
“What will C++17 be?” B.
Stroustrup, April 21, 2015

• Improve support for large-scale dependable
software

• Provide support for higher-level concurrency
models

• Simplify core language use, especially as it relates
to the STL and concurrency, and address major
sources of errors.

• Preserve Fundamental strengths
• A direct map to hardware (initially from C)
• Zero-overhead abstraction (initially from Simula)

The devil is in the Details
• Improve support for large-scale dependable software
• Modules (to improve locality and improve compile time)
• contracts (for improved specification)
• a type-safe union (probably pattern matching)
• Provide support for higher-level concurrency models
• asio for basic networking
• a SIMD vector
• improved futures
• co-routines (finally, again for the first time since 1990)
• transactional memory
• parallel algorithms (incl. parallel versions of some of the STL)
• Simplify core language use, especially as it relates to the STL and

concurrency, and address major sources of errors.

Even More details
• Concepts
• concepts in the standard library
• ranges (simplifies STL use, among other things)
• default comparisons
• uniform call syntax (among other things: it helps concepts and STL

style library use)
• operator dot (to finally get proxies and smart references)
• array_view and string_view (better type checking, DMR wanted

those: "fat pointers")
• arrays on the stack ("stack_array" anyone? But we need to find a

safe way of dealing with stack overflow)
• optional (unless it is subsumed by pattern matching, and I think

not)

“What I do not want to try do”
• Turn C++ into a radically different language
• Turn parts of C++ into a much higher-level language by

providing a segregated sub-language
• Have C++ compete with every other language by adding as

many as possible of their features
• Incrementally modify C++ to support a whole new

"paradigm“
• Hamper C++'s use for the most demanding systems

programming tasks
• Increase the complexity of C++ use for the 99% for the

benefit of the 1% (us and our best friends)

Bad Committee habits to avoid
• make something a library because that's easier to get accepted in the committee than a language

feature (even if there is good argument that what is provided is fundamental)
• provide an isolated feature because integration with existing features would cause work on

compatibility issues. This just postpones integration until later
• if given a choice between two alternatives, the committee chooses both, adds a third, and modifies

the first two "to please everybody who could affect the vote" (this is pure design-by- committee)
• oppose proposals seen as competing with your favorite proposal for time/resources
• push hard for the immediately useful (only)
• oppose proposals not relevant to your current job, stalling an improvement that would benefit

others
• focus on the WP text and choose among technical alternatives based on what fits best with the

current text, rather than giving precedence to user needs
• think that more syntax equate to safety and ease of use for the majority of programmers
• serve the library writers and other experts while ignoring the majority of current and potential C++

programmers
• present “principles” as non-negotiable absolutes
• try to do “everything”

	“What will C++17 be?” B. Stroustrup, April 21, 2015
	The devil is in the Details
	Even More details
	“What I do not want to try do”
	Bad Committee habits to avoid

