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Courier, 16 point Times, 16 point
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as variable-width versus versus fixed-width typefaces: Harder
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Willful Misunderstanding

“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text is
stored 1n files and in DRAM memory by word-processor software.
... Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

Kahan may be unique in his misreading. Other readers understand
that variable width saves display space at the cost of more computing.
The analogy is that unums save storage space at the cost of more
computing.

The “willful misunderstanding” technique: Misread a statement so it
becomes one that can be shown wrong.

Now imagine 38 pages of similar attacks on things that were also not
said.



Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a=cl2+3 ULPs b =c/2+3 ULPs



Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a=cl2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =



Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a=cl2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =




Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a =c/2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =

IEEE Quad Precision (128 bits, 34 decimals): Leta=b=7/2+ 3:2-"M ¢=7.



Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a =c/2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =

IEEE Quad Precision (128 bits, 34 decimals): Leta=b=7/2+ 3:2-"M ¢=7.

If ¢ is 7 light years long, 3 ULPs is ~1/200 the diameter of a proton. The
correct area is about 55 times the surface area of the earth. To 34 decimals:



Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a =c/2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =

IEEE Quad Precision (128 bits, 34 decimals): Leta=b=7/2+ 3:2-"M ¢=7.

If ¢ is 7 light years long, 3 ULPs is ~1/200 the diameter of a proton. The
correct area is about 55 times the surface area of the earth. To 34 decimals:

3.147842048749004252358852654945507-x10-16 square light years.
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Quad-precision float result

IEEE Quad float gets 7 digit right:
3.634814908423321347259205161580577-x10-16,

Error is about 15 percent, or 252 peta-ULPs.
Result does not admit any error, nor bound it.

Kahan's approach: Sort the sides so a =2 b = ¢ and rewrite the
formula as

\/(a +(b+c))(c-(a=-b))(c+(a-b))a+(b-c))
4

Area =

This is within 11 ULPs of the correct area, but it
takes hours to figure out such an approach.

It also uses twice as many operations, but that's
not the issue: it's the people cost of the approach.
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Unum approach to the thin triangle

Use no more than 128 bits per number, but adjustable
Exponent can be 1 to 16 bits (wider range than quad)

Fraction can be 1 to 128 bits, plus the hidden bit
(higher precision than quad)

Result is a rigorous bound accurate to 31 decimals:

3.14784204890042523588526549455070-x10-"6 < Area <
3.14784204890042523588526549455139-x10-16

The size of that bound is the area of a
square 8 nanometers on a side.

No need to rewrite the formula.
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Summary of comparison

Format Quad-precision Unums,
Capabilities IEEE floats {4,7} environment
Dynamic Range  ~6.5x107496 to 1.2x104932 ~8.2x1079903 {o ~2.8x1(9864
Precision ~34.0 decimal digits ~38.8 decimal digits

Results on Quad-precision Unums,
thin triangle IEEE floats {4,7} environment
Maximum bits
128 128
used
Average bits used 128 90
Area = 3.147842048749004252358852654945507%10-16
Result 3.6481490842332134725920516 < Area <
1580577x%10-16 3.147842048749004252358852654945514 %1016
Type of Invisible error, Rigorous bound,
information loss very hard to debug easy to debug if needed

Error / bound size ~4x1015 meters? ~6x10-17 meters?
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Another “Rewrite it this way” example

From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {
float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
printf (“%£f\n”, sum);

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.

“Compensated Summation will be illustrated by application to a silly sum
Gustafson uses on p. 120 to justify what unums do as intervals do, namely,
convey numerical uncertainty via their widths.”

(Misreading. Actually, the example was to show how unums can
automatically adjust range and precision to get the exact answer.)
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Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica

With Compensated Summation Allin Floats test for sum up ton =10

sum :=0.0; comp:=00;

for 1= 1 to 1000000000 do {
comp :=comp + 1.0 ; oldsum :=sum ;
sum := oldsum + comp ;
comp := (sum — oldsum) + comp ; }

sum is 1000000000.0 = 10° exactly

sum = 0.0; comp = 0.0;
For[i=1, 1 <10, i++,

comp = comp + 1; oldsum = sum;

sum = oldsum + comp;

comp = (sum - oldsum) + comp; ]
sum

2036. FAIL

(Attempting to sum to 10° gives NaN.)

- Rewriting code to compensate for rounding is very error-prone;
even Kahan didn’t get it right.

- Approach uses much more human coding effort and three
times as many bits to produce a wildly wrong answer.
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Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica

With Compensated Summation Allin Floats test for sum up ton =10

sum :=0.0; comp:=00;

for 1= 1 to 1000000000 do {
comp :=comp + 1.0 ; oldsum :=sum ;
sum := oldsum + comp ;
comp := (sum — oldsum) + comp ; }

sum is 1000000000.0 = 10° exactly

sum = 0.0; comp = 0.0;
For[i=1, 1 <10, i++,

comp = comp + 1; oldsum = sum;

sum = oldsum + comp;

comp = (sum - oldsum) + comp; ]
sum

2036. FAIL

(Attempting to sum to 10° gives NaN.)

Rewriting code to compensate for rounding is very error-prone;
even Kahan didn’t get it right.

Approach uses much more human coding effort and three
times as many bits to produce a wildly wrong answer.

Examples like this need to be fested, not merely asserted.
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Verbatim:

Real variables X,Y,Z;
Real Function T(z) :={If z=0then 1 else (exp(z)—1)/z } ;
Real Function Qy) ==ly=vF2+ D 1-1(y+Vy*+1));
Real Function G(x):=T( Q(x)?);

For Integer n = 1 to 9999 do Display{ n , G(n) } end do.

“G(x) :=T( Q(x)?) ends up wrongly as O instead of 1 . Almost always.”

TP "

- Unums got exactly 1, but used “=" (intersection test) instead of “=".

- Kahan cried “Foul!” so here is a unum version with exactly the
specified equality test, which he says will break unums:

T[z ] :=If[z=0,1, (e“-1) / z];

Tu[u_] :=Module[{g =u2g[ul}, g2u[{{T[gm,u1], T[on,21]}s Sr21}]]

Qu[u_] := absu[u©sqrtu[squareu[u] ei]] elo (u ® sqrtu[squareu[u] ei])
Gu[u_ ] :=Tu[squareu[Qu[u]]]
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Kahan's Unum-Targeted Variation

Real Function G° (x) := T( Q(x)? + (10.0-300)10000-(x+1) ) -
For Integer n = 1 to 9999 do Display{ n , G® (n) } end do.

“Without roundoff, the ideal value G° (x) = 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”
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Kahan's Unum-Targeted Variation

Real Function G° (x) := T( Q(x)? + (10.07300)10000-(x+1) ) -
For Integer n = 1 to 9999 do Display{ n , G (n) } end do.

“Without roundoff, the ideal value G® (x) = 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Surprise. Unums handled this without a hiccup. Quickly.

GOufu_ ] == Tu[squareu[Qu[u] ] epowu[powu[lAO, —3A00] ’ 10000 ® (uei)]]

1 Go(n) - [1,1.00000000023283064365386962890625) n = 9990 G0 (n) - [1, 1.00000000023283064365386962890625)
2 Go(n) - [1,1.00000000023283064365386962890625) n = 9991  G0(n) - [1,1.00000000023283064365386962890625)
3 Go(n) - [1,1.00000000023283064365386962890625) n - 9992 Go(n) - [1,1.00000000023283064365386962890625)
4 GO (n) = [1’ 100000000023283064365386962890625) n = 9993 GO (n) = [1, 1.00000000023283064365386962890625)
s co(m) - [1, 1.00000000023283064365386962890625) n - 9994 Go0(n) - [1,1.00000000023283064365386962890625)
n - 9995  Go0(n) - [1,1.00000000023283064365386962890625)

j zgizi ] H 1'ggg888gggggg228223222:22222882;2; n - 9996 Go(n) - [1,1.00000000023283064365386962890625)
1 n - 9997  Go0(n) - [1,1.00000000023283064365386962890625)

8 Go(n) = [1,1.00000000023283064365386962890625) n - 9998  Go(n) - [1, 1.00000000023283064365386962890625)
9 Go(n) = [1,1.00000000023283064365386962890625) n - 9999 Go(n) - [1, 1.00000000023283064365386962890625)
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Kahan's Unum-Targeted Variation

Real Function G° (x) := T( Q(x)? + (10.07300)10000-(x+1) ) -
For Integer n = 1 to 9999 do Display{ n , G (n) } end do.

“Without roundoff, the ideal value G® (x) = 1.0 for all real x . Rounded floating-point gets

0

0 almost always for all practicable precisions. What, if anything, does Unum

Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Surprise. Unums handled this without a hiccup. Quickly.

GOufu_ ] == Tu[squareu[Qu[u] ] epowu[powu[lAO, —3A00] ’ 10 000 ® (uei)]]

G0 (n) = [1, 1.00000000023283064365386962890625) n = 9990 GO0(n) = [1,1.00000000023283064365386962890625)
Go(n) = [1, 1.00000000023283064365386962890625) n = 9991 GO(n) = [1,1.00000000023283064365386962890625)
Go(n) = [1, 1.00000000023283064365386962890625) n = 9992 GO(n) = [1,1.00000000023283064365386962890625)
GO (n) = [1’ 100000000023283064365386962890625) n = 9993 GO (n) = [1, 1.00000000023283064365386962890625)
G0 (n) = [1, 1.00000000023283064365386962890625) n = 9994 ¢co0(n) = [1,1.00000000023283064365386962890625)
n = 9995 GO(n) = [1,1.00000000023283064365386962890625)

zﬁizz ] H 1'ggg888gggggggggjggggggggggggggg n - 9996 Go(n) - [1,1.00000000023283064365386962890625)
T n = 9997 ¢G0(n) = [1,1.00000000023283064365386962890625)

co(n) = [1,1.00000000023283064365386962890625) n - 9998  Go(n) - [1, 1.00000000023283064365386962890625)
G0 (n) = [1,1.00000000023283064365386962890625) n - 9999 Go(n) - [1, 1.00000000023283064365386962890625)

Kahan’s “infinitesimal” (his term) becomes unum (0, ¢).
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An Inconvenient Infinity y

My example of quarter-circle integration
takes O(n) time for n subdivisions, and

produces O(1/n) size rigorous bounds.
Works on any continuous function. X

Now let’s clear up the misunderstanding of the misquoted formula in the box above. It should say

(Midpoint Rule) — [,? f(x)-dx = (b—a)h*f"(E)/24 and

[.P £(x)-dx— (Trapezoidal Rule) = (b—a)hf"m)/12.

Here f"(§) and f"(m) are differently weighted averages of the second derivative f"(x) over x
between a and b. The weights are positive but not constant. If f"(x) is bounded throughout

But f(x) is not bounded throughout. Kahan uses the formula anyway!

Also, Kahan says my method is O(n?).
Willful misunderstanding. Obviously not true (see figure above).
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Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.
Gustafson regards calculus as “evil.”
He is not joking.

That’s not “grade school” math!

Unums will cost thousands of extra
transistors!

His approach is very inefficient; here’s a
faster one that usually works.

Gustafson suffers from a misconception
about floating point shared by Von
Neumann.

It does not. A specific kind of error.

Unums subsume floats and intervals.
This is an environment, not just a format.

Good grief. A raccoon meme from DIY
LOL, and he thinks I'm not joking?

12 grade is a grade. So is 11t grade.

Which will cost thousandths of a penny.
The year is 2016, not 1985.

I’'m not interested in methods that
usually work. We have plenty of those.

It pleases me very much to share
misconceptions with John von
Neumann.
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Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. B

The last line of my book, p. 413, and emphasized throughout

)

Unums are a superset of IEEE floats. Not an “alternative.’
We need not throw away float algorithms that work well.

Rounding can be requested, not forced on users. Unums
end the error of mandatory, invisible substitution of
incorrect exact values for correct answers.

Float methods are a good way to deal with “The Curse of
High Dimensions” in many cases, like getting a starting
answer for Ax = b linear systems in polynomial time.
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WK’s Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

foolish Puffery Bunkum! snide
. Lies Mere hyperbole Flogging faux
unfair : :
misunderstandings ductive .
misconceptions > liar

tarted Bogus

f()lly perverse silly  exaggerated

crude misguided incorrigibly unrealistic

Invective worked for Donald Trump, but... is this
really the right way to discuss mathematics?




“THE LORD OF THE REFAIS...
DOES NOT SHARE POWER.”




