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Strapdown Inertial Navigation Integration Algorithm Design
Part 2: Velocity and Position Algorithms

Paul G. Savage¤

Strapdown Associates, Inc., Maple Plain, Minnesota 55359

This series of two papers (Parts 1 and 2) provides a rigorous comprehensive approach to the design of the princi-
pal software algorithms utilized in modern-day strapdown inertial navigation systems: integration of angular rate
into attitude, acceleration transformation/integration into velocity, and integration of velocity into position. The
algorithmsare structured utilizing the two-speed updatingapproachoriginallydeveloped for attitude updating;an
analyticallyexact equation is used at moderate speed to update the integration parameter (attitude, velocity, or po-
sition) with input provided from a high-speed algorithm measuring recti� ed dynamicmotion within the parameter
update time interval [coning for attitude updating, sculling for velocity updating, and scrolling (writer’s terminol-
ogy) for high-resolutionpositionupdating].The algorithmdesign approachaccounts for angularrate/speci� c force
acceleration inputs from the strapdown system inertial sensors, as well as rotation of the navigation frame used
for attitude referencing and velocity integration. The Part 1 paper (Savage, P. G., “Strapdown Inertial Navigation
Integration Algorithm Design Part 1: Attitude Algorithms,” Journal of Guidance, Control, and Dynamics, Vol. 21,
No. 1, 1998, pp. 19–28) de� ned the overall design requirement for the strapdown inertial navigation integration
function and developed the attitude updating algorithms. This paper, Part 2, deals with design of the acceleration
transformation/velocity integration and position integration algorithms. Although Parts 1 and 2 often cover ba-
sic concepts, the material presented is intended for use by the practitioner who is already familiar with inertial
navigation fundamentals.

Nomenclature
A; A1; A2 = arbitrary coordinate frames
aSF = speci� c force de� ned as the acceleration

relative to nonrotating inertial space produced
by applied nongravitationalforces,
measured by accelerometers

C A1
A2

= direction cosine matrix that transforms a vector from
its A2 frame projection form to its A1 frame
projection form

I = identity matrix
V A = column matrix with elements equal to the projection

of vector V on frame A axes
(V A£) = skew symmetric (or cross product) form of V A

represented by the square matrix

0 ¡VZ A VY A

VZ A 0 ¡VX A

¡VY A VX A 0

where VX A; VY A; VZ A are the components of
V A ; matrix product of .V A£) with another A
frame vector equals the cross product of V A

with the vector in the A frame
! A1 A2 = angular rate of coordinate frame A2 relative to

coordinate frame A1; when A1 is the inertial I frame,
! A1 A2 is the angular rate measured by angular rate
sensors mounted on frame A2

I. Introduction

A STRAPDOWN inertial navigation system (INS) is typically
composed of an orthogonal three-axis set of inertial angular

rate sensors and accelerometers providing data to the INS com-
puter. The inertial sensors are directly mounted (strapdown) to the
INS chassis structure in contrast with original INS technology that
utilized an active multiaxis gimbal isolation mounting assembly
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to isolate the sensors from rotation. The principal software func-
tions executed in the strapdown INS computer are the integration
of sensed angular rate into attitude, transformation of accelerome-
ter sensed speci� c force acceleration into a navigation coordinate
frame, additionof software modeled gravity to the transformedspe-
ci� c force to calculate total acceleration, and double integration of
total acceleration into velocity and position. The key element in
the INS software design process is the development of repetitive
digital algorithms that will � awlessly execute the attitude, velocity,
and positiondigital integrationfunctionsin the presenceof dynamic
angular rate/speci� c force acceleration inputs.

As discussed in Part 1 (Ref. 1), most modern-day strapdown
INSs utilize attitude updating algorithms based on a two-speed
approach2¡4: a higher-orderupdatingalgorithmis processedat mod-
erate repetition rate using inputs from a high-speed algorithm. The
moderate-speedroutine can be representedby an exact closed-form
attitudeupdatingoperation.3;4 The high-speedalgorithmis designed
to accurately account for multiaxis high-frequencyangular motion
between moderate speed algorithmupdates that can rectify into sys-
tematic attitude change(traditionallydenotedas coning). Originally
conceived as a simple � rst-order algorithm,2 today’s high-speedat-
titude algorithms have taken advantage of increased throughputca-
pabilities in modern-day computers and become higher order for
improved accuracy (Refs. 1; 5–7; and 8, Chap. 7). While the atti-
tude updating function has been evolving to its current form, very
little parallel work has been published on the development of the
companion strapdown INS algorithms for speci� c force accelera-
tion transformation/velocityintegrationand positionintegration,the
subject of this paper.

The speci� c force transformation algorithm processes the iner-
tial sensor data to calculate an integrated speci� c force increment
in navigation coordinates over the velocity algorithm update time
interval. The velocity is updated by adding the navigation frame
speci� c force increment (plus an increment for gravity and coor-
dinate frame rotation effects) to the previous velocity value. A key
functionof the transformationalgorithmis to accuratelyaccountfor
attitude rotation (hence, rotation of the strapdown accelerometers)
during the velocity update time period. In some applications, this
has been achieved using a centering algorithm9 in which attitude
data for the speci� c force transformation is updated at the center of
the velocity update time interval (thereby introducing a staggered
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attitude update/velocity update software architecture). The trans-
formation operation then consists of integrating the accelerometer
speci� c force output over the velocity update interval and trans-
forming the integrated speci� c force increment to the navigation
frame using attitude data at the center of the velocity update time
interval. A variation of the latter approach updates the attitude at
twice the velocity update rate so that the attitude solution between
velocity updates is available for speci� c force increment transfor-
mation. Another variation calculates the attitude used for speci� c
force transformation as the average of the computed attitude at the
start and end of the velocity update time interval. A two-speed ap-
proach can also be used for speci� c force transformation/velocity
integrationin a dynamicenvironmentthatparallels the two-speedat-
titude integration approach (Refs. 5 and 8, Sec. 7.2). A high-speed
algorithm is designed to account for high-frequency angular and
linear oscillations that can rectify into systematic velocity buildup
(traditionallydenoted as sculling), and a moderate-speedalgorithm
executes the speci� c force transformationbased on inputs from the
high-speed algorithm.

In general, the speci� c force transformation/velocity integration
algorithms have lacked the analytical sophistication of the attitude
integration algorithms, being typically limited to � rst-order accu-
racy under maneuvering conditions. Virtually no specialized work
has been reported for the inertial navigation position integration
function. From the writer’s understanding,modern-day strapdown
INSs typically generate position as a simple trapezoidal integration
of velocity at an update rate equal to or lower than the velocity up-
date frequency. For applications requiring precise position change
data in a dynamic environment, such a rudimentary approach to
position integration may prove inadequate.

This paper provides a comprehensive process for the design of
strapdown inertial navigation speci� c force transformation, veloc-
ity integration, and position integration algorithms. The material
presented is a condensedversionof Ref. 8, Secs. 7.2 and 7.3 (an ex-
pansion of material in Ref. 5), emphasizinga more rigorous analyt-
ical formulation and the use of exact closed-form equations where
possible for ease in computer software documentation/validation.
The velocity and position algorithms presentedare structuredusing
a two-speed computation format; the moderate-speed algorithm,
e.g., 50–200 Hz, is designed to be exact under constant angu-
lar rate/speci� c force acceleration conditions during the moderate-
speedupdateinterval;themoderate-speedalgorithmis fed by a high-
speed computation algorithm, e.g., 1–4 kHz, that accounts for dy-
namic variations from constant angular rate/speci� c force [sculling
for the velocity algorithm and scrolling (writer’s terminology) for
the position algorithm]. Included is a rigorous treatment of navi-
gation coordinate frame rotation during the integration update time
periods.

This paper is organized as follows. Section II de� nes the coordi-
nate frames utilized. Section III utilizes the Part 1 (Ref. 1) attitude
algorithm derivation as a model to formulate two-speed speci� c
force acceleration transformation/velocity integration algorithms.
Section IV then uses Sec. III as a framework for the developmentof
position updating algorithms in two forms: a traditional form based
on trapezoidal integrationand a two-speed high-resolutionform. A
tabular reference summary of the derived algorithms is presented
in Sec. V. Section VI provides a general discussion of the process
followed in selecting algorithms for a particular applicationand es-
tablishing their execution rates. Concluding remarks are provided
in Sec. VII.

Finally, it is important to recognize that, whereas the original
intent of the two-speed approach was to overcome throughput lim-
itations of early computer technology (1965–1975), that limitation
is rapidly becoming insigni�cant with continuingrapid advances in
modernhigh-speedcomputers.This providesthemotivationto even-
tually return to a simpler single-speedalgorithm structure whereby
all computations are executed at a repetition rate that is suf� ciently
high to accuratelyaccountfor multiaxis high-frequencyangular rate
and speci� c force acceleration recti� cation effects. The two-speed
structure presented in this paper and in Part 1 (Ref. 1) is compatible
with compression into such a single-speed format as explained in
the particular sections where the algorithms are formulated.

II. Coordinate Frames
A coordinate frame is an analytical abstraction de� ned by three

consecutivelynumbered (or lettered) unit vectors that are mutually
perpendicular to one another in the right-hand sense. It can be vi-
sualized as a set of three perpendicularlines (axes) passing through
a common point (origin) with the unit vectors emanating from the
origin along the axes. In this paper, the physical locations of the
coordinate frame origins are arbitrary. A vector’s components (or
projections) in a particularcoordinateframe equal the dot productof
the vector with the coordinate frame unit vectors. The vectors used
in this paper are classi� ed as free vectors and, hence, have no pre-
ferred location in coordinate frames in which they are analytically
described.

The coordinate frames are de� ned as follows.
1) The E frame is the Earth-� xed coordinate frame used for posi-

tion location de� nition. It is typically de� ned with one axis parallel
to the Earth polar axis and with the other axes � xed to the Earth and
parallel to the equatorial plane.

2) The N frame is the navigation coordinate frame having its
Z axis parallel to the upward vertical at the local Earth surface
referenced position location. It is used for integrating acceleration
into velocity and for de� ning the angular orientation of the local
vertical in the E frame.

3) The L frame is the locally level coordinate frame parallel to
the N frame but with the Z axis parallel to the downward vertical
and X and Y along N frame Y and X axes. It is used as the reference
for describing the strapdown sensor coordinate frame orientation.

4) The B frame is the strapdown inertial sensor coordinate frame
(body frame) with axes parallel to nominal right-handedorthogonal
sensor input axes.

5) The I frame is the nonrotatinginertialcoordinateframe used as
a reference for angular rate measurements. Particular orientations
selected for the I frame are discussed in the sections where its
orientation is pertinent to analytical operations.

III. Velocity Update Algorithms
In this section we develop algorithms for integrating the Ref. 1,

Eq. (20), velocity rate equation using Ref. 1, Eqs. (16) and (18), for
the speci� c force transformation term and using angular rates from
Ref. 1, Eqs. (14) and (15), in the Coriolis accelerationterm (angular
rate products with velocity):

PvN D C N
L C L

B aB
SF C gN

P ¡ !N
E N C 2!N

I E £ vN (1)

!N
I E D C E

N

T
!E

I E (2)

!N
E N D FC uN

Z N £ vN C ½Z N uN
Z N (3)

where v is the velocity relative to the Earth de� ned analytically as
the time derivativein the E frame of the positionvector fromEarth’s
center to the INS, and gP is plumb-bob gravity (or gravity) that, for
a stationaryINS, lies along the line of a plumb bob. FC is a curvature
matrix (3 £ 3) that is a function of position having elements 3,i and
i ,3 equal to zero and the remaining elements symmetrical about the
diagonal. For a spherical Earth model, the remaining elements of
FC are zero off the diagonal and equal the reciprocal of the radial
distance from the Earth’s center to the INS on the diagonal. For
an oblate Earth model, the remaining FC terms represent the local
curvature on the Earth’s surface projected to the INS altitude (see
Ref. 8, Sec. 5.3, for closed-form expression). ½Z N is the vertical
componentof !N

E N . The value selected for ½Z N depends on the type
of N frame utilized, e.g., wander azimuth or free azimuth designed
to assure that !N

E N is nonsingularfor all Earth locations (see Ref. 8,
Sec. 4.6, and Ref. 10, pp. 88–89). uZ N is a unit vector upward along
the geodetic vertical (the Z axis of the N frame).

Equation (1) uses direction cosine matrix transformed speci� c
force rather than the alternative Ref. 1, Eq. (17), quaternion trans-
formation approach, e.g., for situations where the B frame attitude
is computed in the form of an attitudequaternion.The velocity inte-
gration algorithmbased on quaternionspeci� c force transformation
can be developed by extension of the results presented here.
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The digital velocity integration algorithm is formulated directly
from Eq. (1) as

vN
m D vN

m ¡ 1 C C N
L 1vL

SFm
C 1vN

G=Corm
(4)

1vN
G=Corm

D
tm

tm ¡ 1

gN
P ¡ !N

E N C 2!N
I E £ vN dt (5)

1vL
SFm

D
tm

tm ¡ 1

C L
B aB

SF dt (6)

where m is the digital velocity integration algorithm update rate
computer cycle index.

If vertical channel gravity/divergence stabilization is to be incor-
porated, an additionalupdate operationwould be includedin Eq. (4)
representingtheverticalvelocitycontrolfunction(Ref. 8, Sec. 4.4.1,
and Ref. 10, pp. 102–103).

Digital algorithmsare formulatednext for the gravity/Coriolisve-
locity increment1vN

G=Corm
in Eq. (5) and the integrated transformed

speci� c force increment 1vL
SFm

in Eq. (6).

A. Gravity/Coriolis Velocity Increment
The gN

P term in Eq. (5) is a function of position locationwith very
small horizontal components.Because the position varies smoothly
over a digital algorithm m cycle with limited magnitude change
(particularly in altitude), gN

P in Eq. (5) can be approximated by its
averagevalue across the m cycle. Because the Eq. (5) Coriolis term
is small (due to the small size of the angular rates) and because
velocity varies smoothly over an m cycle, the Coriolis contributors
can also be approximated by their average value over the m cycle.
The latter rationale forms the basis for the following algorithm for
1vN

G=Corm
in Eq. (5) using Eq. (3) for !N

E N :

1vN
G=Corm

¼ gN
P

m ¡ 1
2

¡ 2!N
I E

m ¡ 1
2

C ½Z N
m ¡ 1

2

uN
Z N

C FC
m ¡ 1

2

uN
Z N £ vN

m ¡ 1
2

£ vN
m ¡ 1

2
Tm (7)

where m ¡ 1
2 designates the parameter value midway between tm ¡ 1

and tm , and Tm is the velocity integration algorithm update period
tm ¡ tm ¡ 1.

The !N
I E term in Eq. (7) is evaluated with Eq. (2), and gN

P is cal-
culated from Ref. 1, Eq. (19). Because 1vN

G=Corm is used in Eq. (4) to
update vN from its m ¡ 1 to m cycle value, vN

m ¡ 1=2 is not explicitly
available for Eq. (7) and must be approximated based on extrap-
olation from past values. An example is the linear extrapolation
algorithm

vN
m ¡ 1

2
¼ vN

m ¡ 1 C 1
2 vN

m ¡ 1 ¡ vN
m ¡ 2 D 3

2 vN
m ¡ 1 ¡ 1

2 vN
m ¡ 2 (8)

The gN
P ; !N

I E ; ½Z N , and FC parameters in Eq. (7) are functions of
position, which (from Sec. IV.A) is updated following the velocity
update, possibly at a slower n cycle repetition rate, e.g., � ve times
slower. Therefore, the designatedm ¡ 1

2 value for these parameters
is not explicitly available and must also be approximated based on
extrapolationfrompast values.For example, for linear extrapolation

. /m ¡ 1
2

¼ . /n ¡ 1 C
r ¡ 1

2

j
[. /n ¡ 1 ¡ . /n ¡ 2] (9)

where

n = computer cycle index for position updates
j = number of m cycles in each n cycle
r = number of m cycles since last n cycle, i.e., since tn ¡ 1

B. Integrated Transformed Speci� c Force Increment
A digital algorithm for integrated transformed speci� c force in-

crement equation (6) must account for rotation of the local level L
frame and the strapdown sensor body B frame during the tm ¡ 1 to tm
computer cycle period. Adopting the same notation used in Ref. 1,

Sec. IV.A, to describe discrete orientations of the L and B frames
relative to inertial space I at computer update time instants, Eq. (6)
can be expanded using the Ref. 1, Eq. (3), chain rule as follows:

1vL
SFm

D
tm

tm ¡ 1

C
L I.m/

L I.n ¡ 1/
C

L I.n ¡ 1/

B I.m ¡ 1/
C

B I.m ¡ 1/

B.t /
aB

SF dt (10)

or, on further expansion,

1v
L I.n ¡ 1/

SFm
D C

L I.n ¡ 1/

B I.m ¡ 1/
1v

B I.m ¡ 1/

SFm
(11)

1v
BI.m ¡ 1/

SFm
D

tm

tm ¡ 1

C
BI.m ¡ 1/

B.t /
aB

SF dt (12)

1vL
SFm

D C
L I.m /

L I.n ¡ 1/
1v

L I.n ¡ 1/

SFm
D 1v

L I.n ¡ 1/

SFm
C C

L I.m/

L I.n ¡ 1/
¡ I 1v

L I.n ¡ 1/

SFm

(13)

Equations(11–13) allowfor the generalcase whereby the C L
B matrix

is updated for L frame rotation at a cycle rate (index n) that may
differ from (be slower than) the C L

B update rate for B frame rotation
(index m). For example, in the interest of minimizing computer
throughput requirements, the software architecture might have the
n cycle L frame update rate set � ve times slower than the m cycle
B frame update rate. Equations (11–13) are also valid, however, if
we choose to update C L

B at equal rates for B and L frame motion,
i.e., n D m. Note that, for n 6D m, Eq. (13) still requires an L frame
orientationevaluationat the B frame m cycle update time (for L I.m /

in the C
L I.m /

L I.n ¡ 1/
matrix). Note also that the form of Eq. (11) is based

on the use of C L
B at the preceding B frame m cycle, i.e., BI.m ¡ 1/

in the C
L I.n ¡ 1/

B I.m ¡ 1/
matrix. This implies that C L

B will be updated for B

frame rotation following the Eq. (11) transformation operation. It
remains to de� ne algorithms for C

L I.m/

L I.n ¡ 1/
in Eq. (13) to account for

local level frame rotation during speci� c force transformation and
for the 1v

B I.m ¡ 1/

SFm
body frame integrated speci� c force increment

term in Eq. (12).

1. Correction for Local Level Frame Rotation
During Speci� c Force Transformation

Because of the slow angular rate of the L frame relative to inertial
space, C

L I.m/

L I.n ¡ 1/
in Eq. (13) is very close to the identity matrix I.

For many applications, .C
L I.m/

L I.n ¡ 1/
¡ I/ in Eq. (13) can, therefore, be

totally ignored as negligible compared to other acceleration error
sources. For high-accuracy applications where .C

L I.m/

L I.n ¡ 1/
¡ I/ is to

be included,a � rst-orderformof the Ref. 1 Eqs. (49) and (50)usually
suf� ces, whereby

C
L I.m/

L I.n ¡ 1/
¼ I ¡ .³n ¡ 1;m£/ (14)

³n ¡ 1;m D
tm

tn ¡ 1

!L
I L dt (15)

We thenapproximate!L
I L in Eq. (15)usingEq. (3) in Ref.1, Eq. (13),

and the assumptionof slowly changingcontributorsas in Sec. III.A,

!L
I L D C L

N !N
I E C !N

E N ¼ C L
N !N

I En ¡ 1;m
C ½Z Nn ¡ 1;m uN

Z N

C FCn ¡ 1;m uN
Z N £ vN (16)

where the subscript n ¡ 1, m indicates the value for the parameter
midway between times tn ¡ 1 and tm .

Substituting Eq. (16) into Eq. (15) yields

³n ¡ 1;m ¼ C L
N !N

I En ¡ 1;m
rTm C ½Z Nn ¡ 1;m uN

Z N rTm

C FCn ¡ 1;m uN
Z N £ 1RN

n ¡ 1;m (17)

1RN
n ¡ 1;m ´

tm

tn ¡ 1

vN dt (18)
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The !N
I E term in Eq. (17) is evaluated with Eq. (2). As in Sec. III.A,

. /n ¡ 1;m in Eq. (17) must be approximated based on past value ex-
trapolation; e.g.,

. /n ¡ 1;m ¼ . /n ¡ 1 C 1
2 .r=j/[. /n ¡ 1 ¡ . /n ¡ 2] (19)

Because Eq. (17) is used to update vN in Eqs. (4), (13), and (14),
current values of vN are not available for evaluating 1RN

n ¡ 1;m in
Eq. (18). Hence, past value extrapolation must be employed, such
as in Sec. III.A:

1RN
n ¡ 1;m D

Tm

2
3vN

m ¡ 1 ¡ vN
m ¡ 2 for r D 1

1RN
n ¡ 1;m D

Tm

2
3vN

m ¡ 1 ¡ vN
m ¡ 2 C

m ¡ 1

i D m C 1 ¡ r

vN
i C vN

i ¡ 1

for r > 1 (20)

2. Body Frame Integrated Speci� c Force Increment

The 1v
BI.m ¡ 1/

SFm
integral term in Eqs. (11) and (12) is calculated

using a high-speed digital repetition algorithm similar to the type
employed in Ref. 1, Eqs. (35) and (36), for attitude updating. The
derivation of the algorithm is initially based on � rst-order approx-
imations for C

B I.m ¡ 1/

B . The � rst-order solution is divided into two
parts for applicationof the two-speedalgorithmapproach:a portion
that can be calculated at the m cycle rate which measures the effect
of constant B frame angularrate and speci� c force,and a high-speed
portion within the m cycle, which measures dynamic variations in
B frame angular rate/speci� c force. The � rst-order m cycle portion
is then expanded to be analytically exact under constant angular
rate/speci� c force.

Following the development approach in Ref. 1, Sec. IV.A.1,
the C

B I.m ¡ 1/

B.t/
term in the Eq. (12) 1v

B I.m ¡ 1/

SFm
integrand is expressed

as

C
BI.m ¡ 1/

B.t /
D I C sin Á.t/

Á.t/
Á.t/£ C 1 ¡ cos Á.t/

Á.t/2
Á.t/£

2
(21)

where Á.t/ is the rotation vector de� ning the general orientation
of frame B relative to frame BI.m ¡ 1/

for time t greater than tm ¡ 1.
Reference 1 Eqs. (32) and (33) show that Á.t/ in Eq. (21) can be
approximated by

Á.t/ ¼ ®.t/ (22)

®.t/ D
t

tm ¡ 1

!B
I B d¿ (23)

where ¿ is an integration time parameter. A � rst-order approxima-
tion for Eq. (21) that is consistent with Eq. (22) neglects .Á.t/£/2

and approximatessinÁ.t/=Á.t/ by unity [assuming that the m cycle
rate is selected fast enough to maintain Á.t/ at a reasonably small
value, e.g., less than 0.05 rad]. With Eq. (22), Eq. (21) reduces to

C
B I.m ¡ 1/

B.t /
¼ I C ®.t/£ (24)

Substituting Eq. (24) into Eq. (12) then yields to � rst order

1v
B I .m ¡ 1/

SFm
D

tm

tm ¡ 1

I C ®.t/£ aB
SF dt

D
tm

tm ¡ 1

aB
SF dt C

tm

tm ¡ 1

®.t/£ aB
SF dt (25)

or, including Eq. (23),

1v
B I.m ¡ 1/

SFm
D Àm C

tm

tm ¡ 1

®.t/ £ aB
SF dt

(26)

®.t/ D
t

tm ¡ 1

!B
I B d¿; À.t/ D

t

tm ¡ 1

aB
SF d¿; Àm D À.tm/

Equations(26)de� ne a method for calculating1v
B I.m ¡ 1/

SFm
in Eq. (11).

It is instructive to analyze these equations under constant B frame
angular rate !B

I B and speci� c force aB
SF for which

®.t/ D .t ¡ tm ¡ 1/!
B
I B ; À.t/ D .t ¡ tm ¡ 1/ aB

SF

(27)
!B

I B ; aB
SF D const

Substituting ®.t/ from Eq. (27) into the Eq. (26) 1v
B I.m ¡ 1/

SFm
expres-

sion yields for constant B frame angular rate and speci� c force

1v
B I.m ¡ 1/

SFm
D Àm C

tm

tm ¡ 1

.t ¡ tm ¡ 1/!
B
I B £ aB

SF dt

D Àm C !B
I B £ aB

SF

tm

tm ¡ 1

.t ¡ tm ¡ 1/ dt

D Àm C !B
I B £ aB

SF

1

2
.tm ¡ tm ¡ 1/

2

D Àm C 1
2

!B
I B .tm ¡ tm ¡ 1/ £ aB

SF.tm ¡ tm ¡ 1/ (28)

or, with Eqs. (26) and (27) for constant B frame angular rate and
speci� c force,

1v
BI.m ¡ 1/

SFm
D Àm C 1

2
®m £ Àm

®.t/ D
t

tm ¡ 1

! B
I B d¿; ®m D ®.tm/ (29)

À.t/ D
t

tm ¡ 1

aB
SF d¿; Àm D À.tm /

Comparing Eq. (26) for the general case with Eq. (29) for the con-
stant angular rate/speci� c force condition,we see that the difference
is the replacement of the integral term with 1

2
®m £ Àm .

For situations where constant angular rate/speci� c force is a rea-
sonable approximationover the tm ¡ 1 to tm time interval,Eq. (29) is
preferred over Eq. (26) because the integral term (and its attendant
high-speedalgorithm) is replaced by 1

2 ®m £Àm , which is evaluated
once each m cycle.

A fundamental limitation in Eq. (26) or Eq. (29) is the � rst-order
approximation that underlies their development, i.e., Eq. (24) for

C
B I.m ¡ 1/

B.t/ that was used in the Eq. (12) 1v
BI.m ¡ 1/

SFm
expression.It would

be desirable if the Eq. (24) approximation could be applied only
to the high-frequency content of C

BI.m ¡ 1/

B.t/ with the low-frequency
content retaining the full Eq. (21) form. Such an algorithm can be
synthesized by � rst noting that

d
dt

®.t/ £ À.t/ D ®.t/ £ PÀ.t/ C P®.t/ £ À.t/

D ®.t/ £ PÀ.t/ ¡ À.t/ £ P®.t/ (30)

with ®.t/ and À.t/ as de� ned in Eq. (26). Upon rearrangement,
Eq. (30) becomes

®.t/ £ PÀ.t/ D d
dt

®.t/ £ À.t/ C À.t/ £ P®.t/ (31)

Trivially,

®.t/ £ PÀ.t/ D 1
2 ®.t/ £ PÀ.t/ C 1

2 ®.t/ £ PÀ.t/ (32)

We now substitute Eq. (31) for one of the terms on the right in
Eq. (32) to obtain

®.t/ £ PÀ.t/ D 1

2

d

dt
®.t/ £À.t/ C 1

2
®.t/ £ PÀ.t/ CÀ.t/ £ P®.t/

(33)
From Eq. (26) we know that

P®.t/ D !B
I B ; PÀ.t/ D aB

SF (34)
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whereby Eq. (33) assumes the form

®.t/ £ aB
SF D d

dt
®.t/ £ À.t/

C 1

2
®.t/ £ aB

SF C À.t/ £ !B
I B (35)

Equation (35) is an alternate for the integrand in the Eq. (26)
1v

BI.m ¡ 1/

SFm
expression.Substitutionof Eq. (35) for the integrand then

yields the following equivalent form:

1v
B I.m ¡ 1/

SFm
D Àm C 1

2
.®m £ Àm/

C 1
2

tm

tm ¡ 1

®.t/ £ aB
SF C À.t/ £ ! B

I B dt (36)

If we now compare 1v
B I.m ¡ 1/

SFm
in Eqs. (36) and (29) under constant

angular rate/speci� c force conditions, we see that they are equiva-
lent except for the integral term in Eq. (36). It is easily veri� ed by
substitution of Eq. (27) that the integral term in Eq. (36) vanishes
for constant B frame angular rate/speci� c force. We conclude that
the integral term in Eq. (36) represents the integratedcontributionof

the high-frequencycontent in the Eq. (12) 1v
B I.m ¡ 1/

SFm
integrand; the

remainingterms, i.e.,Àm C 1
2 .®m £Àm/, representthe low-frequency

content.
The integral term in Eq. (36), denoted as sculling, measures the

recti� cation of combined dynamic angular rate/speci� c force into a
net constant contribution to 1v

B I.m ¡ 1/

SFm
. The recti� cation is a maxi-

mum under classical sculling motion de� ned as sinusoidal angular
rate/speci� c force in which the angular rate about one B frame axis
is at the same frequency and in phase with the speci� c force along
another B frame axis (with recti� ed constant speci� c force then
produced along the average third axis direction). This is the same
principle used by mariners to propel a boat in the forward direction
using a single oar operatedwith an undulatingmotion (also denoted
as sculling, the original use of the term). Note that the 1v

BI.m ¡ 1/

SFm
in-

tegral term in Eq. (26) has also beendenotedas scullingeven though
it contains large contributions under constant angular rate/speci� c
force, i.e., nonscullingconditions.The 1

2 .®m £Àm / term in Eq. (36)
is identi� edhere as velocityrotationcompensation.The velocityno-
tation has been adopted to denote that this rotation compensation
term feeds the velocity rate equation (in contrast with a position
rotation compensation term to be discussed in Sec. IV that feeds
the position rate equation). With these de� nitions, a comparison be-
tween Eqs. (26) and (36) identi� es the integral term in Eq. (26) as
representingthecompositeofscullingandvelocityrotationcompen-
sation effects. Using the latter terminology, Eq. (36) is rewritten as

1v
B I.m ¡ 1/

SFm
D Àm C 1vrotm C 1vsculm (37)

1vscul.t/ D 1

2

t

tm ¡ 1

®.¿/ £ aB
SF C À.¿ / £ !B

I B d¿

1vsculm D 1vscul.tm/

(38)
®.¿ / D

¿

tm ¡ 1

!B
I B dt; ®m D ®.tm /

À.¿ / D
¿

tm ¡ 1

aB
SF dt; Àm D À.tm /

1vrotm D 1
2
.®m £ Àm/ (39)

where 1vrotm is the velocity rotationcompensationterm and 1vsculm
is the sculling term. Alternatively,beginning from the Eq. (26) ver-
sion,

1v
BI.m ¡ 1/

SFm
D Àm C 1vrot=sculm (40)

1vrot=scul.t/ D
t

tm ¡ 1

®.¿/ £ aB
SF d¿

(41)
1vrot=sculm D 1vrot=scul.tm /

with ®.¿ / and Àm from sculling Eq. (38) and where 1vrot=sculm is
the composite sculling and velocity rotation compensation term.

Equations (37–39) are completely equivalent to Eqs. (40) and
(41); both equation sets exhibit only � rst-order accuracy. However,
Eq. (37) is now in a form that enables us to substitute an expanded
expressionfor the Eq. (39) velocity rotation compensationterm that
makes Eq. (37) exact under constant rate/speci� c force conditions.
This is an important extension because general motion is typically
dominated by low-frequency angular rate and speci� c force com-
ponents that may have large amplitudes under extreme maneuvers
(where second-order algorithm errors may not be negligible). The
extension to exactness is not possible for Eqs. (40) and (41) because
the rotation compensation effect is imbedded within the integral,
which includes the � rst-order sculling term. The following subsec-
tions derive an exact 1vrotm velocity rotation compensation algo-
rithm for Eq. (37) in addition to digital integration algorithms for
the Eq. (38) integral terms. Using the same procedure,a digital inte-
gration algorithm can also be developed for 1vrot=sculm in Eqs. (40)
and (41), as shown in Ref. 8, Sec. 7.2.2.2.2.

Exact velocity rotation compensation. The exact velocity rota-
tion compensation algorithm is de� ned as the algorithm that, when
substituted for 1vrotm in Eq. (37), provides an exact solution for
1v

BI.m ¡ 1/

SFm
in Eq. (12) under constant B frame angular rate/speci� c

force conditions. The exact velocity rotation compensation algo-
rithm is derived from Eq. (12) using Eq. (21) for C

B I.m ¡ 1/

B.t/
under

constant angular rate/speci� c force. We � rst consider the more gen-
eral condition where only the direction of the angular rate vector is
constant, i.e., a nonconing environment in which the angular rate
vector is not rotating. From Eq. (23), for a nonconing angular rate
condition,

®.t/ D ®.t/u!; ®.t/ D
t

tm ¡ 1

! d¿;
®.t/

®.t/
D u! (42)

where ! is the magnitude of !B
I B , and u! is a unit vector along !B

I B
that is considered constant in the B frame.

As discussed in Ref. 1, Sec. IV.A.1, for the case where !B
I B is

not rotating, Á.t/ is equal to ®.t/ (the integral of !B
I B ). Under this

restriction, Eq. (21) with Eq. (42) for Á.t/ substituted in Eq. (12)
gives for the nonconing angular rate condition

1v
B I.m ¡ 1/

SFm
D

tm

tm ¡ 1

I C sin ®.t/.u!£/

C 1 ¡ cos®.t/ .u!£/2 aB
SF dt (43)

For nonconing angular rate and constant B frame speci� c force,
Eq. (43) can be expanded to

1v
B I.m ¡ 1/

SFm
D

tm

tm ¡ 1

aB
SF dt C u! £ aB

SF

tm

tm ¡ 1

sin ®.t/ dt

C u! £ u! £ aB
SF

tm

tm ¡ 1

1 ¡ cos®.t/ dt (44)

Section III.B.2 nomenclature is now applied with the nonconing
rate/constant speci� c force assumption and appropriate Eq. (42)
relationships,

Àm D
tm

tm ¡ 1

aB
SF dt D aB

SF.tm ¡ tm ¡ 1/ D aB
SFTm; aB

SF D Àm

Tm

(45)
®.t/

®.t/
D u!; u! D

®m

®m
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and ®m D ®.tm/ is the magnitude of ®.tm /. Substituting Eqs. (45)
into Eq. (44) then yields for nonconing angular rate and constant
speci� c force

1v
B I.m ¡ 1/

SFm
D Àm C ®m £ Àm

®m Tm

tm

tm ¡ 1

sin ®.t/ dt

C ®m £ .®m £ Àm/

®2
m Tm

tm

tm ¡ 1

1 ¡ cos ®.t/ dt (46)

To evaluatethe integral terms in Eq. (46), we now adopt the constant
angular rate condition whereby ! in Eq. (42) is constant. Then,

®.t/ D !.t ¡ tm ¡ 1/; ! D const (47)

ApplyingEq. (47) in Eq. (46) with Eq. (45) for ®m allows the integral
terms to be evaluated for constant B frame angular rate as

tm

tm ¡ 1

sin ®.t/ dt D
Tm

®m
.1 ¡ cos®m/

(48)
tm

tm ¡ 1

1 ¡ cos ®.t/ dt D Tm 1 ¡ sin ®m

®m

Substitution in Eq. (46) then yields the desired form for the exact
1v

BI.m ¡ 1/

SFm
solutionunder constant B frame angular rate and speci� c

force

1v
B I.m ¡ 1/

SFm
D Àm C .1 ¡ cos ®m /

®2
m

®m £ Àm

C 1

®2
m

1 ¡ sin®m

®m
®m £ .®m £ Àm/ (49)

Equation (49) constitutesan exact solution for 1v
B I.m ¡ 1/

SFm
under con-

stantangular rate/speci� c force.We are now in a positionto compare
Eq. (49)with Eq. (37) under the same conditionsto identify theexact
velocity rotation compensation term. Under constant rate/speci� c
force conditions, the sculling term in Eq. (37) vanishes (see dis-
cussion in Sec. II.B.2), and 1v

BI.m ¡ 1/

SFm
is given by

1v
BI.m ¡ 1/

SFm
D Àm C 1vrotm (50)

If we compareEqs. (49) and (50) it shouldbe clear from its de� nition
that the exact velocity rotation compensation term 1vrotm is

1vrotm D .1 ¡ cos ®m/

®2
m

®m £ Àm

C 1
®2

m

1 ¡ sin®m

®m
®m £ .®m £ Àm/ (51)

The trigonometric coef� cients in Eq. (51) can be calculated from
the Taylor series formulas

.1 ¡ cos®m/

®2
m

D 1
2!

¡
®2

m

4!
C

®4
m

6!
¡ ¢ ¢ ¢

(52)
1

®2
m

1 ¡ sin ®m

®m
D 1

3!
¡

®2
m

5!
C

®4
m

7!
¡ ¢ ¢ ¢

Equation (51) with Eqs. (52) constitute an alternative algorithm for
the 1vrotm velocity rotation compensation term in Eq. (39) that will
generate an exact solution for 1v

B I.m ¡ 1/

SFm
in Eq. (37) under constant

B frame angular rate/speci� c force conditions.In contrast, the 1vrot

algorithm in Eq. (39) is accurate to only � rst order. Note that, to � rst
order in ®m , Eq. (51) with Eq. (52) reduces to the Eq. (39) 1vrotm
form (as it should).

Integrated speci�c force and sculling increments. In this subsec-
tion we developdigital algorithmsfor calculatingthe Àm and1vsculm

integral terms in Eq. (37) and (38) [the ®m term for these equations
is provided from the attitude algorithm in Ref. 1, Eqs. (41)]. A sim-
ilar procedure can be used to develop an algorithm for 1vrot=sculm

in Eqs. (40) and (41). Following the identical procedure used in
Ref. 1, Sec. IV.A.1, for the coning algorithm,we develop the 1vsculm
sculling algorithm by considering 1vsculm to be the value at t D tm

of the general function1vscul.t/ [as in Eq. (38)]. Let us consider the
Eq. (38) 1vscul.t/ integration as being divided into portions up to
and after a general time tl ¡ 1 within the tm ¡ 1 to tm interval so that

1vscul.t/ D 1vscull ¡ 1 C ±vscul.t/
(53)

±vscul.t/ D 1
2

t

tl ¡ 1

®.¿/ £ aB
SF C À.¿ / £ !B

I B d¿

We now de� ne the next l cycle time point tl within the tm ¡ 1 to tm
interval so that Eqs. (53) at tl with ®.¿/ and À.¿/ from Eq. (38),
including initial conditions, become

®.¿ / D ®l ¡ 1 C 1®.¿ /

1®.¿ / D
¿

tl ¡ 1

!B
I B dt ; 1®l D 1®.tl /

(54)

®l D ®l ¡ 1 C 1®l; ®m D ®l .tl D tm/

®l D 0 at ¿ D tm ¡ 1

À.¿ / D Àl ¡ 1 C 1À.¿/

1À.¿/ D
¿

tl ¡ 1

aB
SF dt; 1Àl D 1À.tl /

(55)

Àl D Àl ¡ 1 C 1Àl ; Àm D Àl .tl D tm/

Àl D 0 at ¿ D tm ¡ 1

1vscull D 1vscull ¡ 1 C ±vscull

±vscul.t/ D
1

2

t

tl ¡ 1

®.t/ £ aB
SF C À.t/ £ !B

I B dt
(56)

±vscull D ±vscul.tl/

1vsculm D 1vscull .tl D tm /; 1vscull D 0 at t D tm ¡ 1

where l is the high-speed computer cycle index. Equations (54–

56) constitute the construct of a digital recursive algorithm at the
l computer cycle rate for calculating the 1vsculm sculling term and
Àm as a summation of changes in 1vscul and À over the tm ¡ 1 to tm
interval. It remains to determine a digital equivalent for the ±vscull
integral term in Eq. (56). We begin by substitution of ®.t/ and the
de� nitions for 1®l and 1Àl from Eq. (54) into ±vscul:

±vscull D 1

2
.®l ¡ 1 £ 1Àl C Àl ¡ 1 £ 1®l /

C 1
2

tl

tl ¡ 1

1®.t/ £ aB
SF C 1À.t/ £ !B

I B dt (57)

Development of a digital algorithm for the integral term in sculling
Eq. (57) is based on an assumed form for the B frame angular
rate/speci� c force history during the tl ¡ 1 to tl time interval. Unlike
the coning algorithm, very little publishedwork exists for selecting
angular rate/speci� c force time histories for application to sculling
algorithm design. In principle, the approaches used for the coning
algorithm can also be applied for sculling, including optimization
for sculling-type motion (see discussion in Ref. 1, Sec. IV.A.1).
For this paper, we provide an example based on general linearly
changing angular rate/speci� c force over the tl ¡ 1 to tl time interval:

!B
I B ¼ A C B.t ¡ tl ¡ 1/; aB

SF ¼ C C D.t ¡ tl ¡ 1/ (58)

where A; B; C, and D are constant vectors.
An algorithm for the integral term in Eq. (57) can be developed

by � rst substituting Eq. (58) for ! B
I B and aB

SF in Eq. (57) and then
calculating the Eq. (57) integral term analyticallyover the tl ¡ 1 to tl
time interval.The intermediate result is an equation for the Eq. (57)
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integral term as a functionof the A; B; C, and D constantvectors.A
set of A; B; C, and D constants is then calculated for each tl ¡ 1 to tl
time interval using successive measurements of integrated angular
rate and speci� c force increments from the inertial sensors. Two
successive measurements would be required to uniquely determine
the four constant vectors A; B; C, and D for the Eq. (58) linearly
ramping model. (A parabolic model would be characterized by six
constant vectors and require three successive sensor measurements
for determination,etc.) The result is then substitutedforA; B; C, and
D in the intermediate result (de� ned earlier) to derive the algorithm
equivalent to the Eq. (57) integral term over the tl ¡ 1 to tl time
interval. If the successive sensor increments are sampled at the l
cycle rate, measurements would be taken at tl ¡ 1 and tl , spanning
tl¡2 to tl ¡ 1 and tl ¡ 1 to tl (or tl¡2 to tl , overall). Alternatively,6;7;11

the sensor samples can be taken within the tl ¡ 1 to tl time interval,
two samples per l cycle for the Eq. (58) linearly ramping model,
three for a parabolic model, etc. For sensor samples taken at the l
cycle rate, the results of the latter procedure (detailed in Ref. 8, Sec.
7.2.2.2.2) show that for the Eq. (58) linearly ramping model, the
algorithm equivalent to Eqs. (54–57) is given by

1®l ; ®l D integrated angular rate sensor outputs (59)
from Ref. 1, Eqs. (46)

1Àl D
tl

tl ¡ 1

dÀ
(60)

Àl D Àl ¡ 1 C 1Àl; Àm D Àl .tl D tm/; Àl D 0 at t D tm ¡ 1

±vscull D 1
2 [.®l ¡ 1 C 1

6 1®l ¡ 1/ £ 1Àl

C .Àl ¡ 1 C 1
6 1Àl ¡ 1/ £ 1®l ]

(61)

1vscull D 1vscull ¡ 1 C ±vscull ; 1vsculm D 1vscull .tl D tm /

1vscull D 0 at t D tm ¡ 1

where

1Àl = summation of integrated speci� c force output
increments from accelerometers

dÀ = differential integrated speci� c force increment,
i.e., analytical representationof pulse output from
strapdown accelerometers,aB

SF dt

Equation (61) for 1vsculm has been classi� ed as a second-orderalgo-
rithm because it includescurrent and past l cycle 1®, 1À products.
The l; l ¡ 1 cycle 1®; 1À product terms in ±vscull , i.e., the 1

6
terms,

stem from the approximation of linearly ramping angular rate and
speci� c force in the tl ¡ 2 to tl time interval. If the angular rate and
speci� c force terms were approximated as parabolically varying
functions of time, a third-order algorithm would result, containing
l ; l ¡ 1, and l ¡ 2 cycle 1®; 1À products. If the angular rate and
speci� c force were approximated as constants over tl ¡ 1 to tl , the 1

6
terms in Eq. (61) would vanish, resulting in a � rst-order algorithm
for 1vsculm . Finally, if angular rate and speci� c force are slowly
varying, we can approximate 1vsculm as being equal to zero. Alter-
natively(andmore accurately), we canset the l cyclerate equal to the
m cycle rate, which equates 1vsculm to ±vscull in Eq. (61) calculated
once at time tm [and noting from the initial condition de� nitions in
Eq. (60) and Ref. 1, Eqs. (46), that ®l ¡ 1 and Àl ¡ 1 would be zero].
Note that setting the l and m rates equal can also be achieved by
increasingthe m rate to match the l rate. The resultwould be a single
high-speed, higher-order algorithm with a simpler software archi-
tecture than the two-speedapproach but requiringmore throughput.
Continuing advances in the speed of modern-day computers may
make this the preferred approach for the future.

IV. Position Update Algorithms
In this section we develop digital integration algorithms for cal-

culatingposition relative to the Earth in the form of altitudeh above
the Earth’s surface and the C E

N direction cosine matrix de� ning the

angular orientation between the local level N frame and the Earth-
� xed E frame (fromwhich latitude/longitudecanbe extracted). Two
algorithm forms are developed: a typical form based on trapezoidal
integration of velocity and a high-resolutionform that accounts for
dynamic attitude and velocity changes within the position update
period. The high-resolutionalgorithm is modeled after the Sec. III
two-speed velocity update approach.

Both the typical and high-resolutionforms can be representedby
the continuous differential equation form of Ref. 1, Eqs. (21) and
(22), repeated here as

Ph D uN
Z N ¢ vN (62)

PC E
N D C E

N !N
E N £ (63)

where h is altitude above the Earth’s surface. The typical and high-
resolution forms derive from a general updating formulation for h
and C E

N . The following sections formulate the general position up-
datingprocessand then derivecomputationalapproachesfor typical
and high-resolutionposition updating.

A. Position Updating in General
The general altitude h updating algorithm is formulated as the

integral of Eq. (62) over a position update cycle n:

hn D hn ¡ 1 C 1hn (64)

1hn D
tn

tn ¡ 1

uN
Z N ¢ vN dt (65)

Allowing for the higher-speeddigital computation loop, i.e., the m
loop for attitude and velocity integration,Eq. (65) can be written as

1hn D uN
Z N ¢

j

m D 1

1RN
m (66)

1RN
m ´

tm

tm ¡ 1

vN dt (67)

If vertical channel gravity/divergence stabilization is to be incorpo-
rated, an additional operation would be included in Eq. (64) rep-
resenting the altitude control function (see Ref. 8, Sec. 4.4.1, and
Ref. 10, pp. 102–103).

The general updating algorithm for the C E
N direction cosine ma-

trix is designed to achieve the same numerical result at the update
times as would the formal continuousintegrationof the Eq. (63) PC E

N
expression at the same time instant. The algorithm is developed by
envisioningthe local level navigation N frame orientationhistory in
the digital updating world [produced in Eq. (63) by !N

E N ] as being
constructed of successive discrete orientations relative to the Earth
(E frame) at each update time instant. The general updating algo-
rithm for C E

N is then constructedas follows using the Ref. 1, Eq. (3),
direction cosine matrix product chain rule:

C E
NE.n/

D C E
NE.n ¡ 1/

C
NE.n ¡ 1/

NE.n/

(68)

where

NE .n/
= discrete orientation of the N frame in rotating Earth

frame space (E ) at computer update time tn
C E

NE.n ¡ 1/
= C E

N relating the N frame at time tn ¡ 1

to the E frame
C E

NE.n/
= C E

N relating the N frame at time tn to the E frame

C
NE.n ¡ 1/

NE.n/
= direction cosine matrix that accounts for

N frame rotation relative to the Earth (E ) from its
orientation at time tn ¡ 1 to its orientation at time tn

The C
NE.n ¡ 1/

NE.n/
matrix in Eq. (68) is de� ned formally as

C
NE.n ¡ 1/

NE.n/
D I C

tn

tn ¡ 1

PC
NE.n ¡ 1/

N.t /
dt (69)

with N.t / in Eq. (69) representingthe N frame attitudeat an arbitrary
time in the interval tn ¡ 1 to tn .
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Following the same development procedure as for C
B I.m ¡ 1/

BI.m/
in

Ref. 1, Sec. IV.A.1, the C
NE.n ¡ 1/

NE.n/
matrix can also be expressed in

terms of the rotation vector de� ning the frame NE.n/
attitude rela-

tive to frame NE.n ¡ 1/
. Applying Ref. 1, Eq. (4), with Taylor series

expansion for the coef� cient terms obtains

C
NE.n/

NE.n ¡ 1/
D I C sin »n

»n
.»n£/ C .1 ¡ cos »n/

» 2
n

.»n£/.»n£/

sin »n

»n
D 1 ¡ » 2

n

3!
C » 4

n

5!
¡ ¢ ¢ ¢ (70)

.1 ¡ cos»n/

» 2
n

D
1

2!
¡

» 2
n

4!
C

» 4
n

6!
¡ ¢ ¢ ¢

where »n is the rotation vector de� ning the frame NE.n/
attitude at

time tn relative to the frame NE.n ¡ 1/
attitude at time tn ¡ 1 .

The angular rate of the N frame relative to the Earth !N
E N is small

and typicallyno larger than one or two Earth rates.As such, because
the tn ¡ 1 to tn update cycle is relatively short, »n will be very small
in magnitude. Because !N

E N is small and slowly changing over a
typical tn ¡ 1 to tn update cycle (due to small changes in velocity and
position over this time period) the N frame rate vector !N

E N can be
approximated as nonrotating. The result is that »n for Eq. (70) can
be calculated as the integral of the simpli� ed form of the Ref. 1,
Eq. (10), rotation vector rate expression whereby the cross-product
terms are neglected:

»n ¼
tn

tn ¡ 1

!N
E N dt (71)

A discrete digital algorithm for the Eq. (71) »n integral can be con-
structed by � rst approximating Eq. (3) for !N

E N as

!N
E N ¼ ½Z N

n ¡ 1
2

uN
Z N C FC

n ¡ 1
2

uN
Z N £ vN (72)

where . /n ¡ 1=2 is the value for ( ) midway between times tn ¡ 1 and
tn . Using Eq. (72) in Eq. (71) and applying the Eq. (67) de� nition
then obtains

»n ¼ ½Z N
n ¡ 1

2

uN
Z N Tn C FC

n ¡ 1
2

uN
Z N £

j

m D 1

1RN
m (73)

where Tn is the computern cycleupdateperiod tn – tn ¡ 1. The . /n ¡ 1=2

terms in Eq. (73) are all functions of position, which has not yet
beenupdated.Hence, to calculatethe . /n ¡ 1=2 terms, an approximate
extrapolation formula must be used based on previously computed
values for the ( ) parameters. For example, a linear extrapolation
formula using the last two computed values for ( ) would be

. /n ¡ 1
2

¼ . /n ¡ 1 C 1
2
[. /n ¡ 1 ¡ . /n ¡ 2] D 3

2
. /n ¡ 1 ¡ 1

2
. /n ¡ 2 (74)

The method for calculating the 1RN
m term for Eqs. (66) and (73)

from the Eq. (67) integral depends on whether typical trapezoidal
integration is used for position updating or whether a more pre-
cise high-resolution integration approach is to be applied. Both are
described in the following sections.

B. Typical Position Updating
Applying typical trapezoidal integration for the h and C E

N updat-
ing process would utilize Eqs. (64), (66), (68), (70), (73), and (74)
with a trapezoidal integration algorithm in Eq. (67) for 1RN

m :

1RN
m ¼ 1

2
vN

m C vN
m ¡ 1 Tm (75)

C. High-Resolution Position Updating
The high-resolution approach for implementing the h and C E

N
updating process utilizes Eqs. (64), (66), (68), (70), (73), and (74)
with a high-speeddigital integrationalgorithm in Eq. (67) for 1RN

m .
The digital algorithm for 1RN

m is developed by � rst expanding the
Eq. (67) vN integrand. Using the expression for vN

m in Eq. (4) with

Eq. (6), vN can be de� ned as a continuoustime function at a general
time point since the last tm ¡ 1 update:

vN .t/ D vN
m ¡ 1 C C N

L 1vL
SF.t/ C 1vN

G=Corm

.t ¡ tm ¡ 1/

Tm
(76)

1vL
SF.t/ D

t

tm ¡ 1

C L
B aB

SF d¿

Equations (76) are based on the assumption that gravity/Coriolis
term 1vN

G=Corm
can be approximated as the integral of a constant

over tm¡1 to tm . With Eq. (76), 1RN
m from Eq. (67) is given by

1RN
m D vN

m ¡ 1 C 1
2 1vN

G=Corm
Tm C C N

L 1RL
SFm

(77)

1RL
SFm

D
tm

tm ¡ 1

1vL
SF.t/ dt ; 1vL

SF.t/ D
t

tm ¡ 1

C L
B aB

SF d¿

where 1RL
SFm

is the L frame coordinate portion of 1RN
m produced

by speci� c force.
Equations (11), (13), and (36) show that 1vL

SF.t/ in Eq. (77) can
be approximated to � rst order (in body rotation angle) by

1vL
SF.t/ D C

L .t /
L.n ¡ 1/

1v
L .n ¡ 1/

SF .t/ D C
L .t/
L .m ¡ 1/

C
L .m ¡ 1/

L .n ¡ 1/
1v

L .n ¡ 1/

SF .t/

D C
L .t /
L.m ¡ 1/

¡ I C
L .m ¡ 1/

L .n ¡ 1/
1v

L .n ¡ 1/

SF .t/ C C
L .m ¡ 1/

L .n ¡ 1/
1v

L .n ¡ 1/

SF .t/

D C
L .m /

L.m ¡ 1/
¡ I

.t ¡ tm ¡ 1/

Tm
C

L .m ¡ 1/

L .n ¡ 1/
1v

L.n ¡ 1/

SFm

.t ¡ tm ¡ 1/

Tm

C C
L.m ¡ 1/

L .n ¡ 1/
1v

L .n ¡ 1/

SF .t/

D C
L .m /

L.m ¡ 1/
¡ I C

L .m ¡ 1/

L .n ¡ 1/
1v

L .n ¡ 1/

SFm

.t ¡ tm ¡ 1/2

T 2
m

C C
L.m ¡ 1/

L .n ¡ 1/
1v

L .n ¡ 1/

SF .t/
(78)

D C
L .m /

L.n ¡ 1/
¡ C

L .m ¡ 1/

L.n ¡ 1/
1v

L .n ¡ 1/

SFm

.t ¡ tm ¡ 1/2

T 2
m

C C
L.m ¡ 1/

L .n ¡ 1/
1v

L .n ¡ 1/

SF .t/

1v
L .n ¡ 1/

SF .t/ D C
L .n ¡ 1/

B.m ¡ 1/
1v

B.m ¡ 1/

SF .t/

1v
B.m ¡ 1/

SF .t/ D À.t/ C 1

2
®.t/ £ À.t/

C
1

2

t

tm ¡ 1

®.¿ / £ aB
SF C À.¿/ £ !B

I B d¿

®.¿ / D
¿

tm ¡ 1

!B
I B dt; À.¿ / D

¿

tm ¡ 1

aB
SF dt

where

C
L .n ¡ 1/

B.m ¡ 1/
= C L

B matrix updated for B frame motion at
time tm ¡ 1 and for L frame motion at
time tn ¡ 1

C
L .m /

L.n ¡ 1/
; C

L .m ¡ 1/

L.n ¡ 1/
= current and past m cycle values for the

direction cosine matrix relating frame L at
times tn ¡ 1 and tm as calculated from
Eq. (14)

In Eq. (78), the I notation in subscripts and superscripts, used for
clarity in Eqs. (11) and (13), has been dropped for simplicity. In ad-
dition, .C

L .t/
L .m ¡ 1/

¡ I/ and 1v
L .n ¡ 1/

SF .t/ in the � rst part of the 1vL
SF.t/

expression have been approximated to be linearly ramping in time
over tm ¡ 1 to tm . Note also, as in Sec. III.B.1, that the C L

L .n ¡ 1/
terms

in Eq. (78) can be approximated by the identity matrix for all but
very high-precision applications. Based on Eq. (78) and including
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Eq. (14), the 1RL
SFm

term in Eq. (77) can be de� ned by the equivalent
forms

1RL
SFm

D ¡1

3
[.³n ¡ 1;m ¡ ³n ¡ 1;m ¡ 1/£]1v

L .n ¡ 1/

SFm
Tm

C C
L .m ¡ 1/

L.n ¡ 1/
C

L .n ¡ 1/

B.m ¡ 1/
1RB

SFm
(79)

1RB
SFm

D
tm

tm ¡ 1

1v
B.m ¡ 1/

SF .t/ dt

D
tm

tm ¡ 1

À.t/ C 1

2
®.t/ £ À.t/ C 1vscul.t/ dt

with 1vscul.t/; ®.t/, and À.t/ from sculling Eq. (38).
Following a similar development path as used in Sec. III.B.2 for

the body frame integrated speci� c force increment, the 1
2 .®.t/ £

À.t// dt term in the Eq. (79) 1RB
SFm

expressioncan be revised into a
nonintegral term plus an integral term that vanishes under constant
angular rate/speci� c force, both being of � rst-order accuracy. The
nonintegral term will then be extended into a more accurate form
that is exact under constant angular rate/speci� c force conditions.
We begin by using classical integration by parts substitution [as in
Sec. III.B.2 leadingto Eq. (35)] to show that the 1

2 .®.t/£À.t// dt
term in Eq. (79) has the following equivalent forms:

r0 D
tm

tm ¡ 1

1

2
®.t/ £ À.t/ dt

r1 D
tm

tm ¡ 1

1

2
®.t/ £ À.t/ dt

D 1

2
S®m £ Àm ¡ 1

2

tm

tm ¡ 1

S®.t/ £ aB
SF dt

r2 D
tm

tm ¡ 1

1

2
®.t/ £ À.t/ dt

(80)

D
1

2
®m £ SÀm C

1

2

tm

tm ¡ 1

SÀ.t/ £ !B
I B dt

S®.t/ D
t

tm ¡ 1

®.¿ / dt; SÀ .t/ D
t

tm ¡ 1

À.¿ / d¿

®m D ®.tm /; Àm D À.tm/

S®m D S®.tm/; SÀm D SÀ .tm /

where S® and SÀ are time integrals of ® and À.
Because r1 and r2 are analytically equivalent to the original inte-

gral form r0 , we can write
tm

tm ¡ 1

1

2
®.t/ £ À.t/ dt D

1

3
.r0 C r1 C r2/ (81)

Substituting for r0, r1 and r2 from Eq. (80) into Eq. (81) and com-
bining terms then yields

tm

tm ¡ 1

1

2
®.t/ £ À.t/ dt D 1

6
S®m £ Àm C ®m £ SÀm

¡ 1

6

tm

tm ¡ 1

S®.t/ £ aB
SF ¡ SÀ.t/ £ !B

I B ¡ ®.t/ £ À.t/ dt (82)

We now substitute Eq. (82) with the Eq. (80) de� nitions into
Eqs. (77) and (79) to obtain the desired form for calculating 1RN

m :

1RN
m D vN

m ¡ 1 C 1
2 1vN

G=Corm
Tm C C N

L 1RL
SFm

1RL
SFm

D ¡ 1
3 [.³n ¡ 1;m ¡ ³n ¡ 1;m ¡ 1/£]1v

L .n ¡ 1/

SFm
Tm (83)

C C
L .m ¡ 1/

L.n ¡ 1/
C

L .n ¡ 1/

B.m ¡ 1/
1RB

SFm

1RB
SFm

D SÀm C 1Rrotm C 1Rscrlm (84)

1Rscrlm D
1

6

tm

tm ¡ 1

61vscul.t/ ¡ S® .t/ £ aB
SF

C SÀ .t/ £ !B
I B C ®.t/ £ À.t/ dt (85)

with 1vscul.t/; ®.t/; À.t/; ®m; and Àm from sculling equation (38)
and

S®.t/ D
t

tm ¡ 1

®.¿/ d¿; S®m D S®.tm /

SÀ .t/ D
t

tm ¡ 1

À.¿ / d¿; SÀm D SÀ.tm/ (86)

1Rrotm D 1
6

S®m £ Àm C ®m £ SÀm

where 1Rrotm is positionrotationcompensationanalogousto the ve-
locity rotationcompensationterm in Eqs. (37) and (39), and 1Rscrlm
is the scrolling term analogous to the sculling term in Eqs. (37) and
(38). The term scrolling was coined by the writer merely to have a
name for the term and also to have one that sounds like sculling but
for position integration (change in the position vector R stressing
the R sound). The complex mathematicalderivationsand associated
algorithmsthat accompanyscrollingmay be a more appropriaterea-
son for the name.

A key characteristicof Eq. (84) is that the 1Rscrlm scrolling term
from Eq. (85) is identically zero under constant body axis angular
rate and speci� c force conditions.This can be readily veri� ed from
Eq. (85) by substituting a constant angular rate and speci� c force
vector for the !B

I B and aB
SF terms and carrying out the indicated op-

erations analytically. As such, 1Rscrlm will only produce an output
under the presenceof dynamic body axis angular rate/speci� c force
components. This is an important characteristic because, for most
real dynamic environments, the magnitude of high-frequency an-
gular rate/speci� c force is small so that � rst-order approximations
accurately apply (� rst order in integratedbody angular rate/speci� c
force over the tm ¡ 1 to tm time interval). We conclude that the analyt-
ical form for 1Rscrlm will also yield a reasonably accurate solution
under situations where the low-frequency body angular rate and
speci� c force components are large.

The Eq. (86) � rst-orderversionof positionrotationcompensation
1Rrotm can have noticeable second-order error under extreme ma-
neuvers. The form of Eq. (84) that has 1Rrotm separate from other
terms allows us to expand 1Rrotm to a more accurate form that is
exact under constant angular rate/speci� c force (as in the � rst sub-
section of Sec. III.B.2 for the velocity rotationcompensation term).
The following sections develop algorithms for the exact position
rotation compensation term in Eq. (84) and for the scrolling and
other integral terms in Eq. (85).

1. Exact Position Rotation Compensation
An improvedaccuracyversionof 1Rrotm for Eq. (84) is developed

by specifying the solution to be exact under constant body angular
rate/speci� c force but to � rst order, to also equal 1Rrotm in Eq. (86)
under general angular rate/speci� c force conditions.The derivation
begins by returning to the basic de� nition for 1RB

SFm
in Eq. (79):

1RB
SFm

D
tm

tm ¡ 1

1v
B.m ¡ 1/

SF .t/ dt (87)

As with Eqs. (42) and (44), we now use the exact de� nition for
1v

B.m ¡ 1/

SF .t/ in Eq. (87) based on constant B frame speci� c force
and nonconing angular rate

1RB
SFm

D
tm

tm ¡ 1

t

tm ¡ 1

aB
SF d¿ dt

C u! £ aB
SF

tm

tm ¡ 1

t

tm ¡ 1

sin ®.¿ / d¿ dt

C u! £ u! £ aB
SF

tm

tm ¡ 1

t

tm ¡ 1

1 ¡ cos ®.¿ / d¿ dt (88)
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For constant B frame angular rate (vector directionand magnitude),
as in Eq. (47), the integral terms in Eq. (88) can be evaluated for
constant B frame angular rate as

tm

tm ¡ 1

t

tm ¡ 1

sin ®.¿/ d¿ dt D
1

!2
.®m ¡ sin ®m/

(89)
tm

tm ¡ 1

t

tm ¡ 1

1 ¡ cos ®.¿ / d¿ dt D
1

!2

1

2
®2

m ¡ .1 ¡ cos®m/

From Eq. (47) we can also write

! D ®m =Tm (90)

so that Eq. (89) for constant B frame angular rate becomes

tm

tm ¡ 1

t

tm ¡ 1

sin ®.¿ / d¿ dt D
T 2

m

®m
1 ¡ sin ®m

®m

(91)
tm

tm ¡ 1

t

tm ¡ 1

1 ¡ cos ®.¿ / d¿ dt D T 2
m

1

2
¡ .1 ¡ cos ®m /

®2
m

Applying Eq. (91) in Eq. (88) then obtains for constant B frame
angular rate and speci� c force:

1RB
SFm

D
tm

tm ¡ 1

t

tm ¡ 1

aB
SF d¿ dt C u! £ aB

SF

T 2
m

®m
1 ¡ sin ®m

®m

C u! £ u! £ aB
SF T 2

m

1
2

¡ .1 ¡ cos ®m /

®2
m

(92)

Equation (92) can be further re� ned by substitution of SÀm as de-
� ned in Eq. (85) for the double integral, applicationof the Eq. (45)
de� nitions for appropriate terms, and factorization:

1RB
SFm

D SÀm C 1
®2

m

1 ¡ sin ®m

®m
I

C 1
®2

m

1
2

¡ .1 ¡ cos ®m /

®2
m

.®m £/ .®m £ Àm /Tm (93)

The .®m £ Àm /Tm term in Eq. (93) can be expressed in an alter-
native form through the following development. Using appropriate
de� nitions from Eq. (85), we � nd for constant B frame angular rate
and speci� c force that

SÀm D
tm

tm ¡ 1

t

tm ¡ 1

aB
SF d¿ dt D aB

SF

tm

tm ¡ 1

t

tm ¡ 1

d¿ dt

D 1

2
aB

SFT 2
m D 1

2
Àm Tm

(94)

S®m D
tm

tm ¡ 1

t

tm ¡ 1

!B
I B d¿ dt D !B

I B

tm

tm ¡ 1

t

tm ¡ 1

d¿ dt

D 1

2
!B

I B T 2
m D 1

2
®m Tm

From Eq. (94)we thencanshowthat .®m £Àm /Tm under theEq. (93)
constant B frameangularrate speci� c forceconditionis equivalently

.®m £ Àm /Tm D S®m £ Àm C ®m C SÀm (95)

We then substitute Eq. (95) for .®m £ Àm /Tm in Eq. (93) to obtain
for constant B frame angular rate and speci� c force

1RB
SFm

D SÀm C 1

®2
m

1 ¡ sin ®m

®m
I

C 1

®2
m

1

2
¡

.1 ¡ cos ®m /

®2
m

.®m £/ S®m £ Àm C ®m £ SÀm

(96)

Equation (96) is now in a formforde� ning theexactpositionrotation
compensation term by comparison with Eq. (84) for 1RB

SFm
. Under

the conditions of constant B frame angular rate and speci� c force,
the 1Rscrlm term in Eq. (84) is zero,and1RB

SFm
with Eq. (86) reduces

to

1RB
SFm

D SÀm C 1Rrotm ; 1Rrotm D 1
6 S®m £ Àm C ®m £ SÀm

(97)

We also note thatby applyingTaylor series expansionto the trigono-
metric terms [as shown subsequently in Eq. (99)] Eq. (96) to � rst
order is given by

1RB
SFm

D SÀm C 1
6 S®m £ Àm C ®m £ SÀm (98)

Finally,we compareEq. (96) and itsEq. (98) � rst-orderversionwith
Eq. (97) to deduce the sought-afterexact position rotation compen-
sation algorithm. Including trigonometric expansion formulas, the
result is

1Rrotm D 1

®2
m

1 ¡ sin ®m

®m
I

C 1

®2
m

1

2
¡ .1 ¡ cos ®m /

®2
m

.®m£/ S®m £ Àm C ®m £ SÀm

(99)

1

®2
m

1 ¡ sin ®m

®m
D 1

3!
¡ ®2

m

5!
C ®4

m

7!
¡ ¢ ¢ ¢

1
®2

m

1
2

¡ .1 ¡ cos ®m /

®2
m

D 1
4!

¡
®2

m

6!
C

®4
m

8!
¡ ¢ ¢ ¢

Equations(99) can be utilizedin Eq. (84) in placeof1Rrotm fromEq.
(86) to obtain the equivalent higher-order equation for 1RB

SFm
that

is exact under constant body angular rate/speci� c force conditions.

2. Scrolling and Other Integral Term Increments
The computer algorithms used to implement the integration op-

erations in Eq. (85) are executed at high computer repetition rate,
i.e., the sculling l cycle rate, within the positionupdate m cycle.The
À.t/; Àm ; ®.t/, and ®m integral terms in Eq. (85) are provided by
Eqs. (54) and (55). The remaining integral terms in Eq. (85) can be
rewritten to re� ect the high-speed computing cycle as follows:

S®.t/ D S®l ¡ 1 C 1S®.t/

1S®.t/ D
t

tl ¡ 1

®.¿ / d¿; 1S®l D 1S®.tl /

S®l D S®l ¡ 1 C 1S®l ; S®m D S®l .tl D tm /

S®l D 0 at t D tm ¡ 1
(100)

SÀ.t/ D SÀl ¡ 1 C 1SÀ .t/

1SÀ .t/ D
t

tl ¡ 1

À.¿ / d¿; 1SÀl D 1SÀ .tl /

SÀl D SÀl ¡ 1 C 1SÀl ; SÀm D SÀl .tl D tm /

SÀl D 0 at t D tm ¡ 1
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1Rscrll D 1Rscrll ¡ 1 C ±Rscrll ; 1Rscrlm D 1Rscrll .t D tm /

1Rscrll D 0 at t D tm ¡ 1

±Rscrll D 1
6

tl

tl ¡ 1

6 1vscul.t/ ¡ S®.t/ £ aB
SF.t/

(101)

C SÀ .t/ £ !B
I B .t/ C ®.t/ £ À.t/ dt

1vscul.t/ D 1vscull ¡ 1 C ±vscul.t/

1vscull D 1vscul.tl /; 1vscull D 0 at t D tm ¡ 1

with ±vscul.t/ from sculling equation (56).
As in the secondsubsectionofSec. III.B.2 for thevelocitysculling

algorithm and other integral terms, algorithms can be designed for
the integral terms in Eqs. (100) and (101) to be analytically exact
under assumed forms of the angular rate and speci� c force pro-
� le within the l cycle. Coef� cients for the angular rate/speci� c
force pro� les are then determined from sequential integrated an-
gular rate/speci� c force increments taken at the l cycle rate (or,
alternatively, at a higher-speed sensor sampling rate within the l
cycle). As an example of the l cycle sensor sampling method, Ref.
8, Sec. 7.3.3.1.2, develops algorithms for the Eqs. (100) and (101)
integral terms based on generalized linearly ramping angular rate
and speci� c force conditions.The overall results are given by

1®l ; ®l D integrated angular rate sensor outputs
from Ref. 1, Eqs. (46)

(102)
1®l ; Àl D integrated accelerometer outputs

from algorithm Eqs. (61)

1S®l D ®l ¡ 1Tl C .Tl=12/.5 1®l C 1®l ¡ 1/

S®l D S®l ¡ 1 C 1S®l ; S®m D S®l .tl D tm/ (103)

S®l D 0 at t D tm ¡ 1

1SB
Àl

D ÀB
l ¡ 1Tl C .Tl=12/ 5 1ÀB

l C 1ÀB
l ¡ 1

SÀl D SÀl ¡ 1 C 1SÀl ; SÀm D SÀl .tl D tm / (104)

SÀl D 0 at t D tm ¡ 1

1Rscrll D 1Rscrll ¡ 1 C ±RscrlAl C ±RscrlBl

±RscrlAl D 1vscull ¡ 1 Tl

C 1
2 ®l ¡ 1 ¡ 1

12 .1®l ¡ 1®l ¡ 1/ £ 1SÀl ¡ Àl ¡ 1Tl

C 1
2

Àl ¡ 1 ¡ 1
12

1Àl ¡ 1Àl ¡ 1 £ 1S®l ¡ ®l ¡ 1Tl

±RscrlBl D 1
6

SÀl ¡ 1 C .Tl=24/.1Àl ¡ 1Àl ¡ 1/ £ 1®l (105)

¡ 1
6 S®l ¡ 1 C .Tl=24/.1®l ¡ 1®l ¡ 1/ £ 1Àl

C .Tl=6/ ®l ¡ 1 ¡ 1
6 .1®l ¡ 1®l ¡ 1/

£ Àl ¡ 1 ¡ 1
6 .1Àl ¡ 1Àl ¡ 1/

¡ .Tl=2160/.1®l ¡ 1®l ¡ 1/ £ .1Àl ¡ 1Àl ¡ 1/

1Rscrlm D 1Rscrll .tl D tm /; 1Rscrll D 0 at t D tm ¡ 1

with 1vscull ¡ 1 from the Eq. (61) sculling algorithm and where

±RscrlAl = portion of ±Rscrll produced by the ±vB
scul

sculling term
±RscrlBl = portion of ±Rscrll produced by all but the ±vB

scul
sculling term

Tl = high-speed computer update time interval tl – tl ¡ 1

Equations (105) can be classi� ed as a second-orderalgorithmfor
±Rscrll because they include current and past cycle 1®l , 1Àl prod-
ucts. If the angular rate/speci� c force pro� le was approximated as
constant over two successive l cycles, the .1®l ¡ 1®l ¡ 1/ and
.1Àl ¡ 1Àl ¡ 1/ terms in Eq. (105) would vanish, resulting in a
� rst-order ±Rscrll algorithm. Under conditions where the angular
rate and speci� c force can be approximatedas constant, i.e., slowly
varying over an m cycle, 1Rscrll in Eq. (105) is approximately zero
and the 1Rscrll ; ±RscrlAl ; ±RscrlBl calculations in Eq. (105) can be
deleted.Alternatively (and more accurately), for slowly varying an-
gular rate and speci� c force, one l cycle of Eq. (105) can be ex-
ecuted each m cycle, noting from the initial condition de� nitions
that ®l ¡ 1; Àl ¡ 1; S®l ¡ 1 , and SÀl ¡ 1 are zero. As noted in the second
subsection of Sec. III.B.2, setting the l and m rates equal can also
be achieved by increasing the m rate to match the l rate. The result
would be a single high-speed, higher-order algorithm with a sim-
pler softwarearchitecturethan the two-speedapproachbut requiring
more throughput.Continuing advances in the speed of modern-day
computers may make this the preferred approach for the future.

V. Velocity/Position Integration Algorithm Summary
Table 1 is a summary of the algorithms described for the strap-

down inertialnavigationvelocity/positionintegrationfunctionlisted
in the order that they would be executed in the navigationcomputer.
Note in Table 1 that the normal speedattitudecalculationfollows the
normal speed position calculation, in contrast to Table 1 of Ref. 1,
which calculates attitude before position. Having the attitude fol-
low the position calculation allows the high-resolution 1RN

m from
Eq. (77) to be used in Ref. 1, Eq. (53), rather than the less-accurate
Ref. 1, Eq. (56), trapezoidal algorithm form of 1RN

m .

VI. Algorithm and Execution Rate Selection
SectionVI of Part 1 (Ref. 1) discussesthe generalprocessof algo-

rithm selection for a given applicationwith requiredexecutionrates
to achieve speci� ed accuracy goals. A principal part of this process
involves estimating the algorithm error under anticipated angular
rate/speci� c force maneuvers/vibrations compared with speci� ed
error budget requirements. Evaluation of candidate algorithm error
characteristics is generally performed using computerized time do-
main simulatorsthat exercisethealgorithms,in particulargroupings,
at their selected repetitionrates. The simulatorsgenerate strapdown
inertial sensor angular rate/speci� c force pro� les for algorithm test
input together with known navigationparameter solutions for algo-
rithm output comparison, e.g., Ref. 8, Secs. 11.2.1–11.2.4.

For the two-speedvelocity/positionupdatingapproachdescribed,
the repetition rate for the moderate speed (m cycle) algorithms
would typicallybe selectedbasedon maximumangular rate/speci� c
force considerations to minimize power series truncation error in
the moderate- and high-speed algorithms. The repetition rate for
the high-speed (l cycle) algorithms would typically be selected
based on the anticipated strapdown inertial sensor assembly vi-
bration environment to accurately account for vibration induced
sculling/scrolling effects.

For thevelocityalgorithms,simpli� ed analyticalerrormodelscan
also be used to predicthigh-speedscullingalgorithmerror under se-
lected scullingrates/amplitudesas a functionof algorithmrepetition
rate (Refs. 5–7 and 8, Chap. 10). The sculling rates/amplitudesmust
be derived either from empirical data or, more commonly, from an-
alytical models of the sensor assembly mount imbalance and its
response to external input vibration at particular frequencies (Ref.
8, Chap. 10). Frequency-domainsimulators can be used to evaluate
high-speed sculling algorithm error under speci� ed input vibration
power spectral density pro� les and sensor assembly mount imbal-
ance as a functionof algorithmrepetitionrate (Ref. 8, Chap. 10). For
example, the sculling algorithm described by Eqs. (59–61) can be
shown by such simulators to have an error of 0:044 ¹g when oper-
ated at a 2-kHz repetitionrate under exposure to 7.6 g rms wideband
random linear input vibration (� at 0.04 g2/Hz density from 20 to
1000 Hz, then decreasing logarithmically to 0.01 g2/Hz at 2000
Hz). The linear vibration generates a multiaxis 3.6 g/0.00038 rad
rms speci� c force/angular oscillationof the sensor assembly with a
correspondingrecti� ed sculling accelerationof 1300 ¹g due to the
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Table 1 Summary of strapdown INS velocity/position computation algorithms

Algorithm function Input Output Equation number

High-speed calculations
Integrated B frame angular rate increments —— ®l ; ®m Ref. 1, Table 1
Integrated B frame speci� c force increments 1Àl Àl ; Àm (55) or (60)
Sculling increment 1®l ; ®l ; 1Àl ; Àl 1vscull ; 1vsculm (56) or (61)
Doubly integrated B frame angular rate and 1®l ; ®l 1S®l ; S®l (100) or

speci� c force increments (for high-resolution 1Àl ; Àl S®m ; 1SÀl (103), (104)
position algorithm) SÀl ; SÀm

Scrolling increment (for high-resolution position 1®l ; ®l ; 1S®l ; S®l 1Rscrlm (101) or (105)
algorithm) 1Àl ; Àl ; 1SÀl ; SÀl ; 1vscull

Normal-speed calculations for Earth-related parameters
N frame plumb-bob gravity components C E

N ; h gN
P Ref. 1, Eq. (19)

N frame Earth rate components C E
N !N

I E
(2)

Vertical transport rate component C E
N ½Z N Ref. 8, Sec. 4.6

Curvature matrix C E
N ; h FC Ref. 8, Sec. 5.1.3

Normal-speed velocity calculations
B frame velocity rotation compensation (exact formulation) ®m ; Àm 1vrotm (51), (52)
B frame velocity rotation compensation ®m ; Àm 1vrotm (39)

(� rst-order approximation form)

B frame integrated speci� c force increment Àm ; 1vrotm ; 1vsculm 1v
B I.m ¡ 1/

SFm
(37)

L frame integrated speci� c force increment 1v
BI.m ¡ 1/

SFm
; C

L I.n ¡ 1/

B I.m ¡ 1/
1v

L I.n ¡ 1/

SFm
(11)

L frame rotation vector (cycle n ¡ 1 to m) !N
I E ; ½Z N ; FC ; vN ³n ¡ 1;m (17), (19), (20)

L frame rotation matrix (� rst-order form) ³n ¡ 1;m C
L I.m/

L I.n ¡ 1/

(14)

L frame rotation compensation 1v
L I.n ¡ 1/

SFm
; C

L I.m/

L I.n ¡ 1/
1vL

SFm
(13)

Integrated Coriolis acceleration and plumb-bob gN
P ; !N

I E 1vN
G=Corm

(7), (8), (9)
gravity increment ½Z N ; FC ; vN

N frame velocity update 1vL
SFm

; 1vN
G=Corm

, vN
m ¡ 1 vN

m (4)

Normal-speed position calculations
Position rotation compensation (high-resolution ®m ; S®m 1Rrotm (99)

position algorithm, exact form) Àm ; SÀm

Position rotation compensation (high-resolution ®m ; S®m 1Rrotm (86)
position algorithm, � rst-order accuracy form) Àm ; SÀm

Body frame position increment due to speci� c SÀm ; 1Rrotm 1RB
SFm

(84)
force (high-resolution position algorithm) 1Rscrlm

N frame position increment (high-resolution 1RB
SFm

; vN
m ¡ 1 1RN

m (83)
position algorithm)

1vN
G=Corm

; 1v
L .n ¡ 1/

SFm

C
L .n ¡ 1/

B.m ¡ 1/
; ³n ¡ 1;m ; C

L .m ¡ 1/

L .n ¡ 1/

N frame position increment (trapezoidal vN
m 1RN

m (75)
position algorithm)

Altitude change 1RN
m 1hn (66)

Position rotation vector ½Z N ; FC ; 1RN
m »n (73)

Position rotation change matrix »n C
NE.n/

NE.n ¡ 1/

(70)

Altitude update hn ¡ 1; 1hn hn (64)

Position direction cosine matrix update CE
NE.n ¡ 1/

; C
NE.n ¡ 1/

NE.n/

C E
NE.n/

(68)

Normal-speed attitude calculations
Attitude direction cosine matrix update —— CL

B Ref. 1, Table 1

following typical sensor assembly mount characteristicsselectedas
simulator input parameters:50-Hz linear vibrationmode undamped
naturalfrequency,0.125 linearvibrationmode dampingratio,71-Hz
rotary vibration mode undamped natural frequency, 0.18 rotary vi-
bration mode damping ratio, 5% sensor assembly mount/isolator
spring/damping imbalance, and 1.4% sensor assembly center of
mass offset from isolator/mount center of force (percent of distance
between isolators).

The capabilitiesofmodern-daycomputersand INS software tech-
nology make it reasonable to specify that the navigation algorithm
error be no greater than 5% of the equivalent error produced by
the INS inertial sensors (whose cost increases dramatically with
accuracy demands). For an INS with a 40-¹g accelerometer bias
accuracy requirement (typical for an aircraft INS having 2–3 fps 1¾
velocity accuracy), the 0.044-¹g sculling algorithm error is almost
two orders of magnitudewithin the 5% allowance, providinga wide
design margin for the algorithm2-kHz repetition rate selection.For
this case, a 1-kHz sculling algorithm rate would probably be more
appropriate; however, 2 kHz might still be utilized for compatibil-

ity with the 2-kHz rate selected for the coning algorithm in Part 1
(Ref. 1) under the same conditions.

In the case of the positioning algorithms, the typical form pre-
sented in Sec. IV.B is usually adequatefor almost all applications(to
date). For the exceptionalcaseswhere very high-resolutionposition
updating is required, the time interval for the accuracy requirement
is usually restricted to brief periods during the application mission
pro� le. Moreover, for some of these applications, postprocessing
is acceptable using data recorded during the high-resolution time
interval; hence, the complexity of the high-resolution algorithms
would not be a real-time computer throughput issue. For exam-
ple, for synthetic aperture radar (SAR) motion compensation,high-
resolution position data are required for only brief intervals, e.g.,
5–10 s, during SAR data acquisition, which may then be subse-
quently processed for SAR image formation. We also note that, in
high-resolution applications, the Earth-referenced position of the
INS chassis/mount is usually the required output, which equals the
sum of Earth-referenced inertial sensor assembly position (calcu-
lated by the inertial navigation algorithms) plus vibration/speci� c
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force induced displacement of the sensor assembly relative to the
INS chassis/mount (due to compliance of elastomeric isolators that
interfacethe sensorassemblyto theINS chassis). The latterdisplace-
ment can be computed under dynamic maneuvers by quasistatic
� exure modeling, i.e., displacement equals average speci� c force
times the square of the sensor assembly/isolator undamped natural
frequency, and by appropriate digital � ltering of vibration-induced
jitter (Ref. 8, Chap. 9). Note that, in principle, the displacement can
also be measured directly using specially installed sensing devices.

As an exampleof the inertialnavigationpositionintegrationalgo-
rithm selectionprocess, let us considera high-resolutionapplication
with an overall INS requirement for positionerror � uctuations to be
signi� cantly less than 1 cm during 5–10 s periods (not unusual for
applicationswhere the actual requirement is a function of error fre-
quency contentand not clearly known). Allowing design margin for
error in the sensor assembly to chassis/mount � exure displacement
calculation (described in the preceding paragraph), we budget the
INS accuracy speci� cation into a requirement for the position algo-
rithm to have less than 0.01-cm dynamic position error � uctuation
during 5–10 s. Let us further assume for this example that the basic
position algorithm update rate has been selected to be 50 Hz and
that the selected inertial velocity algorithm accuracy is compatible
with high-resolutionposition updating requirements, e.g., includes
high-rate sculling. Simpli� ed pencil-and-paperanalysis of the typ-
ical form equation (75) position algorithm (or other versions) can
be used to assess its accuracy at 50 Hz using the high-resolution
algorithm to represent the correct truth model. An analyticalmodel
for the high-resolution1RB

SFm
increment truth model can be derived

using Eq. (25) for 1vB
SF in Eq. (79):

1RB
SFm

D
tm

tm ¡ 1

1vB
SF.¿ / dt

(106)

1vB
SF.¿ / D

¿

tm ¡ 1

I C ®.t/ £ aB
SF dt

Neglectingthe small L frame rotationeffect, it can be shown that po-
sition updatingbased on the Eq. (75) typical algorithmis equivalent
to Eq. (79) with 1RB

SFm
replacedby the typical algorithmequivalent

1RB
SF=typm

given by

1RB
SF=typm

D 1
2 1vB

SFm
Tm ; 1vB

SFm
D 1vB

SF.tm / (107)

For the Eq. (58) linearly ramping speci� c force/angular rate model
in Eqs. (106) and (107), the position increments for the truth model
1RB

SFm
and for the typical algorithm 1RB

SF=typm
become

1RB
SFm

D 1
2 CT 2

m C 1
6 .D C A £ C/T 3

m

C 1
12 A £ D C 1

2 B £ C T 4
m C 1

40 B £ DT 5
m

(108)
1RB

SF=typm
D 1

2
CT 2

m C 1
4

D C A £ C T 3
m

C 1
6 A £ D C 1

2 B £ C T 4
m C 1

16 B £ DT 5
m

Comparing 1RB
SF=typm

with the 1RB
SFm

truth model in Eq. (108)
allows the error in 1RB

SF=typm
to be assessed for selected maneu-

ver values. Under a constant C speci� c force maneuver, 1RB
SF=typm

equals 1RB
SFm

and, hence, is error free. For D D 3 g/s or for C D 3 g
with A D 1 rad/s, the calculated error in 1RB

SF=typm
(using Tm D

0:02 s for the 50-Hz update rate) is 0.00196 cm or 50 £ 0:00196 D
0:098 cm in 1 s. Compared with the 0.01 cm in 5–10 s requirement,
the 0.098 cm in 1 s � gure would be considered unacceptable.

Position algorithm assessment under vibration can also be ana-
lytically estimated. For example, for the 3.6 g rms sensor assembly
vibration (in the preceding sculling example), the associated veloc-
ity vibration is 11.2 cm/s rms centered around the sensor assembly
50-Hz mount resonance (which would be accurately measured by
the hypothesizedvelocity algorithm). The aliasing error associated
with sampling the vibrating velocity at 50 Hz for the Eq. (75) al-

gorithm can produce a 11:2 £ 0:02 D 0:22 cm error each position
update. If the error is random per update, the total cumulative error
in 1 s (50 updates) would be 0:22 £

p
50 D 1:6 cm; if the error is

systematic, the position error in 1 s would be 0:22 £ 50 D 11:2 cm.
In either case, the algorithm error greatly exceeds the 0.01 cm over
5–10 s requirement.

Based on such analyses, let us assume we have elected to use
the Eqs. (83) and (84) high-resolutionposition algorithm to assure
5–10 s, 0.01-cmhigh-qualityresolution.The next question is which
terms in Eq. (84) are to be included. The SÀm term in Eq. (84) is
the dominant term for integratingvelocity into positionand must be
included. Under a 3-g constant speci� c force maneuver, SÀm from
Eq. (85) equals 0.59 cm per 50-Hz position update cycle or 29.4
cm in 1 s. The next most important term is the 1Rrotm position
rotation compensation term. Using Eq. (86) with Eq. (85) input,
the magnitude of 1Rrotm under a constant 3 g/1 rad/s maneuver is
0.0039 cm per update cycle or 0.20-cm cumulative position change
in 1 s. (Note, for a 3-g/s linearly ramping speci� c force, SÀm also
equals 0.0039 cm per cycle and sums to 0.20 cm in 1 s.) For the
0.01 cm over 5–10 s requirement, the 1Rrotm term is, therefore,also
needed. The question of whether to include the 1Rscrlm term can
be addressedby analyzing the magnitude of 1Rscrlm under dynamic
vibration motion using a rearranged version of Eq. (84):

1Rscrlm D 1RB
SFm

¡ SÀm ¡ 1Rrotm (109)

Consider the 3.6-g rms vibration condition under 1-rad/s constant
angular rate. For a 3.6-g rms pure sine wave, i.e., 3:6 £

p
2 D 5:1-g

amplitude, at the 50-Hz isolator resonance frequency, the magni-
tudes of SÀm and Àm over 0.02 s are, from Eqs. (85), 0.32 cm and
0 cm/s, respectively.For the 1 rad/s rate over 0.02 s, ®m is 0.02 rad.
Thus, from Eq. (86), 1Rrotm is (0.32 £ 0.02)/6 D 0.0011 cm, which,
if systematic, accumulates in 1 s to 0:0011 £ 50 D 0:053 cm. If
random from cycle to cycle, the error accumulationover 10 s would
be 0:0011 £

p
.50 £ 10/ D 0:024 cm. The true solution 1RB

SFm
for

this particularcase can be demonstratedby analytical integrationof
Eq. (106) to be 1RB

SFm
D SÀm . Thus, from Eq. (109) and the latter

1Rrotm analyses, the cumulativemagnitude of 1Rscrlm is 0.053 cm/s
(if systematic) and 0.024 cm over 10 s (if random). To meet the
accuracy requirement of 0.01 cm over 5–10 s, we conclude that
1Rscrlm will also be required. The � nal question is which particu-
lar terms in the Eq. (105) 1Rscrlm algorithmare needed.The answer
can be obtained from similar individualanalysesof each term in Eq.
(105) to identify which are signi� cant relative to the requirement.
A simpler approach is to arbitrarily, but conservatively,use the full
Eq. (105) form. The rationale might be that the savings in using a
simpli� ed version,e.g., without the second-orderterms, is not worth
the time and cost for justi� cation, assuming computer throughput
is not an issue. The latter approach has additional merit because it
totally frees the system designer of concern for INS algorithmerror
during the development optimization process of the system using
the INS.

The position algorithm selection process just described is fairly
rudimentary, admittedly conservative, but suf� cient if the outcome
is the conservativeapproach of applying the full high-resolutional-
gorithm, particularly if the accuracy requirement cannot be clearly
de� ned. Had the choicebeen to use the typical algorithmor an alter-
nate version thereof, a more sophisticatedprocess would have been
required to assure adequate performance over a more accurate and
complete set of de� ned operating conditions. For example, com-
plex maneuver/vibration pro� les can be simulated and input to the
trial algorithm,with its accuracyevaluatedusing the high-resolution
algorithm (with the same input) as a reference. In this regard, the
high-resolutionalgorithm can be viewed as a truth model for posi-
tion algorithm evaluation but available for use if the trial algorithm
is inadequate.An assessmentof the need to include particular terms
in the scrollingportionof the high-resolutionalgorithmcan be made
similarly by calculatingthe magnitudeof each term under simulated
inputvs errorallowances.(A term is neededif its magnitudeexceeds
the allowance.) The latter step can be augmented using analytical
models for input conditions, similar to the approach described in
the last example.
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VII. Concluding Remarks
Reference 1 de� ned requirements for the strapdown INS inte-

gration algorithms in the form of continuous differential equations
and developed the attitude integration algorithms. In Part 2, we
have presented a comprehensivedesign process for developmentof
the speci� c force transformation/velocity integration and position
integration algorithms based on the two-speed updating approach
described in Part 1 (Ref. 1) for attitude integration: use of an ex-
act moderate-speedalgorithm for the basic integration function fed
by a high-speed algorithm to measure high-frequency recti� cation
effects. The moderate-speed algorithms are analytically exact un-
der constant angular rate/speci� c force; the high-speed algorithms
account for deviations from constant angular rate/speci� c force
(sculling for the velocity algorithmand scrolling for the positional-
gorithm). Where computer throughput restrictions are not an issue,
the two-speed structure can be compressed into a single high-speed
format by operating the moderate-speedalgorithmat the high-speed
rate. A summary of the velocity/position integrationalgorithms de-
veloped herein is provided in Table 1 as a listing in the order they
would be executed in the navigation computer. A similar table is
provided in Part 1 (Ref. 1) for the attitude integration algorithms.
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