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David Bailey, Horst Simon, Gordon Bell, John Gunnels… 
• Kahan has had the manuscript since November 2013 but 

ceased email conversation about its content in July 2014 
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•  Kahan no longer submits 

papers to journals. 
•  Instead he prepares diatribes 

and blogs them, as “work in 
progress.” 

•  This issue is too important to 
be left to the bickering of two 
old men. 

•  He was kind enough to share 
with me the 38-page attack 
he wants to post about The 
End of Error: Unum 
Arithmetic. 

•  I will respond in part here. 
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•  The utag serves as a linked-list pointer for packing 
•  “Chapter 7: Fixed-size unum storage” pp. 93–102 
• Energy/power savings still possible with unpacked form 
• Here is an example Kahan calls “a bogus analogy”: 

“Unums offer the same 
trade-off versus floats 
as variable-width versus 
fixed-width typefaces: 
Harder for the design 
engineer and more logic 
for the computer, but 
superior for everyone 
else in terms of 
usability, compactness, 
and overall cost.” (page 
193)

Courier, 16 point 
“Unums offer the same trade-off 
versus floats as variable-width 
versus fixed-width typefaces: Harder 
for the design engineer and more 
logic for the computer, but superior 
for everyone else in terms of 
usability, compactness, and overall 
cost.” (page 193)

Times, 16 point 
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“Bunkum! Gustafson has confused the way text is printed, or 
displayed on today’s bit-mapped screens, with the way text is 
stored in files and in DRAM memory by word-processor software. 
…Text stored in variable-width characters would occupy more 
DRAM memory, not less, as we shall see.” (boldface mine) 

Kahan may be unique in his misreading. Other readers understand 
that variable width saves display space at the cost of more computing. 
The analogy is that unums save storage space at the cost of more 
computing. 
 
The “willful misunderstanding” technique: Misread a statement so it 
becomes one that can be shown wrong. 
 
Now imagine 38 pages of similar attacks on things that were also not 
said. 
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Try the formula Area =   s(s− a)(s− b)(s− c)  where s = a+ b+ c
2

IEEE Quad Precision (128 bits, 34 decimals): Let a = b = 7/2 + 3·2–111, c = 7. 
 
If c is 7 light years long, 3 ULPs is ~1/200 the diameter of a proton. The 
correct area is about 55 times the surface area of the earth. To 34 decimals: 
 

3.147842048749004252358852654945507⋯×10–16 square light years. 
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Quad-precision float result 
•  IEEE Quad float gets 1 digit right: 

3.634814908423321347259205161580577⋯×10–16. 
•  Error is about 15 percent, or 252 peta-ULPs. 
•  Result does not admit any error, nor bound it. 
•  Kahan’s approach: Sort the sides so a ≥ b ≥ c and rewrite the 

formula as 
 

Area = (a+ (b+ c))(c− (a− b))(c+ (a− b))(a+ (b− c))
4

This is within 11 ULPs of the correct area, but it 
takes hours to figure out such an approach.  

 
It also uses twice as many operations, but that’s 

not the issue: it’s the people cost of the approach. 
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Unum approach to the thin triangle 
• Use no more than 128 bits per number, but adjustable 
• Exponent can be 1 to 16 bits (wider range than quad) 
•  Fraction can be 1 to 128 bits, plus the hidden bit 

(higher precision than quad) 
• Result is a rigorous bound accurate to 31 decimals: 

3.14784204890042523588526549455070⋯×10–16 < Area < 
3.14784204890042523588526549455139⋯×10–16  

The size of that bound is the area of a 
square 8 nanometers on a side. 

 
No need to rewrite the formula. 
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Summary of comparison 
Format 
Capabilities 

Quad-precision 
IEEE floats 

Unums, 
{4,7} environment 

Dynamic Range ~6.5×10–4966 to 1.2×104932  ~8.2×10–9903 to ~2.8×109864 

Precision ~34.0 decimal digits ~38.8 decimal digits 

Results on 
thin triangle 

Quad-precision 
IEEE floats 

Unums, 
{4,7} environment 

Maximum bits 
used 128 128 

Average bits used 128 90 

Result 
Area = 

3.6481490842332134725920516
1580577×10–16  

3.147842048749004252358852654945507×10–16  
< Area < 

3.147842048749004252358852654945514×10–16  

Type of 
information loss 

Invisible error, 
very hard to debug 

Rigorous bound, 
easy to debug if needed 

Error / bound size ~4×1015 meters2 ~6×10–17 meters2 
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Another “Rewrite it this way” example 
From my book, to show why round-to-nearest might not be 
random and how unums can self-manage accuracy: 
 
 

#include < stdio.h >
float sumtester () {

float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;} 
printf (“%f\n”, sum);

} 

In trying to count to a billion, IEEE floats (32-bit) produce 16777216. 

“Compensated Summation will be illustrated by application to a silly sum 
Gustafson uses on p. 120 to justify what unums do as intervals do, namely, 
convey numerical uncertainty via their widths.”

(Misreading. Actually, the example was to show how unums can 
automatically adjust range and precision to get the exact answer.) 
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Let’s try Kahan’s suggestion for 

•  Rewriting code to compensate for rounding is very error-prone; 
even Kahan didn’t get it right. 

•  Approach uses much more human coding effort and three 
times as many bits to produce a wildly wrong answer. 

•  Examples like this need to be tested, not merely asserted.  

Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica 
test for sum up to n = 10 

(Attempting to sum to 109 gives NaN.) 

FAIL 
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“G(x) := T( Q(x) 2 ) ends up wrongly as 0 instead of 1 . Almost always.”

Verbatim: 

•  Unums got exactly 1, but used “≈” (intersection test) instead of “=”. 
•  Kahan cried “Foul!” so here is a unum version with exactly the 

specified equality test, which he says will break unums: 
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The result of the “=“ unum version 
Result: tight bounds, 
[1, 1+ε). 
 
Never zero. 
 
All Kahan had to do was 
try it. He has all my 
prototype code at his 
fingertips. 
 
He did not test any of 
his assertions about 
what he thought unum 
arithmetic would do, but 
preferred to speculate 
that it would fail. 
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Surprise. Unums handled this without a hiccup. Quickly. 

Real Function Gº (x) := T( Q(x)2 + (10.0–300)10000·(x+1) ) ;�
For Integer n = 1 to 9999 do Display{ n , Gº (n) } end do. 

“Without roundoff, the ideal value Gº (x) ≈ 1.0 for all real x . Rounded floating-point gets 
0.0 almost always for all practicable precisions. What, if anything, does Unum 
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Kahan’s “infinitesimal” (his term) becomes unum (0, ε). 
… 
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An Inconvenient Infinity 
My example of quarter-circle integration 
takes O(n) time for n subdivisions, and 
produces O(1/n) size rigorous bounds. 
Works on any continuous function. 
 
 

But f″(x) is not bounded throughout. Kahan uses the formula anyway! 
 

Also, Kahan says my method is O(n2). 
Willful misunderstanding. Obviously not true (see figure above). 
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• Unums are a superset of IEEE floats. Not an “alternative.” 
• We need not throw away float algorithms that work well. 
• Rounding can be requested, not forced on users. Unums 

end the error of mandatory, invisible substitution of 
incorrect exact values for correct answers. 

•  Float methods are a good way to deal with “The Curse of 
High Dimensions” in many cases, like getting a starting 
answer for Ax = b linear systems in polynomial time. 

Remember: There is nothing floats can do that unums cannot. ! 

The last line of my book, p. 413, and emphasized throughout 
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