“What will C++17 be?” B.
Stroustrup, April 21, 2015

Improve support for large-scale dependable
software

Provide support for higher-level concurrency
models

Simplify core language use, especially as it relates
to the STL and concurrency, and address major
sources of errors.

Preserve Fundamental strengths
A direct map to hardware (initially from C)
Zero-overhead abstraction (initially from Simula)



The devil is in the Details

Improve support for large-scale dependable software
Modules (to improve locality and improve compile time)
contracts (for improved specification)

a type-safe union (probably pattern matching)

Provide support for higher-level concurrency models
asio for basic networking

a SIMD vector

improved futures

co-routines (finally, again for the first time since 1990)
transactional memory

parallel algorithms (incl. parallel versions of some of the STL)

Simplify core language use, especially as it relates to the STL and
concurrency, and address major sources of errors.



Even More details

Concepts

concepts in the standard library

ranges (simplifies STL use, among other things)
default comparisons

uniform call syntax (among other things: it helps concepts and STL
style library use)

operator dot (to finally get proxies and smart references)

array_view and string_view (better type checking, DMR wanted
those: "fat pointers")

arrays on the stack ("stack_array" anyone? But we need to find a
safe way of dealing with stack overflow)

optional (unless it is subsumed by pattern matching, and | think
not)



“What | do not want to try do”

Turn C++ into a radically different language

Turn parts of C++ into a much higher-level language by
providing a segregated sub-language

Have C++ compete with every other language by adding as
many as possible of their features

Incrementally modify C++ to support a whole new
"paradigm*”

Hamper C++'s use for the most demanding systems
programming tasks

Increase the complexity of C++ use for the 99% for the
benefit of the 1% (us and our best friends)



Bad Committee habits to avoid

make something a library because that's easier to get accepted in the committee than a language
feature (even if there is good argument that what is provided is fundamental)

provide an isolated feature because integration with existing features would cause work on
compatibility issues. This just postpones integration until later

if given a choice between two alternatives, the committee chooses both, adds a third, and modifies
the first two "to please everybody who could affect the vote" (this is pure design-by- committee)

oppose proposals seen as competing with your favorite proposal for time/resources
push hard for the immediately useful (only)

oppose proposals not relevant to your current job, stalling an improvement that would benefit
others

focus on the WP text and choose among technical alternatives based on what fits best with the
current text, rather than giving precedence to user needs

think that more syntax equate to safety and ease of use for the majority of programmers

serve the library writers and other experts while ignoring the majority of current and potential C++
programmers

present “principles” as non-negotiable absolutes
try to do “everything”



	“What will C++17 be?” B. Stroustrup, April 21, 2015
	The devil is in the Details
	Even More details
	“What I do not want to try do”
	Bad Committee habits to avoid

