"THE GREAT DEBATE":

UNUM ARITHMETIC
POSITION STATEMENT

Prof. John L. Gustafson
A*STAR-CRC and National University of Singapore

July 12, 2016
ARITH23, Santa Clara California

-
Why this debate?

-
Why this debate?

- The End of Error had dozens of reviewers, including
David Bailey, Horst Simon, Gordon Bell, John Gunnels...

Why this debate?

- The End of Error had dozens of reviewers, including
David Bailey, Horst Simon, Gordon Bell, John Gunnels...

- Kahan has had the manuscript since November 2013 but
ceased email conversation about its content in July 2014

-
Why this debate?

- The End of Error had dozens of reviewers, including
David Bailey, Horst Simon, Gordon Bell, John Gunnels...

- Kahan has had the manuscript since November 2013 but
ceased email conversation about its content in July 2014

- Then this happened (Amazon.com):

Lookinside) The End of Error: Unum Computing (Chapman & share &)] W @
Hall/CRC Computational Science) Paperback — February
e A 5 2015 Buy New $53.96
.) Qty: 1 List Price: $59:95
THE ENDG by John L. Gustafson (Author) Save: $5.99 (10%)
\ E RRO R - WYX Yr - 8 customer reviews FREE Shipping.
! Unum Computing h 5 in Number Systems Temporarily out of stock
< Order now and we'll deliver when
o » See all 2 formats and editions available. Details ~
John I (}u\-nt‘\-:ﬁ"“?c;' Ships from and sold by Amazon.com.
PN Kindle Paperback Gift-wrap available.
$47.36 $53.96 -
[| Yes, | want FREE Two-Day

(@) RS Press
A ChAruAN AL AO0K

Read with Our Free App 11 Used from $54.48 Shipping with Amazon Prime
31 New from $50.00

| c—

The Wrath of Kahan: A Bitter Blog

- Kahan no longer submits
papers to journals.

Prof. W. Kahan’s

Commentary on “THE END of ERROR — Unum Computing”

by John L. Gustafson, (2015) CRC Press

Contents
Introduction
§1: Why Approximation = Sin
J-M. Muller’s example
My “Monster”
Redefinitions of “="
§2: Oh, Ye’ll take the Low Road, and I'll take the High Road ...
§3: Interval and Ubound Evaluations of a Polynomial
§4: “Calculus considered evil: Discrete Physics™
Tissier’s problem
Photo-Chemical Kinetics
§5: What does Unum Computing cost ?
A bogus analogy
§6: Never Wrong?
Failure Mode I: The Curse of High Dimensions
Failure Mode II: Phantom Unbounded c-Solutions
Failure Mode III: Persistent “c-solutions” that Do Not Exist
Failure Mode IV: Illegitimate Unbounded c-Solutions
§7: The Price Paid for Willful Ignorance
A formula misunderstood
“Mindless brute-force ...” labors to produce a crude result
Clear up a misunderstanding
Far better results much sooner
§8: Flogging a swing
An unacknowledged integral
Unanswered questions: Quality vs. Cost
Malfunction for © > /2
Only grade school algebra
Digression: Compensated Summation
Numerical Results sooner from a 4th Order Method
If Energy is NOT Conserved
A graph for Air Resistance
§9: Puffery instead of Percipience
Physics not discretized
Flags not appreciated
NaNs disparaged
Unum arithmetic is not really closed
§10: A Curate’s Egg

The Wrath of Kahan: A Bitter Blog

- Kahan no longer submits
papers to journals.

- Instead he prepares diatribes
and blogs them, as “work in
progress.”

Prof. W. Kahan’s

Commentary on “THE END of ERROR — Unum Computing”

by John L. Gustafson, (2015) CRC Press

Contents

Introduction
§1: Why Approximation = Sin
J-M. Muller’s example
My “Monster”
Redefinitions of “="
§2: Oh, Ye’ll take the Low Road, and I'll take the High Road ...
§3: Interval and Ubound Evaluations of a Polynomial
§4: “Calculus considered evil: Discrete Physics™
Tissier’s problem
Photo-Chemical Kinetics
§5: What does Unum Computing cost ?
A bogus analogy
§6: Never Wrong?
Failure Mode I: The Curse of High Dimensions
Failure Mode II: Phantom Unbounded c-Solutions
Failure Mode III: Persistent “c-solutions” that Do Not Exist
Failure Mode IV: Illegitimate Unbounded c-Solutions
§7: The Price Paid for Willful Ignorance
A formula misunderstood
“Mindless brute-force ...” labors to produce a crude result
Clear up a misunderstanding
Far better results much sooner
§8: Flogging a swing
An unacknowledged integral
Unanswered questions: Quality vs. Cost
Malfunction for © > /2
Only grade school algebra
Digression: Compensated Summation
Numerical Results sooner from a 4th Order Method
If Energy is NOT Conserved
A graph for Air Resistance
§9: Puffery instead of Percipience
Physics not discretized
Flags not appreciated
NaNs disparaged
Unum arithmetic is not really closed
§10: A Curate’s Egg

The Wrath of Kahan: A Bitter Blog

- Kahan no longer submits
papers to journals.

- Instead he prepares diatribes
and blogs them, as “work in
progress.”

- This issue is too important to
be left to the bickering of two
old men.

Prof. W. Kahan’s

Commentary on “THE END of ERROR — Unum Computing”

by John L. Gustafson, (2015) CRC Press

Contents
Introduction
§1: Why Approximation = Sin
J-M. Muller’s example
My “Monster”
Redefinitions of “="
§2: Oh, Ye’ll take the Low Road, and I'll take the High Road ...
§3: Interval and Ubound Evaluations of a Polynomial
§4: “Calculus considered evil: Discrete Physics”
Tissier’s problem
Photo-Chemical Kinetics
§5: What does Unum Computing cost ?
A bogus analogy
§6: Never Wrong?
Failure Mode I: The Curse of High Dimensions
Failure Mode II: Phantom Unbounded c-Solutions
Failure Mode III: Persistent “c-solutions” that Do Not Exist
Failure Mode IV: Illegitimate Unbounded c-Solutions
§7: The Price Paid for Willful Ignorance
A formula misunderstood
“Mindless brute-force ...” labors to produce a crude result
Clear up a misunderstanding
Far better results much sooner
§8: Flogging a swing
An unacknowledged integral
Unanswered questions: Quality vs. Cost
Malfunction for © > /2
Only grade school algebra
Digression: Compensated Summation
Numerical Results sooner from a 4th Order Method
If Energy is NOT Conserved
A graph for Air Resistance
§9: Puffery instead of Percipience
Physics not discretized
Flags not appreciated
NaNs disparaged
Unum arithmetic is not really closed
§10: A Curate’s Egg

-
The Wrath of Kahan: A Bitter Blog

Prof. W. Kahan’s

Kahan no longer submits Commentaryon “THE END of ERROR — Unu Compuing”
papers to journals.

] . Contents Page

- Instead he prepares diatribes - ;
« . J-M. Muller’s example 3-4

and blogs them, as “work in My Monser s
efinitions of “= 6
7 §2: Oh, Ye’ll take the Low Road, and I'll take the High Road ... 7
p ro g re S S . §3: Intervil and :Jb:un:‘lwléva‘l):atioa;ls of a ;’ol‘;no(:ni;lg * 8
§4: “Calculus considered evil: Discrete Physics” 10
. . . . Tissier’s pml?lem o 11
- This issue is too important to i S e o :
. . A bogus analogy 13
be left to the bick ft 56 Nver Wiong? s
e e O e I C e rl n g O WO ev;;ilu:v: l;\glode I: The Curse of High Dimensions 15
Failure Mode II: Ph: Unbounded c-Soluti 17
O I d m e n . F:;lﬂrr: Mgd: III: P:rnsti(s)t‘:nt x‘l‘c(-):(,l:lutio:s“Otll:etlln‘.mll)sv.) Not Exist 18
Failure Mode IV: Illegitimate Unbounded c-Solutions 19
H k- d h t h §7: The Price Paid for Willful Ignorance 20
° A f la misund: d 20
€ was Kina enough 1o share T g N .
with me the 38-page attack Fa et el mch s 5
§8: Flogging a swing 24
A knowl i 1 24
he wants to post about The v aocsion. iy 5 Cos 2
Malfunction for © > /2 26
- Onl de school algeb: 27
E n d Of E r r Or‘ Un um w grlz;i;:;s?;)n: Cg:ml}-)aensated Summation 27
. " Ni ical Resul fi 4th Order Method 29
A 14 t h me t[C. If Energy is NOT Comserved o 29
A graph for Air Resistance 30
§9: Puffery instead of Percipience 31
Physics not discretized 31
Flags not appreciated 32
NaNs disparaged 32
Unum arithmetic is not really closed 33

§10: A Curate’s Egg 36

-
The Wrath of Kahan: A Bitter Blog

Prof. W. Kahan’s

Kahan no longer submits Commentaryon “THE END of ERROR — Unu Compuing”
papers to journals.

] . Contents Page
- Instead he prepares diatribes Sic ¥ oemsiyion=in :
d b I th « k . i;lM. gl/luller’ls; example 35- 4
“Monster”
a n Og S e m J aS WO r I n Re);leﬁnitions of “=7” 6
7 §2: Oh, Ye’ll take the Low Road, and I'll take the High Road ... 7
p ro g re S S . §3: Intervzl and :Jb:ungvléva‘l):atioa;ls of a ;’ol‘;no(:ni;lg * 8
§4: “Calculus considered evil: Discrete Physics” 10
. . . . Tissier’s problem 11
- This issue is too important to - 7
: What does Unum Computing cost ?
. [A bogus analogy 13
be left to the bick ft 56 Neve Wion? s
e e O e I C e rl n g O WO evlgz:ilu:: lIl\glode I: The Curse of High Dimensions 15
Failure Mode II: Ph: Unbounded c-Soluti 17
O I d m e n . F:;lﬂrr: Mgd: III: P;nsti(s)t‘:nt I‘l‘c(-):(;llutio;s“Otll:etlln‘.mll)sv.) Not Exist 18
Failure Mode IV: Illegitimate Unbounded c-Solutions 19
H e Wa S ki n d e n O u O S a re §7: Thc:x;icc Palid for W‘iillful Ig;orance gg
® g h t h ‘ormula misunderstoo
“Mindless brute-f ... labo; d ds 1 21
with me the 38-page attack T A s
- Far b 1 h 23
p g 5 Flog ;irnge;t:;/ Eisgu ts much sooner -
A knowledged i 1 24
he wants to post about The s atonan ity v, Cost 2
Malfunction for © > /2 26
- Onl 1 algeb: 2
E n d Of E r r Or‘ Un um w grlz;(:;‘icsls]?:n: Cfm;z:tnsated Summation 2;
. " Ni ical Resul fi 4th Order Method 29
A 14 t h me t[C. If Energy is NOT Conserved o 29
A h for Air Resi 30
. . §9: Puffery i.nstea%lr?)l.f) Pe(:;ipigw: e 31
- | will respond in part here. Prsics o iz :
NaNs disparaged 32
Unum arithmetic is not really closed 33

§10: A Curate’s Egg 36

“Variable bit size is too expensive”

“Variable bit size is too expensive”

- The utag serves as a linked-list pointer for packing

“Variable bit size is too expensive”

- The utag serves as a linked-list pointer for packing
- “Chapter 7: Fixed-size unum storage” pp. 93—-102

“Variable bit size is too expensive”

- The utag serves as a linked-list pointer for packing
- “Chapter 7: Fixed-size unum storage” pp. 93—-102
- Energy/power savings still possible with unpacked form

“Variable bit size is too expensive”

- The utag serves as a linked-list pointer for packing

- “Chapter 7: Fixed-size unum storage” pp. 93—-102

- Energy/power savings still possible with unpacked form
- Here is an example Kahan calls “a bogus analogy”:

“Variable bit size is too expensive”

- The utag serves as a linked-list pointer for packing

- “Chapter 7: Fixed-size unum storage” pp. 93—-102

- Energy/power savings still possible with unpacked form
- Here is an example Kahan calls “a bogus analogy”:

Courier, 16 point

“Unums offer the same
trade-off versus floats
as variable-width versus
fixed-width typefaces:
Harder for the design
engineer and more logic
for the computer, but
superior for everyone
else in terms of
usability, compactness,
and overall cost.” (page
193)

“Variable bit size is too expensive”

The utag serves as a linked-list pointer for packing
“Chapter 7: Fixed-size unum storage” pp. 93—-102
Energy/power savings still possible with unpacked form
Here is an example Kahan calls “a bogus analogy”:

Courier, 16 point Times, 16 point
“Unums offer the same “Unums offer the same trade-off
trade-off versus floats versus floats as variable-width
as variable-width versus versus fixed-width typefaces: Harder
fixed-width typefaces: for the design engineer and more
Harder for the design logic for the computer, but superior
engineer and more logic for everyone else in terms of
for the computer, but usability, compactness, and overall
superior for everyone cost.” (page 193)

else in terms of
usability, compactness,
and overall cost.” (page
193)

-
Willful Misunderstanding

“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text 1s
stored in files and in DRAM memory by word-processor software.
... Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

-
Willful Misunderstanding

“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text 1s
stored in files and in DRAM memory by word-processor software.
... Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

Kahan may be unique in his misreading. Other readers understand
that variable width saves display space at the cost of more computing.
The analogy is that unums save storage space at the cost of more
computing.

Willful Misunderstanding

“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text is
stored 1n files and in DRAM memory by word-processor software.
... Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

Kahan may be unique in his misreading. Other readers understand
that variable width saves display space at the cost of more computing.
The analogy is that unums save storage space at the cost of more
computing.

The “willful misunderstanding” technique: Misread a statement so it
becomes one that can be shown wrong.

Willful Misunderstanding

“Bunkum! Gustafson has confused the way text is printed, or
displayed on today’s bit-mapped screens, with the way text is
stored 1n files and in DRAM memory by word-processor software.
... Text stored in variable-width characters would occupy more
DRAM memory, not less, as we shall see.” (boldface mine)

Kahan may be unique in his misreading. Other readers understand
that variable width saves display space at the cost of more computing.
The analogy is that unums save storage space at the cost of more
computing.

The “willful misunderstanding” technique: Misread a statement so it
becomes one that can be shown wrong.

Now imagine 38 pages of similar attacks on things that were also not
said.

Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a=cl2+3 ULPs b =c/2+3 ULPs

Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a=cl2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =

Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a=cl2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =

Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a =c/2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =

IEEE Quad Precision (128 bits, 34 decimals): Leta=b=7/2+ 3:2-"M ¢=7.

Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a =c/2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =

IEEE Quad Precision (128 bits, 34 decimals): Leta=b=7/2+ 3:2-"M ¢=7.

If ¢ is 7 light years long, 3 ULPs is ~1/200 the diameter of a proton. The
correct area is about 55 times the surface area of the earth. To 34 decimals:

Let’s try a classic Kahan example

Find the area of a triangle with sides a, b, ¢ where a
and b are only 3 ULPs longer than half the length of c.

a =c/2+3 ULPs b =c/2+3 ULPs

Cc

a+b+c

Try the formula Area = \/ s(s—a)(s-b)(s—c) where s =

IEEE Quad Precision (128 bits, 34 decimals): Leta=b=7/2+ 3:2-"M ¢=7.

If ¢ is 7 light years long, 3 ULPs is ~1/200 the diameter of a proton. The
correct area is about 55 times the surface area of the earth. To 34 decimals:

3.147842048749004252358852654945507-x10-16 square light years.

Quad-precision float result

Quad-precision float result

- |IEEE Quad float gets 7 digit right:
3.634814908423321347259205161580577-x10-16,

Quad-precision float result

- |IEEE Quad float gets 7 digit right:
3.634814908423321347259205161580577-x10-16,

- Error is about 15 percent, or 252 peta-ULPs.

Quad-precision float result

- |IEEE Quad float gets 7 digit right:
3.634814908423321347259205161580577-x10-16,

- Error is about 15 percent, or 252 peta-ULPs.
- Result does not admit any error, nor bound it.

Quad-precision float result

- |IEEE Quad float gets 7 digit right:
3.634814908423321347259205161580577-x10-16,

- Error is about 15 percent, or 252 peta-ULPs.

- Result does not admit any error, nor bound it.

- Kahan's approach: Sort the sides so a 2 b = ¢ and rewrite the
formula as

\/(a +(b+c))(c-(a=-b))(c+(a-b))a+(b-c))
4

Area =

Quad-precision float result

IEEE Quad float gets 7 digit right:
3.634814908423321347259205161580577-x10-16,

Error is about 15 percent, or 252 peta-ULPs.
Result does not admit any error, nor bound it.

Kahan's approach: Sort the sides so a =2 b = ¢ and rewrite the
formula as

\/(a +(b+c))(c-(a=-b))(c+(a-b))a+(b-c))
4

Area =

This is within 11 ULPs of the correct area, but it
takes hours to figure out such an approach.

It also uses twice as many operations, but that's
not the issue: it's the people cost of the approach.

Unum approach to the thin triangle

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)

- Fraction can be 1 to 128 bits, plus the hidden bit
(higher precision than quad)

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)

- Fraction can be 1 to 128 bits, plus the hidden bit
(higher precision than quad)

- Result is a rigorous bound accurate to 31 decimals:

Unum approach to the thin triangle

- Use no more than 128 bits per number, but adjustable
- Exponent can be 1 to 16 bits (wider range than quad)

- Fraction can be 1 to 128 bits, plus the hidden bit
(higher precision than quad)

- Result is a rigorous bound accurate to 31 decimals:

3.14784204890042523588526549455070%10-16 < Area <
3.14784204890042523588526549455139-x10-16

Unum approach to the thin triangle

Use no more than 128 bits per number, but adjustable
Exponent can be 1 to 16 bits (wider range than quad)

Fraction can be 1 to 128 bits, plus the hidden bit
(higher precision than quad)

Result is a rigorous bound accurate to 31 decimals:

3.14784204890042523588526549455070-x10-"6 < Area <
3.14784204890042523588526549455139-x10-16

The size of that bound is the area of a
square 8 nanometers on a side.

No need to rewrite the formula.

Summary of comparison

Format Quad-precision Unums,
Capabilities IEEE floats {4,7} environment
Dynamic Range ~6.5x10-4%6 to 1.2x1(04932 ~8.2x1079903 to ~2.8x 10864
Precision ~34.0 decimal digits ~38.8 decimal digits

Summary of comparison

Format Quad-precision Unums,
Capabilities IEEE floats {4,7} environment
Dynamic Range ~6.5x107496 to 1.2x104932 ~8.2x1079903 {o ~2.8x1(9864
Precision ~34.0 decimal digits ~38.8 decimal digits

Results on Quad-precision Unums,
thin triangle IEEE floats {4,7} environment
Maximum bits
128 128
used
Average bits used 128 90
Area = 3.147842048749004252358852654945507%10-16
Result 3.6481490842332134725920516 < Area <
1580577x%10-16 3.147842048749004252358852654945514 %1016
Type of Invisible error, Rigorous bound,
information loss very hard to debug easy to debug if needed

Error / bound size ~4x1015 meters? ~6x10-17 meters?

Another “Rewrite it this way” example

From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {
float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
printf (“%f\n”, sum);

Another “Rewrite it this way” example

From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {
float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
printf (“%£f\n”, sum);

}

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.

Another “Rewrite it this way” example

From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {
float sum; int i;

sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}

printf (“%£f\n”, sum);

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.

“Compensated Summation will be illustrated by application to a silly sum
Gustafson uses on p. 120 to justify what unums do as intervals do, namely,

convey numerical uncertainty via their widths.”

Another “Rewrite it this way” example

From my book, to show why round-to-nearest might not be
random and how unums can self-manage accuracy:

#include < stdio.h >
float sumtester () {
float sum; int i;
sum = 0.0;
for (i = 0; i < 1000000000; i++) {sum = sum + 1.0;}
printf (“%£f\n”, sum);

In trying to count to a billion, IEEE floats (32-bit) produce 16777216.

“Compensated Summation will be illustrated by application to a silly sum
Gustafson uses on p. 120 to justify what unums do as intervals do, namely,
convey numerical uncertainty via their widths.”

(Misreading. Actually, the example was to show how unums can
automatically adjust range and precision to get the exact answer.)

Let’s try Kahan’s suggestion for 211

Screen shot from Kahan’s paper, n = 10°:
With Compensated Summation Allin Floats

,,,,,,,,,,,,,,,,,,,,,,

sum:=0.0; comp:=0.0;

for 1=1 to 1000000000 do {
comp :=comp + 1.0 ; oldsum :=sum;
sum := oldsum + comp ;
comp := (sum — oldsum) + comp ; }

sum is 1000000000.0 = 10° exactly

Let's try Kahan’s suggestion for 211

Screen shot from Kahan’s paper, n = 10°: Screen shot from Mathematica

With Compensated Summation ~ Allin Floats test for sum up ton = 10

sum :=0.0; comp:=0.0; sum = 0.0; comp = 0.0;

for i= 1 to 1000000000 do { For[i =1, i <10, i++,
comp :=comp + 1.0 ; oldsum :=sum ; comp = comp + 1; oldsum = sum;
sum := oldsum + comp ; sum = oldsum + comp;
comp := (sum — oldsum) + comp ; } comp = (sum - oldsum) + comp;]

sum is 1000000000.0 = 10° exactly s
2036.

Let’s try Kahan's suggestion for 211

Screen shot from Kahan’s paper, n = 10°: Screen shot from Mathematica

With Compensated Summation ~ Allin Floats test for sum up ton = 10

sum :=0.0; comp:=0.0; sum = 0.0; comp = 0.0;

for i= 1 to 1000000000 do { For[i =1, i <10, i++,
comp :=comp + 1.0 ; oldsum :=sum ; comp = comp + 1; oldsum = sum;
sum := oldsum + comp ; sum = oldsum + comp;
comp := (sum — oldsum) + comp ; } comp = (sum - oldsum) + comp;]

sum is 1000000000.0 = 10° exactly s
2036. FAIL

(Attempting to sum to 10° gives NaN.)

Let’s try Kahan's suggestion for 211

Screen shot from Kahan’s paper, n = 10°: Screen shot from Mathematica

With Compensated Summation All in Floats test for sum up ton = 10

sum :=0.0; comp:=00; sum = 0.0; comp = 0.0;

for i=1 to 1000000000 do { For[i =1, i <10, i++,
comp :=comp + 1.0 ; oldsum :=sum ; comp = comp + 1; oldsum = sum;
sum := oldsum + comp ; sum = oldsum + comp;
comp := (sum — oldsum) + comp ; } comp = (sum - oldsum) + comp;]

sum is 1000000000.0 = 10° exactly s
2036. FAIL

(Attempting to sum to 10° gives NaN.)

- Rewriting code to compensate for rounding is very error-prone;
even Kahan didn’t get it right.

Let's try Kahan’'s suggestion for 211

Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica

With Compensated Summation Allin Floats test for sum up ton =10

sum :=0.0; comp:=00;

for 1= 1 to 1000000000 do {
comp :=comp + 1.0 ; oldsum :=sum ;
sum := oldsum + comp ;
comp := (sum — oldsum) + comp ; }

sum is 1000000000.0 = 10° exactly

sum = 0.0; comp = 0.0;
For[i=1, 1 <10, i++,

comp = comp + 1; oldsum = sum;

sum = oldsum + comp;

comp = (sum - oldsum) + comp;]
sum

2036. FAIL

(Attempting to sum to 10° gives NaN.)

- Rewriting code to compensate for rounding is very error-prone;
even Kahan didn’t get it right.

- Approach uses much more human coding effort and three
times as many bits to produce a wildly wrong answer.

Let’'s try Kahan's suggestion for 211

Screen shot from Kahan’s paper, n = 109: Screen shot from Mathematica

With Compensated Summation Allin Floats test for sum up ton =10

sum :=0.0; comp:=00;

for 1= 1 to 1000000000 do {
comp :=comp + 1.0 ; oldsum :=sum ;
sum := oldsum + comp ;
comp := (sum — oldsum) + comp ; }

sum is 1000000000.0 = 10° exactly

sum = 0.0; comp = 0.0;
For[i=1, 1 <10, i++,

comp = comp + 1; oldsum = sum;

sum = oldsum + comp;

comp = (sum - oldsum) + comp;]
sum

2036. FAIL

(Attempting to sum to 10° gives NaN.)

Rewriting code to compensate for rounding is very error-prone;
even Kahan didn’t get it right.

Approach uses much more human coding effort and three
times as many bits to produce a wildly wrong answer.

Examples like this need to be fested, not merely asserted.

Kahan’s “Monster’ Revisited

Verbatim:
Real variables X,Y,Z;
Real Function T(z) :={If z=0then 1 else (exp(z)—1)/z } ;
Real Function Qy) ==ly=vF2+ D 1-1(y+Vy*+1));
Real Function G(x) :=T(Q(x)?);

For Integer n = 1 to 9999 do Display{ n , G(n) } end do.

“G(x) :=T(Q(x)?) ends up wrongly as O instead of 1 . Almost always.”

Kahan’s “Monster’ Revisited

Verbatim:
Real variables X,Y,Z;
Real Function T(z) :={If z=0then 1 else (exp(z)—1)/z } ;
Real Function Qy) ==ly=vF2+ D 1-1(y+Vy*+1));
Real Function G(x) :=T(Q(x)?);

For Integer n = 1 to 9999 do Display{ n , G(n) } end do.

“G(x) :=T(Q(x)?) ends up wrongly as O instead of 1 . Almost always.”

“ly “__n

- Unums got exactly 1, but used “=" (intersection test) instead of “=".

Kahan's “Monster’ Revisited

Verbatim:

Real variables X,Y,Z;
Real Function T(z) :={If z=0then 1 else (exp(z)—1)/z } ;
Real Function Qy) ==ly=vF2+ D 1-1(y+Vy*+1));
Real Function G(x):=T(Q(x)?);

For Integer n = 1 to 9999 do Display{ n , G(n) } end do.

“G(x) :=T(Q(x)?) ends up wrongly as O instead of 1 . Almost always.”

TP "

- Unums got exactly 1, but used “=" (intersection test) instead of “=".

- Kahan cried “Foul!” so here is a unum version with exactly the
specified equality test, which he says will break unums:

T[z] :=If[z=0,1, (e“-1) / z];

Tu[u_] :=Module[{g =u2g[ul}, g2u[{{T[gm,u1], T[on,21]}s Sr21}]]

Qu[u_] := absu[u©sqrtu[squareu[u] ei]] elo (u ® sqrtu[squareu[u] ei])
Gu[u_] :=Tu[squareu[Qu[u]]]

The result of the “=" unum version

For[n =1,n<9, n++, Print["n =", n, G(n) = ", view[Gu[ﬁ]]]]

= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625)

8B BB

=]

=}

=]

N N N N N N S S

Q Q@ Q@ Q@ Q@ Q@ Q@ Q@ @
=

=}

s B BB B B B BB
1

W 0 N oY U W N

5 5 5 5 5 5 5 5 5

For[n: 9990, n 9999, n++, Print["n =",n," @G(n) =", view[Gu[ﬁ]]]]

= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
[1, 1.00000000023283064365386962890625

= 9990)
)
)
)
[1, 1.00000000023283064 365386962890625)
)
)
)
)
)

= 9991
= 9992
= 9993
= 9994
= 9995
= 9996
= 9997
= 9998
= 9999

@

n

(]
=}

(]

n

(]
=]

(]
=)

(]

= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
= [1, 1.00000000023283064365386962890625
1, 1.00000000023283064365386962890625
1, 1.00000000023283064365386962890625

n

(]

n

@

n

@

n

1l

B B B B B B B B B B
|

n

(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)
(n)

p— p—

@

The result of the “=" unum version

For[n =1,n<9, n++, Print[“n =",n," @G(n =", view[Gu[ﬁ]]]] RGSUlt: t|ght bOUﬂdS,

- n) - [1, 1.00000000023283064365386962890625 [1, 1+¢).

_ n) - [1, 1.00000000023283064365386962890625

_ n) - [1, 1.00000000023283064365386962890625

_ n) = [1, 1.00000000023283064365386962890625 Never zero.

[1, 1.00000000023283064365386962890625

= [1, 1.00000000023283064365386962890625 All Kahan h W
= [1, 1.00000000023283064365386962890625 and ad fo do was

- [1, 1.00000000023283064365386962890625 try it. He has all my
- [1, 1.00000000023283064365386962890625) prototype code at his
For[n = 9990, n <9999, n++, Print[“n =",n," G(n) =", view[Gu[ﬁ]]]] flngertlps

- [1, 1.00000000023283064365386962890625
- [1, 1.00000000023283064365386962890625 He did not test any of
- [1, 1.00000000023283064365386962890625

= [

= [

=}

=]

N N N N N N S S

Q Q@ Q@ Q@ Q@ Q@ Q@ Q@ @
=

=}

s B BB B B B BB
1

W 0 N oY U W N

5 5 5 5 5 5 5 5 5
1

= 9990
= 9991
= 9992
= 9993
= 9994
= 9995
= 9996
= 9997
= 9998

@

n

@

n

(]

n

1, 1.00000000023283064365386962890625 his assertions about

@

n

@

(]
=}

- [1, 1.00000000023283064365386962890625 arithmetic would do, but

[1, 1.00000000023283064365386962890625
- [1, 1.00000000023283064365386962890625 pref e_r red to sp_ecul ate
that it would fail.

= [1, 1.00000000023283064365386962890625

(]
=}

@

n

(]
=)

B B B B B B B B B B
|

(n))
(n))
(n))
(n))
(m) - [1, 1.00000000023283064365386962890625) what he thought unum
(n))
(n))
(n))
(n))
(n))

= 9999

@

= [1, 1.00000000023283064365386962890625

n

Kahan's Unum-Targeted Variation

Real Function G° (x) := T(Q(x)? + (10.0-300)10000-(x+1)) -
For Integer n = 1 to 9999 do Display{ n , G® (n) } end do.

“Without roundoff, the ideal value G° (x) = 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Kahan's Unum-Targeted Variation

Real Function G° (x) := T(Q(x)? + (10.07300)10000-(x+1))
For Integer n = 1 to 9999 do Display{ n , G® (n) } end do.

“Without roundoff, the ideal value G° (x) = 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Surprise. Unums handled this without a hiccup. Quickly.

.83 B B B B B B BB

Kahan's Unum-Targeted Variation

Real Function G° (x) := T(Q(x)? + (10.07300)10000-(x+1)) -
For Integer n = 1 to 9999 do Display{ n , G (n) } end do.

“Without roundoff, the ideal value G® (x) = 1.0 for all real x . Rounded floating-point gets
0.0 almost always for all practicable precisions. What, if anything, does Unum
Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Surprise. Unums handled this without a hiccup. Quickly.

GOufu_] == Tu[squareu[Qu[u]] epowu[powu[lAO, —3A00] ’ 10000 ® (uei)]]

1 Go(n) - [1,1.00000000023283064365386962890625) n = 9990 G0 (n) - [1, 1.00000000023283064365386962890625)
2 Go(n) - [1,1.00000000023283064365386962890625) n = 9991 G0(n) - [1,1.00000000023283064365386962890625)
3 Go(n) - [1,1.00000000023283064365386962890625) n - 9992 Go(n) - [1,1.00000000023283064365386962890625)
4 GO (n) = [1’ 100000000023283064365386962890625) n = 9993 GO (n) = [1, 1.00000000023283064365386962890625)
s co(m) - [1, 1.00000000023283064365386962890625) n - 9994 Go0(n) - [1,1.00000000023283064365386962890625)
n - 9995 Go0(n) - [1,1.00000000023283064365386962890625)

j zgizi] H 1'ggg888gggggg228223222:22222882;2; n - 9996 Go(n) - [1,1.00000000023283064365386962890625)
1 n - 9997 Go0(n) - [1,1.00000000023283064365386962890625)

8 Go(n) = [1,1.00000000023283064365386962890625) n - 9998 Go(n) - [1, 1.00000000023283064365386962890625)
9 Go(n) = [1,1.00000000023283064365386962890625) n - 9999 Go(n) - [1, 1.00000000023283064365386962890625)

.3 B B B B B B BB
W W N oUW N

Kahan's Unum-Targeted Variation

Real Function G° (x) := T(Q(x)? + (10.07300)10000-(x+1)) -
For Integer n = 1 to 9999 do Display{ n , G (n) } end do.

“Without roundoff, the ideal value G® (x) = 1.0 for all real x . Rounded floating-point gets

0

0 almost always for all practicable precisions. What, if anything, does Unum

Computing get for G°(n) ? And how long does it take? It cannot be soon nor simply 1.0 .”

Surprise. Unums handled this without a hiccup. Quickly.

GOufu_] == Tu[squareu[Qu[u]] epowu[powu[lAO, —3A00] ’ 10 000 ® (uei)]]

G0 (n) = [1, 1.00000000023283064365386962890625) n = 9990 GO0(n) = [1,1.00000000023283064365386962890625)
Go(n) = [1, 1.00000000023283064365386962890625) n = 9991 GO(n) = [1,1.00000000023283064365386962890625)
Go(n) = [1, 1.00000000023283064365386962890625) n = 9992 GO(n) = [1,1.00000000023283064365386962890625)
GO (n) = [1’ 100000000023283064365386962890625) n = 9993 GO (n) = [1, 1.00000000023283064365386962890625)
G0 (n) = [1, 1.00000000023283064365386962890625) n = 9994 ¢co0(n) = [1,1.00000000023283064365386962890625)
n = 9995 GO(n) = [1,1.00000000023283064365386962890625)

zﬁizz] H 1'ggg888gggggggggjggggggggggggggg n - 9996 Go(n) - [1,1.00000000023283064365386962890625)
T n = 9997 ¢G0(n) = [1,1.00000000023283064365386962890625)

co(n) = [1,1.00000000023283064365386962890625) n - 9998 Go(n) - [1, 1.00000000023283064365386962890625)
G0 (n) = [1,1.00000000023283064365386962890625) n - 9999 Go(n) - [1, 1.00000000023283064365386962890625)

Kahan’s “infinitesimal” (his term) becomes unum (0, ¢).

An Inconvenient Infinity

My example of quarter-circle integration
takes O(n) time for n subdivisions, and

produces O(1/n) size rigorous bounds.
Works on any continuous function.

An Inconvenient Infinity

My example of quarter-circle integration
takes O(n) time for n subdivisions, and

produces O(1/n) size rigorous bounds.
Works on any continuous function.

Now let’s clear up the misunderstanding of the misquoted formula in the box above. It should say

(Midpoint Rule) — [,° f(x)-dx = (b—a)h>f"(E)/24 and

[.2 f(x)-dx— (Trapezoidal Rule) = (b—a)h>f"(n)/12 .

Here f"(§) and f"(m) are differently weighted averages of the second derivative f"(x) over x
between a and b. The weights are positive but not constant. If f"(x) is bounded throughout

An Inconvenient Infinity y

My example of quarter-circle integration
takes O(n) time for n subdivisions, and

produces O(1/n) size rigorous bounds.
Works on any continuous function. X

Now let’s clear up the misunderstanding of the misquoted formula in the box above. It should say

(Midpoint Rule) — [,? f(x)-dx = (b—a)h*f"(E)/24 and

[.P £(x)-dx— (Trapezoidal Rule) = (b—a)hf"m)/12.

Here f"(§) and f"(m) are differently weighted averages of the second derivative f"(x) over x
between a and b. The weights are positive but not constant. If f"(x) is bounded throughout

But f(x) is not bounded throughout. Kahan uses the formula anyway!

Also, Kahan says my method is O(n?).
Willful misunderstanding. Obviously not true (see figure above).

Too many mistakes to cover here...

The book claims it ends all error.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.”
He is not joking.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?

WHAVE INVENTEDISOMETHING

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?

That’s not “grade school” math!

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?

That’s not “grade school” math! 12t grade is a grade. So is 11t grade.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?
That’s not “grade school” math! 12t grade is a grade. So is 11t grade.

Unums will cost thousands of extra
transistors!

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?
That’s not “grade school” math! 12t grade is a grade. So is 11t grade.
Unums will cost thousands of extra Which will cost thousandths of a penny.

transistors! The year is 2016, not 1985.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?
That’s not “grade school” math! 12t grade is a grade. So is 11t grade.
Unums will cost thousands of extra Which will cost thousandths of a penny.
transistors! The year is 2016, not 1985.

His approach is very inefficient; here’s a
faster one that usually works.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?
That’s not “grade school” math! 12t grade is a grade. So is 11t grade.
Unums will cost thousands of extra Which will cost thousandths of a penny.
transistors! The year is 2016, not 1985.

His approach is very inefficient; here’s a I’'m not interested in methods that

faster one that usually works. usually work. We have plenty of those.

Too many mistakes to cover here...

The book claims it ends all error. It does not. A specific kind of error.

Unums are tarted intervals. Unums subsume floats and intervals.
This is an environment, not just a format.

Gustafson regards calculus as “evil.” Good grief. A raccoon meme from DIY
He is not joking. LOL, and he thinks I'm not joking?
That’s not “grade school” math! 12t grade is a grade. So is 11t grade.
Unums will cost thousands of extra Which will cost thousandths of a penny.
transistors! The year is 2016, not 1985.

His approach is very inefficient; here’s a I’'m not interested in methods that
faster one that usually works. usually work. We have plenty of those.

Gustafson suffers from a misconception
about floating point shared by Von
Neumann.

Too many mistakes to cover here...

The book claims it ends all error.
Unums are tarted intervals.
Gustafson regards calculus as “evil.”
He is not joking.

That’s not “grade school” math!

Unums will cost thousands of extra
transistors!

His approach is very inefficient; here’s a
faster one that usually works.

Gustafson suffers from a misconception
about floating point shared by Von
Neumann.

It does not. A specific kind of error.

Unums subsume floats and intervals.
This is an environment, not just a format.

Good grief. A raccoon meme from DIY
LOL, and he thinks I'm not joking?

12 grade is a grade. So is 11t grade.

Which will cost thousandths of a penny.
The year is 2016, not 1985.

I’'m not interested in methods that
usually work. We have plenty of those.

It pleases me very much to share
misconceptions with John von
Neumann.

e00es LMT LTE

%

Messages Calendar Photos

Weather

Reminders Stocks

App Store

®

Settings

83% WD

Camera
Videos
Game Center

iBooks

ARITHMETICATHEN

SINGLE [0 SIGN BIT
[] EXPONENT

[C] MANTISSA

EXTENDED

1 15 PHY LY

[sign bit
[[] exponent
mantissa
1 8 23
Double

Extended

e
Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. B

The last line of my book, p. 413, and emphasized throughout

e
Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. B

The last line of my book, p. 413, and emphasized throughout

- Unums are a superset of IEEE floats. Not an “alternative.”

e
Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. B

The last line of my book, p. 413, and emphasized throughout

- Unums are a superset of IEEE floats. Not an “alternative.”
- We need not throw away float algorithms that work well

Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. B

The last line of my book, p. 413, and emphasized throughout

)

- Unums are a superset of IEEE floats. Not an “alternative.’
- We need not throw away float algorithms that work well.

- Rounding can be requested, not forced on users. Unums
end the error of mandatory, invisible substitution of
incorrect exact values for correct answers.

Kahan's biggest blind spot of all

Remember: There is nothing floats can do that unums cannot. B

The last line of my book, p. 413, and emphasized throughout

)

Unums are a superset of IEEE floats. Not an “alternative.’
We need not throw away float algorithms that work well.

Rounding can be requested, not forced on users. Unums
end the error of mandatory, invisible substitution of
incorrect exact values for correct answers.

Float methods are a good way to deal with “The Curse of
High Dimensions” in many cases, like getting a starting
answer for Ax = b linear systems in polynomial time.

WK’s Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

Bunkum!
Lies
Bogus liar

erverse
crude P

WK's Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

foolish Bunkum!
Lies Flogging

misunderstandings

tarted Bogus liar

perverse

crude incorrigibly unrealistic

WK's Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

foolish Puffery Bunkum!
Lies Flogging faux

misunderstandings :
seductive

tarted Bogus liar
f()lly perverse exaggerated

crude incorrigibly unrealistic

WK's Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

foolish Puffery Bunkum! snide

Mere hyperbole

Lies Flogging faux

unfair misunderstandings

seductive .
tarted Bogus liar

f()lly perverse silly exaggerated
LS g uided incorrigibly unrealistic

misconceptions

crude

WK’s Dysphemisms, Insults, and Rants
about The End of Error: Unum Computing

foolish Puffery Bunkum! snide
. Lies Mere hyperbole Flogging faux
unfair : :
misunderstandings ductive .
misconceptions > liar

tarted Bogus

f()lly perverse silly exaggerated

crude misguided incorrigibly unrealistic

Invective worked for Donald Trump, but... is this
really the right way to discuss mathematics?

“THE LORD OF THE REFAIS...
DOES NOT SHARE POWER.”

