
“THE GREAT DEBATE”:
 UNUM ARITHMETIC
 POSITION STATEMENT
Prof. John L. Gustafson
A*STAR-CRC and National University of Singapore

July 12, 2016
ARITH23, Santa Clara California

Why this debate?

Why this debate?
•  The End of Error had dozens of reviewers, including

David Bailey, Horst Simon, Gordon Bell, John Gunnels…

Why this debate?
•  The End of Error had dozens of reviewers, including

David Bailey, Horst Simon, Gordon Bell, John Gunnels…
• Kahan has had the manuscript since November 2013 but

ceased email conversation about its content in July 2014

Why this debate?
•  The End of Error had dozens of reviewers, including

David Bailey, Horst Simon, Gordon Bell, John Gunnels…
• Kahan has had the manuscript since November 2013 but

ceased email conversation about its content in July 2014
•  Then this happened (Amazon.com):

The Wrath of Kahan: A Bitter Blog
•  Kahan no longer submits

papers to journals.

The Wrath of Kahan: A Bitter Blog
•  Kahan no longer submits

papers to journals.
•  Instead he prepares diatribes

and blogs them, as “work in
progress.”

The Wrath of Kahan: A Bitter Blog
•  Kahan no longer submits

papers to journals.
•  Instead he prepares diatribes

and blogs them, as “work in
progress.”

•  This issue is too important to
be left to the bickering of two
old men.

The Wrath of Kahan: A Bitter Blog
•  Kahan no longer submits

papers to journals.
•  Instead he prepares diatribes

and blogs them, as “work in
progress.”

•  This issue is too important to
be left to the bickering of two
old men.

•  He was kind enough to share
with me the 38-page attack
he wants to post about The
End of Error: Unum
Arithmetic.

The Wrath of Kahan: A Bitter Blog
•  Kahan no longer submits

papers to journals.
•  Instead he prepares diatribes

and blogs them, as “work in
progress.”

•  This issue is too important to
be left to the bickering of two
old men.

•  He was kind enough to share
with me the 38-page attack
he wants to post about The
End of Error: Unum
Arithmetic.

•  I will respond in part here.

“Variable bit size is too expensive”

“Variable bit size is too expensive”
•  The utag serves as a linked-list pointer for packing

“Variable bit size is too expensive”
•  The utag serves as a linked-list pointer for packing
•  “Chapter 7: Fixed-size unum storage” pp. 93–102

“Variable bit size is too expensive”
•  The utag serves as a linked-list pointer for packing
•  “Chapter 7: Fixed-size unum storage” pp. 93–102
• Energy/power savings still possible with unpacked form

“Variable bit size is too expensive”
•  The utag serves as a linked-list pointer for packing
•  “Chapter 7: Fixed-size unum storage” pp. 93–102
• Energy/power savings still possible with unpacked form
• Here is an example Kahan calls “a bogus analogy”:

“Variable bit size is too expensive”
•  The utag serves as a linked-list pointer for packing
•  “Chapter 7: Fixed-size unum storage” pp. 93–102
• Energy/power savings still possible with unpacked form
• Here is an example Kahan calls “a bogus analogy”:

“Unums offer the same
trade-off versus floats
as variable-width versus
fixed-width typefaces:
Harder for the design
engineer and more logic
for the computer, but
superior for everyone
else in terms of
usability, compactness,
and overall cost.” (page
193)

Courier, 16 point

“Variable bit size is too expensive”
•  The utag serves as a linked-list pointer for packing
•  “Chapter 7: Fixed-size unum storage” pp. 93–102
• Energy/power savings still possible with unpacked form
• Here is an example Kahan calls “a bogus analogy”:

“Unums offer the same
trade-off versus floats
as variable-width versus
fixed-width typefaces:
Harder for the design
engineer and more logic
for the computer, but
superior for everyone
else in terms of
usability, compactness,
and overall cost.” (page
193)

Courier, 16 point
“Unums offer the same trade-off
versus floats as variable-width
versus fixed-width typefaces: Harder
for the design engineer and more
logic for the computer, but superior
for everyone else in terms of
usability, compactness, and overall
cost.” (page 193)

Times, 16 point

Willful Misunderstanding
“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text is
stored in files and in DRAM memory by word-processor software.
…Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

Willful Misunderstanding
“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text is
stored in files and in DRAM memory by word-processor software.
…Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

Kahan may be unique in his misreading. Other readers understand
that variable width saves display space at the cost of more computing.
The analogy is that unums save storage space at the cost of more
computing.

Willful Misunderstanding
“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text is
stored in files and in DRAM memory by word-processor software.
…Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

Kahan may be unique in his misreading. Other readers understand
that variable width saves display space at the cost of more computing.
The analogy is that unums save storage space at the cost of more
computing.

The “willful misunderstanding” technique: Misread a statement so it
becomes one that can be shown wrong.

Willful Misunderstanding
“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text is
stored in files and in DRAM memory by word-processor software.
…Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

Kahan may be unique in his misreading. Other readers understand
that variable width saves display space at the cost of more computing.
The analogy is that unums save storage space at the cost of more
computing.

The “willful misunderstanding” technique: Misread a statement so it
becomes one that can be shown wrong.

Now imagine 38 pages of similar attacks on things that were also not
said.

Let’s try a classic Kahan example
Find the area of a triangle with sides a, b, c where a
and b are only 3 ULPs longer than half the length of c.

Let’s try a classic Kahan example
Find the area of a triangle with sides a, b, c where a
and b are only 3 ULPs longer than half the length of c.

Try the formula Area = s(s− a)(s− b)(s− c) where s = a+ b+ c
2

Let’s try a classic Kahan example
Find the area of a triangle with sides a, b, c where a
and b are only 3 ULPs longer than half the length of c.

Try the formula Area = s(s− a)(s− b)(s− c) where s = a+ b+ c
2

Let’s try a classic Kahan example
Find the area of a triangle with sides a, b, c where a
and b are only 3 ULPs longer than half the length of c.

Try the formula Area = s(s− a)(s− b)(s− c) where s = a+ b+ c
2

IEEE Quad Precision (128 bits, 34 decimals): Let a = b = 7/2 + 3·2–111, c = 7.

Let’s try a classic Kahan example
Find the area of a triangle with sides a, b, c where a
and b are only 3 ULPs longer than half the length of c.

Try the formula Area = s(s− a)(s− b)(s− c) where s = a+ b+ c
2

IEEE Quad Precision (128 bits, 34 decimals): Let a = b = 7/2 + 3·2–111, c = 7.

If c is 7 light years long, 3 ULPs is ~1/200 the diameter of a proton. The
correct area is about 55 times the surface area of the earth. To 34 decimals:

Let’s try a classic Kahan example
Find the area of a triangle with sides a, b, c where a
and b are only 3 ULPs longer than half the length of c.

Try the formula Area = s(s− a)(s− b)(s− c) where s = a+ b+ c
2

IEEE Quad Precision (128 bits, 34 decimals): Let a = b = 7/2 + 3·2–111, c = 7.

If c is 7 light years long, 3 ULPs is ~1/200 the diameter of a proton. The
correct area is about 55 times the surface area of the earth. To 34 decimals:

3.147842048749004252358852654945507⋯×10–16 square light years.

Quad-precision float result

Quad-precision float result
•  IEEE Quad float gets 1 digit right:

3.634814908423321347259205161580577⋯×10–16.

Quad-precision float result
•  IEEE Quad float gets 1 digit right:

3.634814908423321347259205161580577⋯×10–16.
•  Error is about 15 percent, or 252 peta-ULPs.

Quad-precision float result
•  IEEE Quad float gets 1 digit right:

3.634814908423321347259205161580577⋯×10–16.
•  Error is about 15 percent, or 252 peta-ULPs.
•  Result does not admit any error, nor bound it.

Quad-precision float result
•  IEEE Quad float gets 1 digit right:

3.634814908423321347259205161580577⋯×10–16.
•  Error is about 15 percent, or 252 peta-ULPs.
•  Result does not admit any error, nor bound it.
•  Kahan’s approach: Sort the sides so a ≥ b ≥ c and rewrite the

formula as

Area = (a+ (b+ c))(c− (a− b))(c+ (a− b))(a+ (b− c))
4

Quad-precision float result
•  IEEE Quad float gets 1 digit right:

3.634814908423321347259205161580577⋯×10–16.
•  Error is about 15 percent, or 252 peta-ULPs.
•  Result does not admit any error, nor bound it.
•  Kahan’s approach: Sort the sides so a ≥ b ≥ c and rewrite the

formula as

Area = (a+ (b+ c))(c− (a− b))(c+ (a− b))(a+ (b− c))
4

This is within 11 ULPs of the correct area, but it
takes hours to figure out such an approach.

It also uses twice as many operations, but that’s

not the issue: it’s the people cost of the approach.

Unum approach to the thin triangle

Unum approach to the thin triangle
• Use no more than 128 bits per number, but adjustable

Unum approach to the thin triangle
• Use no more than 128 bits per number, but adjustable
• Exponent can be 1 to 16 bits (wider range than quad)

Unum approach to the thin triangle
• Use no more than 128 bits per number, but adjustable
• Exponent can be 1 to 16 bits (wider range than quad)
•  Fraction can be 1 to 128 bits, plus the hidden bit

(higher precision than quad)

Unum approach to the thin triangle
• Use no more than 128 bits per number, but adjustable
• Exponent can be 1 to 16 bits (wider range than quad)
•  Fraction can be 1 to 128 bits, plus the hidden bit

(higher precision than quad)
• Result is a rigorous bound accurate to 31 decimals:

Unum approach to the thin triangle
• Use no more than 128 bits per number, but adjustable
• Exponent can be 1 to 16 bits (wider range than quad)
•  Fraction can be 1 to 128 bits, plus the hidden bit

(higher precision than quad)
• Result is a rigorous bound accurate to 31 decimals:

3.14784204890042523588526549455070⋯×10–16 < Area <
3.14784204890042523588526549455139⋯×10–16

Unum approach to the thin triangle
• Use no more than 128 bits per number, but adjustable
• Exponent can be 1 to 16 bits (wider range than quad)
•  Fraction can be 1 to 128 bits, plus the hidden bit

(higher precision than quad)
• Result is a rigorous bound accurate to 31 decimals:

3.14784204890042523588526549455070⋯×10–16 < Area <
3.14784204890042523588526549455139⋯×10–16

The size of that bound is the area of a
square 8 nanometers on a side.

No need to rewrite the formula.

Summary of comparison
Format
Capabilities

Quad-precision
IEEE floats

Unums,
{4,7} environment

Dynamic Range ~6.5×10–4966 to 1.2×104932 ~8.2×10–9903 to ~2.8×109864

Precision ~34.0 decimal digits ~38.8 decimal digits

Summary of comparison
Format
Capabilities

Quad-precision
IEEE floats

Unums,
{4,7} environment

Dynamic Range ~6.5×10–4966 to 1.2×104932 ~8.2×10–9903 to ~2.8×109864

Precision ~34.0 decimal digits ~38.8 decimal digits

Results on
thin triangle

Quad-precision
IEEE floats

Unums,
{4,7} environment

Maximum bits
used 128 128

Average bits used 128 90

Result
Area =

3.6481490842332134725920516
1580577×10–16

3.147842048749004252358852654945507×10–16
< Area <

3.147842048749004252358852654945514×10–16

Type of
information loss

Invisible error,
very hard to debug

Rigorous bound,
easy to debug if needed

Error / bound size ~4×1015 meters2 ~6×10–17 meters2

Another “Rewrite it this way” example
From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {

float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
printf (“%f\n”, sum);

}

Another “Rewrite it this way” example
From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {

float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
printf (“%f\n”, sum);

}

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.

Another “Rewrite it this way” example
From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {

float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
printf (“%f\n”, sum);

}

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.

“Compensated Summation will be illustrated by application to a silly sum
Gustafson uses on p. 120 to justify what unums do as intervals do, namely,
convey numerical uncertainty via their widths.”

Another “Rewrite it this way” example
From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {

float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
printf (“%f\n”, sum);

}

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.

“Compensated Summation will be illustrated by application to a silly sum
Gustafson uses on p. 120 to justify what unums do as intervals do, namely,
convey numerical uncertainty via their widths.”

(Misreading. Actually, the example was to show how unums can
automatically adjust range and precision to get the exact answer.)

Let’s try Kahan’s suggestion for
Screen shot from Kahan’s paper, n = 109:

Let’s try Kahan’s suggestion for
Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica

test for sum up to n = 10

Let’s try Kahan’s suggestion for
Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica

test for sum up to n = 10

(Attempting to sum to 109 gives NaN.)

FAIL

Let’s try Kahan’s suggestion for

•  Rewriting code to compensate for rounding is very error-prone;
even Kahan didn’t get it right.

Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica
test for sum up to n = 10

(Attempting to sum to 109 gives NaN.)

FAIL

Let’s try Kahan’s suggestion for

•  Rewriting code to compensate for rounding is very error-prone;
even Kahan didn’t get it right.

•  Approach uses much more human coding effort and three
times as many bits to produce a wildly wrong answer.

Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica
test for sum up to n = 10

(Attempting to sum to 109 gives NaN.)

FAIL

Let’s try Kahan’s suggestion for

•  Rewriting code to compensate for rounding is very error-prone;
even Kahan didn’t get it right.

•  Approach uses much more human coding effort and three
times as many bits to produce a wildly wrong answer.

•  Examples like this need to be tested, not merely asserted.

Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica
test for sum up to n = 10

(Attempting to sum to 109 gives NaN.)

FAIL

Kahan’s “Monster” Revisited
Real variables x, y, z ;�
Real Function T(z) := { If z = 0 then 1 else (exp(z) – 1)/z } ;�
Real Function Q(y) := | y – √(y2 + 1) | – 1/(y + √(y2 + 1)) ;�
Real Function G(x) := T(Q(x) 2) ;�
 For Integer n = 1 to 9999 do Display{ n , G(n) } end do.

“G(x) := T(Q(x) 2) ends up wrongly as 0 instead of 1 . Almost always.”

Verbatim:

Kahan’s “Monster” Revisited
Real variables x, y, z ;�
Real Function T(z) := { If z = 0 then 1 else (exp(z) – 1)/z } ;�
Real Function Q(y) := | y – √(y2 + 1) | – 1/(y + √(y2 + 1)) ;�
Real Function G(x) := T(Q(x) 2) ;�
 For Integer n = 1 to 9999 do Display{ n , G(n) } end do.

“G(x) := T(Q(x) 2) ends up wrongly as 0 instead of 1 . Almost always.”

Verbatim:

•  Unums got exactly 1, but used “≈” (intersection test) instead of “=”.

Kahan’s “Monster” Revisited
Real variables x, y, z ;�
Real Function T(z) := { If z = 0 then 1 else (exp(z) – 1)/z } ;�
Real Function Q(y) := | y – √(y2 + 1) | – 1/(y + √(y2 + 1)) ;�
Real Function G(x) := T(Q(x) 2) ;�
 For Integer n = 1 to 9999 do Display{ n , G(n) } end do.

“G(x) := T(Q(x) 2) ends up wrongly as 0 instead of 1 . Almost always.”

Verbatim:

•  Unums got exactly 1, but used “≈” (intersection test) instead of “=”.
•  Kahan cried “Foul!” so here is a unum version with exactly the

specified equality test, which he says will break unums:

The result of the “=“ unum version

The result of the “=“ unum version
Result: tight bounds,
[1, 1+ε).

Never zero.

All Kahan had to do was
try it. He has all my
prototype code at his
fingertips.

He did not test any of
his assertions about
what he thought unum
arithmetic would do, but
preferred to speculate
that it would fail.

Kahan’s Unum-Targeted Variation
Real Function Gº (x) := T(Q(x)2 + (10.0–300)10000·(x+1)) ;�
For Integer n = 1 to 9999 do Display{ n , Gº (n) } end do.

“Without roundoff, the ideal value Gº (x) ≈ 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Kahan’s Unum-Targeted Variation

Surprise. Unums handled this without a hiccup. Quickly.

Real Function Gº (x) := T(Q(x)2 + (10.0–300)10000·(x+1)) ;�
For Integer n = 1 to 9999 do Display{ n , Gº (n) } end do.

“Without roundoff, the ideal value Gº (x) ≈ 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Kahan’s Unum-Targeted Variation

Surprise. Unums handled this without a hiccup. Quickly.

Real Function Gº (x) := T(Q(x)2 + (10.0–300)10000·(x+1)) ;�
For Integer n = 1 to 9999 do Display{ n , Gº (n) } end do.

“Without roundoff, the ideal value Gº (x) ≈ 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

…

Kahan’s Unum-Targeted Variation

Surprise. Unums handled this without a hiccup. Quickly.

Real Function Gº (x) := T(Q(x)2 + (10.0–300)10000·(x+1)) ;�
For Integer n = 1 to 9999 do Display{ n , Gº (n) } end do.

“Without roundoff, the ideal value Gº (x) ≈ 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Kahan’s “infinitesimal” (his term) becomes unum (0, ε).
…

An Inconvenient Infinity
My example of quarter-circle integration
takes O(n) time for n subdivisions, and
produces O(1/n) size rigorous bounds.
Works on any continuous function.

An Inconvenient Infinity
My example of quarter-circle integration
takes O(n) time for n subdivisions, and
produces O(1/n) size rigorous bounds.
Works on any continuous function.

An Inconvenient Infinity
My example of quarter-circle integration
takes O(n) time for n subdivisions, and
produces O(1/n) size rigorous bounds.
Works on any continuous function.

But f″(x) is not bounded throughout. Kahan uses the formula anyway!

Also, Kahan says my method is O(n2).
Willful misunderstanding. Obviously not true (see figure above).

Too many mistakes to cover here…
The book claims it ends all error.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

That’s not “grade school” math!

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

That’s not “grade school” math! 12th grade is a grade. So is 11th grade.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

Unums will cost thousands of extra
transistors!

That’s not “grade school” math! 12th grade is a grade. So is 11th grade.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

Unums will cost thousands of extra
transistors!

Which will cost thousandths of a penny.
The year is 2016, not 1985.

That’s not “grade school” math! 12th grade is a grade. So is 11th grade.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

Unums will cost thousands of extra
transistors!

Which will cost thousandths of a penny.
The year is 2016, not 1985.

His approach is very inefficient; here’s a
faster one that usually works.

That’s not “grade school” math! 12th grade is a grade. So is 11th grade.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

Unums will cost thousands of extra
transistors!

Which will cost thousandths of a penny.
The year is 2016, not 1985.

His approach is very inefficient; here’s a
faster one that usually works.

I’m not interested in methods that
usually work. We have plenty of those.

That’s not “grade school” math! 12th grade is a grade. So is 11th grade.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

Gustafson suffers from a misconception
about floating point shared by Von
Neumann.

Unums will cost thousands of extra
transistors!

Which will cost thousandths of a penny.
The year is 2016, not 1985.

His approach is very inefficient; here’s a
faster one that usually works.

I’m not interested in methods that
usually work. We have plenty of those.

That’s not “grade school” math! 12th grade is a grade. So is 11th grade.

Too many mistakes to cover here…
The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”�
He is not joking.

Good grief. A raccoon meme from DIY
LOL, and he thinks I’m not joking?

Gustafson suffers from a misconception
about floating point shared by Von
Neumann.

It pleases me very much to share
misconceptions with John von
Neumann.

Unums will cost thousands of extra
transistors!

Which will cost thousandths of a penny.
The year is 2016, not 1985.

His approach is very inefficient; here’s a
faster one that usually works.

I’m not interested in methods that
usually work. We have plenty of those.

That’s not “grade school” math! 12th grade is a grade. So is 11th grade.

COMPUTERS THEN

COMPUTERS NOW

ARITHMETIC THEN

ARITHMETIC NOW

Kahan’s biggest blind spot of all
Remember: There is nothing floats can do that unums cannot. !

The last line of my book, p. 413, and emphasized throughout

Kahan’s biggest blind spot of all

• Unums are a superset of IEEE floats. Not an “alternative.”

Remember: There is nothing floats can do that unums cannot. !

The last line of my book, p. 413, and emphasized throughout

Kahan’s biggest blind spot of all

• Unums are a superset of IEEE floats. Not an “alternative.”
• We need not throw away float algorithms that work well

Remember: There is nothing floats can do that unums cannot. !

The last line of my book, p. 413, and emphasized throughout

Kahan’s biggest blind spot of all

• Unums are a superset of IEEE floats. Not an “alternative.”
• We need not throw away float algorithms that work well.
• Rounding can be requested, not forced on users. Unums

end the error of mandatory, invisible substitution of
incorrect exact values for correct answers.

Remember: There is nothing floats can do that unums cannot. !

The last line of my book, p. 413, and emphasized throughout

Kahan’s biggest blind spot of all

• Unums are a superset of IEEE floats. Not an “alternative.”
• We need not throw away float algorithms that work well.
• Rounding can be requested, not forced on users. Unums

end the error of mandatory, invisible substitution of
incorrect exact values for correct answers.

•  Float methods are a good way to deal with “The Curse of
High Dimensions” in many cases, like getting a starting
answer for Ax = b linear systems in polynomial time.

Remember: There is nothing floats can do that unums cannot. !

The last line of my book, p. 413, and emphasized throughout

WK’s Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

Lies
Bunkum!

crude

liar
perverse

Bogus

WK’s Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

Lies Flogging

tarted

incorrigibly unrealistic

misunderstandings

Bunkum!foolish

crude

liar
perverse

Bogus

WK’s Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

Lies Flogging

tarted

incorrigibly unrealistic

seductivemisunderstandings

Bunkum!foolish

folly

faux

crude
exaggerated

Puffery

liar
perverse

Bogus

WK’s Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

Lies Flogging

tarted

incorrigibly unrealistic

seductivemisunderstandings
misconceptions

Mere hyperbole
Bunkum!foolish

unfair

folly silly

faux

snide

crude
exaggerated

Puffery

misguided

liar
perverse

Bogus

WK’s Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

Invective worked for Donald Trump, but… is this
really the right way to discuss mathematics?

Lies Flogging

tarted

incorrigibly unrealistic

seductivemisunderstandings
misconceptions

Mere hyperbole
Bunkum!foolish

unfair

folly silly

faux

snide

crude
exaggerated

Puffery

misguided

liar
perverse

Bogus

