mathrm{Q}(\mathrm{y}):=\left|\mathrm{y}-\sqrt{ }\left(\mathrm{y}^{2}+1\right)\right|-1 /\left(\mathrm{y}+\sqrt{ }\left(\mathrm{y}^{2}+1\right)\right) ; \\ \text { Real Function } & \mathrm{G}(\mathrm{x}):=\mathrm{T}\left(\mathrm{Q}(\mathrm{x})^{2}\right) ; \\ \quad\end{array}$
For Integer $\mathrm{n}=1$ to 9999 do Display\{ $\mathrm{n}, \mathrm{G}(\mathrm{n})\}$ end do.
$" \mathrm{G}(\mathrm{x}):=\mathrm{T}\left(\mathrm{Q}(\mathrm{x})^{2}\right)$ ends up wrongly as 0 instead of 1 . Almost always."

Kahan's "Monster" Revisited

Verbatim:

Real variables $\quad x, y, z$;
Real Function $T(z):=\{$ If $z=0$ then 1 else $(\exp (z)-1) / z\}$;
Real Function $\quad Q(y):=\left|y-\sqrt{ }\left(y^{2}+1\right)\right|-1 /\left(y+\sqrt{ }\left(y^{2}+1\right)\right)$;
Real Function $\quad G(x):=T\left(Q(x)^{2}\right)$;
For Integer $\mathrm{n}=1$ to 9999 do Display\{ $\mathrm{n}, \mathrm{G}(\mathrm{n})\}$ end do.
" $\mathrm{G}(\mathrm{x}):=\mathrm{T}\left(\mathrm{Q}(\mathrm{x})^{2}\right)$ ends up wrongly as 0 instead of 1 . Almost always."

- Unums got exactly 1 , but used " \approx " (intersection test) instead of "=".

Kahan’s "Monster" Revisited

Verbatim:

```
Real variables \(\quad \mathrm{x}, \mathrm{y}, \mathrm{z}\);
Real Function \(T(z):=\{\) If \(z=0\) then 1 else \((\exp (z)-1) / z\}\);
Real Function \(\quad Q(y):=\left|y-\sqrt{ }\left(y^{2}+1\right)\right|-1 /\left(y+\sqrt{ }\left(y^{2}+1\right)\right)\);
Real Function \(\quad G(x):=T\left(Q(x)^{2}\right)\);
```

For Integer $\mathrm{n}=1$ to 9999 do Display\{ $\mathrm{n}, \mathrm{G}(\mathrm{n})\}$ end do.
" $\mathrm{G}(\mathrm{x}):=\mathrm{T}\left(\mathrm{Q}(\mathrm{x})^{2}\right)$ ends up wrongly as 0 instead of 1 . Almost always."

- Unums got exactly 1 , but used " \approx " (intersection test) instead of "=".
- Kahan cried "Foul!" so here is a unum version with exactly the specified equality test, which he says will break unums:

```
\(\downarrow\)
\(\mathbf{T}\left[z_{-}\right]:=\operatorname{If}\left[z=0,1,\left(e^{z}-1\right) / z\right] ;\)
\(\mathbf{T u}\left[u_{-}\right]:=\operatorname{Module}\left[\{g=u 2 g[u]\}, \operatorname{g2u}\left[\left\{\left\{T\left[g_{\llbracket 1,1 \rrbracket}\right], T\left[g_{\llbracket 1,2 \rrbracket}\right]\right\}, g_{\llbracket 2 \rrbracket}\right\}\right]\right]\)
\(\boldsymbol{Q u}\left[u_{-}\right]:=\operatorname{absu}[u \ominus \operatorname{sqrtu}[\) squareu \([u] \oplus \hat{1}]] \ominus \hat{1} \odot(u \oplus \operatorname{sqrtu}[\) squareu \([u] \oplus \hat{1}])\)
Gu[u_] := Tu [squareu [Qu [u]]]
```


The result of the "=" unum version

```
For[n=1,n<9, n++, Print["n=",n," G(n)= ", view[Gu[n]]]]
n=1 G(n)=[1, 1.00000000023283064365386962890625)
n=2 G(n)=[1, 1.00000000023283064365386962890625)
n=3 G(n)=[1,1.00000000023283064365386962890625)
n=4 G(n)=[1, 1.00000000023283064365386962890625)
n=5 G(n)=[1,1.00000000023283064365386962890625)
n=6 G(n)=[1,1.00000000023283064365386962890625)
n=7 G(n)=[1, 1.00000000023283064365386962890625)
n=8 G(n)=[1, 1.00000000023283064365386962890625)
n=9 G(n)=[1, 1.00000000023283064365386962890625)
For[n=9990,n<9999, n++, Print["n= ",n," G(n)= ", view[Gu[\hat{n}]]]]
n =9990 G(n) = [1, 1.00000000023283064365386962890625)
n=9991 G(n)=[1,1.00000000023283064365386962890625)
n}=9992\textrm{G}(\textrm{n})=[1,1.00000000023283064365386962890625
n}=9993\textrm{G}(\textrm{n})=[1,1.00000000023283064365386962890625
n = 9994 G(n) = [1, 1.00000000023283064365386962890625)
n=9995 G(n)=[1,1.00000000023283064365386962890625)
n=9996 G(n)=[1, 1.00000000023283064365386962890625)
n=9997 G(n)=[1, 1.00000000023283064365386962890625)
n=9998 G(n)=[1,1.00000000023283064365386962890625)
n=9999 G(n)=[1,1.00000000023283064365386962890625)
```


The result of the "=" unum version

```
For[n=1,n\leq9, n++, Print["n= ", n," G(n)= ", view[Gu[\hat{n}]]]]
n=1 G(n) = [1, 1.00000000023283064365386962890625)
n=2 G(n) = [1, 1.00000000023283064365386962890625)
n = 3 G(n) = [1, 1.00000000023283064365386962890625)
n=4 G(n)=[1,1.00000000023283064365386962890625)
n = 5 G(n) = [1, 1.00000000023283064365386962890625)
n = 6 G(n) = [1, 1.00000000023283064365386962890625)
n = 7 G(n) = [1, 1.00000000023283064365386962890625)
n}=8\quadG(n)=[1,1.00000000023283064365386962890625
n=9 G(n)=[1, 1.00000000023283064365386962890625)
For[n=9990,n\leq9999, n++, Print["n= ",n," G(n)= ", view[Gu[\hat{n}]]]]
n = 9990 G(n) = [1, 1.00000000023283064365386962890625)
n = 9991 G(n) = [1, 1.00000000023283064365386962890625)
n = 9992 G(n) = [1, 1.000000000023283064365386962890625)
n = 9993 G(n) = [1, 1.00000000023283064365386962890625)
n = 9994 G(n) = [1, 1.000000000232883064365386962890625)
n = 9995 G(n) = [1, 1.00000000023283064365386962890625)
n = 9996 G(n) = [1, 1.00000000023283064365386962890625)
n = 9997 G(n) = [1, 1.00000000023283064365386962890625)
n = 9998 G(n) = [1,1.000000000023283064365386962890625)
n=9999 G(n) = [1, 1.00000000023283064365386962890625)
```

> Result: tight bounds, $[1,1+\varepsilon)$.

Never zero.

All Kahan had to do was try it. He has all my prototype code at his fingertips.

He did not test any of his assertions about what he thought unum arithmetic would do, but preferred to speculate that it would fail.

Kahan's Unum-Targeted Variation

Real Function $\mathrm{G}^{\mathrm{o}}(\mathrm{x}):=\mathrm{T}\left(\mathrm{Q}(\mathrm{x})^{2}+\left(10.0^{-300}\right)^{10000 \cdot(\mathrm{x}+1)}\right)$;
For Integer $\mathrm{n}=1$ to 9999 do $\operatorname{Display}\left\{\mathrm{n}, \mathrm{G}^{\mathrm{o}}(\mathrm{n})\right\}$ end do.
"Without roundoff, the ideal value $\mathrm{G}^{\circ}(\mathrm{x}) \approx 1.0$ for all real x . Rounded floating-point gets 0.0 almost always for all practicable precisions. What, if anything, does Unum

Computing get for $\mathrm{G}^{\circ}(\mathrm{n})$? And how long does it take? It cannot be soon nor simply 1.0 ."

Kahan's Unum-Targeted Variation

$$
\begin{aligned}
& \text { Real Function } \mathrm{G}^{\mathrm{o}}(\mathrm{x}):=\mathrm{T}\left(\mathrm{Q}(\mathrm{x})^{2}+\left(10.0^{-300}\right)^{10000 \cdot(\mathrm{x}+1)}\right) \text {; } \\
& \text { For Integer } \left.\mathrm{n}=1 \text { to } 9999 \text { do Display\{ } \mathrm{n}, \mathrm{G}^{\mathrm{o}}(\mathrm{n})\right\} \text { end do. }
\end{aligned}
$$

"Without roundoff, the ideal value $\mathrm{G}^{\circ}(\mathrm{x}) \approx 1.0$ for all real x . Rounded floating-point gets 0.0 almost always for all practicable precisions. What, if anything, does Unum Computing get for $\mathrm{G}^{\circ}(\mathrm{n})$? And how long does it take? It cannot be soon nor simply 1.0 ."

Surprise. Unums handled this without a hiccup. Quickly.

Kahan's Unum-Targeted Variation

> Real Function $\mathrm{G}^{\mathrm{o}}(\mathrm{x}):=\mathrm{T}\left(\mathrm{Q}(\mathrm{x})^{2}+\left(10.0^{-300}\right)^{10000 \cdot(\mathrm{x}+1)}\right)$;
> For Integer $\mathrm{n}=1$ to 9999 do Display\{ $\left.\mathrm{n}, \mathrm{G}^{\mathrm{o}}(\mathrm{n})\right\}$ end do.
"Without roundoff, the ideal value $\mathrm{G}^{\circ}(\mathrm{x}) \approx 1.0$ for all real x . Rounded floating-point gets 0.0 almost always for all practicable precisions. What, if anything, does Unum Computing get for $\mathrm{G}^{\circ}(\mathrm{n})$? And how long does it take? It cannot be soon nor simply 1.0 ."

Surprise. Unums handled this without a hiccup. Quickly.

$\mathbf{G O u}\left[u_{-}\right]:=\mathbf{T u}[$ squareu $[\mathbf{Q u}[u]] \oplus \operatorname{powu}[\operatorname{powu}[\hat{10},-\hat{300}], 10 \hat{000} \otimes(u \oplus \hat{1})]$]

$\begin{array}{ll}\mathrm{n}=1 & \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625) \\ \mathrm{n}=2 & \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625) \\ \mathrm{n}=3 & \mathrm{G0}(\mathrm{n})=[1,1.00000000023283064365386962890625) \\ \mathrm{n}=4 & \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625) \\ \mathrm{n}=5 & \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625) \\ \mathrm{n}=6 & \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625) \\ \mathrm{n}=7 & \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625) \\ \mathrm{n}=8 & \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625) \\ \mathrm{n}=9 & \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)\end{array}$
$\mathrm{n}=9990 \mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9991 \mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9992 \mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9993 \mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9994 \mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9995 \mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9996 \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9997 \mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9998 \mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9999 \mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)$

Kahan's Unum-Targeted Variation

Real Function $\mathrm{G}^{\mathrm{o}}(\mathrm{x}):=\mathrm{T}\left(\mathrm{Q}(\mathrm{x})^{2}+\left(10.0^{-300}\right)^{10000 \cdot(x+1)}\right)$;
For Integer $\mathrm{n}=1$ to 9999 do Display\{ $\left.\mathrm{n}, \mathrm{G}^{0}(\mathrm{n})\right\}$ end do.
"Without roundoff, the ideal value $\mathrm{G}^{\circ}(\mathrm{x}) \approx 1.0$ for all real x . Rounded floating-point gets 0.0 almost always for all practicable precisions. What, if anything, does Unum

Computing get for $\mathrm{G}^{\circ}(\mathrm{n})$? And how long does it take? It cannot be soon nor simply 1.0 ."

Surprise. Unums handled this without a hiccup. Quickly.

$$
\operatorname{GOu}\left[u_{-}\right]:=\operatorname{Tu}[\text { squareu }[Q u[u]] \oplus \operatorname{powu}[\operatorname{powu}[\hat{10},-\hat{300}], 10 \hat{0} 00 \otimes(u \oplus \hat{1})]]
$$

$\mathrm{n}=1$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=2$	$\mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=3$	$\mathrm{G0}(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=4$	$\mathrm{G}(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=5$	$\mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=6$	$\mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=7$	$\mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=8$	$\mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9$	$\mathrm{GO}(\mathrm{n})=[1,1.00000000023283064365386962890625)$

$\mathrm{n}=9990$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9991$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9992$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9993$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9994$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9995$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9996$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9997$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9998$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$
$\mathrm{n}=9999$	$\mathrm{G} 0(\mathrm{n})=[1,1.00000000023283064365386962890625)$

Kahan's "infinitesimal" (his term) becomes unum ($0, \varepsilon$).

An Inconvenient Infinity

My example of quarter-circle integration takes $O(n)$ time for n subdivisions, and produces $O(1 / n)$ size rigorous bounds. Works on any continuous function.

An Inconvenient Infinity

My example of quarter-circle integration takes $O(n)$ time for n subdivisions, and produces $O(1 / n)$ size rigorous bounds. Works on any continuous function.

Now let's clear up the misunderstanding of the misquoted formula in the box above. It should say

$$
\begin{aligned}
& \text { (Midpoint Rule) }-\int_{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \cdot \mathrm{dx}=(\mathrm{b}-\mathrm{a}) \cdot \mathrm{h}^{2} \cdot f^{\prime \prime}(\xi) / 24 \text { and } \\
& \int_{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \cdot \mathrm{dx}-(\text { Trapezoidal Rule })=(\mathrm{b}-\mathrm{a}) \cdot \mathrm{h}^{2} \cdot f^{\prime \prime}(\eta) / 12 .
\end{aligned}
$$

Here $f "(\xi)$ and $f "(\eta)$ are differently weighted averages of the second derivative $f "(\mathrm{x})$ over x between a and b . The weights are positive but not constant. If $f^{\prime \prime}(\mathrm{x})$ is bounded throughout

An Inconvenient Infinity

My example of quarter-circle integration takes $O(n)$ time for n subdivisions, and produces $O(1 / n)$ size rigorous bounds. Works on any continuous function.

Now let's clear up the misunderstanding of the misquoted formula in the box above. It should say

$$
\begin{aligned}
& \text { (Midpoint Rule) }-\int_{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \cdot \mathrm{dx}=(\mathrm{b}-\mathrm{a}) \cdot h^{2} \cdot f^{\prime \prime}(\xi) / 24 \text { and } \\
& \int_{\mathrm{a}}^{\mathrm{b}} f(\mathrm{x}) \cdot \mathrm{dx}-(\text { Trapezoidal Rule })=(\mathrm{b}-\mathrm{a}) \cdot \mathrm{h}^{2} \cdot f^{\prime \prime}(\eta) / 12
\end{aligned}
$$

Here $f "(\xi)$ and $f "(\eta)$ are differently weighted averages of the second derivative $f^{\prime \prime}(\mathrm{x})$ over x between a and b . The weights are positive but not constant. If $f "(\mathrm{x})$ is bounded throughout

But $f^{\prime \prime}(x)$ is not bounded throughout. Kahan uses the formula anyway!
Also, Kahan says my method is $O\left(n^{2}\right)$.
Willful misunderstanding. Obviously not true (see figure above).

Too many mistakes to cover here...

The book claims it ends all error.

Too many mistakes to cover here...

The book claims it ends all error.
It does not. A specific kind of error.

Too many mistakes to cover here...

The book claims it ends all error.
It does not. A specific kind of error.
Unums are tarted intervals.

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Gustafson regards calculus as "evil."
He is not joking.

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil."
He is not joking.

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks I'm not joking?

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil." He is not joking.

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks I'm not joking?

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil." He is not joking.

That's not "grade school" math!

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks I'm not joking?

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil."
He is not joking.
That's not "grade school" math!

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks I'm not joking?
$12^{\text {th }}$ grade is a grade. So is $11^{\text {th }}$ grade.

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil." He is not joking.

That's not "grade school" math!
Unums will cost thousands of extra transistors!

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks I'm not joking?
$12^{\text {th }}$ grade is a grade. So is $11^{\text {th }}$ grade .

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil." He is not joking.

That's not "grade school" math!
Unums will cost thousands of extra transistors!

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks l'm not joking?
$12^{\text {th }}$ grade is a grade. So is $11^{\text {th }}$ grade .
Which will cost thousandths of a penny. The year is 2016, not 1985 .

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil."
He is not joking.
That's not "grade school" math!
Unums will cost thousands of extra transistors!

His approach is very inefficient; here's a faster one that usually works.

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks I'm not joking?
$12^{\text {th }}$ grade is a grade. So is $11^{\text {th }}$ grade .
Which will cost thousandths of a penny. The year is 2016, not 1985 .

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil."
He is not joking.
That's not "grade school" math!
Unums will cost thousands of extra transistors!

His approach is very inefficient; here's a faster one that usually works.

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks l'm not joking?
$12^{\text {th }}$ grade is a grade. So is $11^{\text {th }}$ grade .
Which will cost thousandths of a penny. The year is 2016, not 1985 .

I'm not interested in methods that usually work. We have plenty of those.

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil." He is not joking.

That's not "grade school" math!
Unums will cost thousands of extra transistors!

His approach is very inefficient; here's a faster one that usually works.

Gustafson suffers from a misconception about floating point shared by Von Neumann.

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks l'm not joking?
$12^{\text {th }}$ grade is a grade. So is $11^{\text {th }}$ grade .
Which will cost thousandths of a penny. The year is 2016, not 1985 .

I'm not interested in methods that usually work. We have plenty of those.

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.

Gustafson regards calculus as "evil."
He is not joking.
That's not "grade school" math!
Unums will cost thousands of extra transistors!

His approach is very inefficient; here's a faster one that usually works.

Gustafson suffers from a misconception about floating point shared by Von Neumann.

It does not. A specific kind of error.
Unums subsume floats and intervals. This is an environment, not just a format.

Good grief. A raccoon meme from DIY LOL, and he thinks I'm not joking?
$12^{\text {th }}$ grade is a grade. So is $11^{\text {th }}$ grade .
Which will cost thousandths of a penny. The year is 2016, not 1985 .

I'm not interested in methods that usually work. We have plenty of those.

It pleases me very much to share misconceptions with John von Neumann.

COMPUURB UWIN

FOUPULIB MOM

THUWMITCTOM

Single	\square sign bit
	\square

Double

Extended

Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. ■
The last line of my book, p. 413, and emphasized throughout

Kahan's biggest blind spot of all

 Remember: There is nothing floats can do that unums cannot. ■The last line of my book, p. 413, and emphasized throughout

- Unums are a superset of IEEE floats. Not an "alternative."

Kahan's biggest blind spot of all

 Remember: There is nothing floats can do that unums cannot. ■The last line of my book, p. 413, and emphasized throughout

- Unums are a superset of IEEE floats. Not an "alternative."
- We need not throw away float algorithms that work well

Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. ■

The last line of my book, p. 413, and emphasized throughout

- Unums are a superset of IEEE floats. Not an "alternative."
- We need not throw away float algorithms that work well.
- Rounding can be requested, not forced on users. Unums end the error of mandatory, invisible substitution of incorrect exact values for correct answers.

Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. ■

The last line of my book, p. 413, and emphasized throughout

- Unums are a superset of IEEE floats. Not an "alternative."
- We need not throw away float algorithms that work well.
- Rounding can be requested, not forced on users. Unums end the error of mandatory, invisible substitution of incorrect exact values for correct answers.
- Float methods are a good way to deal with "The Curse of High Dimensions" in many cases, like getting a starting answer for $A x=b$ linear systems in polynomial time.

WK's Dysphemisms, Insults, and Rants about The End of Error: Unum Computing

Bunkum!

Lies

crude
perverse

WK's Dysphemisms, Insults, and Rants about The End of Error: Unum Computing
foolish
Lies
misunderstandings
tarted Bogus
perverse
incorrigibly unrealistic

WK's Dysphemisms, Insults, and Rants about The End of Error: Unum Computing

foolish Puffery Bunkum!

Lies misunderstandings
tarted Bogus crude

$$
\begin{aligned}
& \text { Flogging faux } \\
& \text { seductive liar } \\
& \text { Bogus } \\
& \text { exaggerated } \\
& \text { incorrigibly unrealistic }
\end{aligned}
$$

folly perverse exaggerated

WK’s Dysphemisms, Insults, and Rants about The End of Error: Unum Computing

foolish Puffery Bunkum! snide Mere hyperbole
Lies Mere hyperbole Flogging faux misunderstandings misconceptions
tarted Bogus folly perverse silly exaggerated crude misguided incorrigibly unrealistic

WK's Dysphemisms, Insults, and Rants about The End of Error: Unum Computing

foolish
 Puffery Bunkum! snide

 Mere hyperboleFlogging faux unfair

Lies
misunderstandings
misconceptions
tarted folly perverse crude misguided seductive liar

Bogus silly exaggerated incorrigibly unrealistic

Invective worked for Donald Trump, but... is this really the right way to discuss mathematics?

"THE LORD OF THE REALS... DOES NOT Share POWER."

