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Strapdown Inertial Navigation Integration Algorithm Design

Part 2: Velocity and Position Algorithms

Paul G. Savage*
Strapdown Associates, Inc., Maple Plain, Minnesota 55359

This series of two papers (Parts 1 and 2) provides a rigorous comprehensive approach to the design of the princi-
pal software algorithms utilized in modern-day strapdown inertial navigation systems: integration of angular rate
into attitude, acceleration transformation/integration into velocity, and integration of velocity into position. The
algorithms are structured utilizing the two-speed updating approach originally developed for attitude updating; an
analytically exact equation is used at moderate speed to update the integration parameter (attitude, velocity, or po-
sition) with input provided from a high-speed algorithm measuring rectified dynamic motion within the parameter
update time interval [coning for attitude updating, sculling for velocity updating, and scrolling (writer’s terminol-
ogy) for high-resolution position updating]. The algorithm design approach accounts for angular rate/specific force
acceleration inputs from the strapdown system inertial sensors, as well as rotation of the navigation frame used
for attitude referencing and velocity integration. The Part 1 paper (Savage, P. G., “Strapdown Inertial Navigation
Integration Algorithm Design Part 1: Attitude Algorithms,” Journal of Guidance, Control, and Dynamics, Vol. 21,
No. 1, 1998, pp. 19-28) defined the overall design requirement for the strapdown inertial navigation integration
function and developed the attitude updating algorithms. This paper, Part 2, deals with design of the acceleration
transformation/velocity integration and position integration algorithms. Although Parts 1 and 2 often cover ba-
sic concepts, the material presented is intended for use by the practitioner who is already familiar with inertial

navigation fundamentals.

Nomenclature

A, A, A, = arbitrary coordinate frames
= specific force defined as the acceleration
relative to nonrotating inertial space produced
by applied nongravitational forces,
measured by accelerometers
C 2: = direction cosine matrix that transforms a vector from
its A, frame projection form to its A; frame
projection form
I = identity matrix
= column matrix with elements equal to the projection
of vector V on frame A axes
(VAX) = skew symmetric (or cross product) form of V4
represented by the square matrix

0 _VZA VYA
VZA 0 _VXA
_VYA VXA 0

where Vx4, Vya, V24 are the components of
V4, matrix product of (V4 x) with another A
frame vector equals the cross product of V4
with the vector in the A frame

WA, A, = angularrate of coordinate frame A, relative to
coordinate frame A,; when A, is the inertial / frame,
Wa, 4, 18 the angular rate measured by angular rate
sensors mounted on frame A,

I. Introduction

STRAPDOWN inertial navigation system (INS) is typically
composed of an orthogonal three-axis set of inertial angular
rate sensors and accelerometers providing data to the INS com-
puter. The inertial sensors are directly mounted (strapdown) to the
INS chassis structure in contrast with original INS technology that
utilized an active multiaxis gimbal isolation mounting assembly
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to isolate the sensors from rotation. The principal software func-
tions executed in the strapdown INS computer are the integration
of sensed angular rate into attitude, transformation of accelerome-
ter sensed specific force acceleration into a navigation coordinate
frame, addition of software modeled gravity to the transformed spe-
cific force to calculate total acceleration, and double integration of
total acceleration into velocity and position. The key element in
the INS software design process is the development of repetitive
digital algorithms that will flawlessly execute the attitude, velocity,
and positiondigital integrationfunctionsin the presence of dynamic
angular rate/specific force accelerationinputs.

As discussed in Part 1 (Ref. 1), most modern-day strapdown
INSs utilize attitude updating algorithms based on a two-speed
approach’~*: a higher-orderupdatingalgorithmis processed at mod-
erate repetition rate using inputs from a high-speed algorithm. The
moderate-speed routine can be representedby an exact closed-form
attitudeupdating operation*>* The high-speedalgorithmis designed
to accurately account for multiaxis high-frequency angular motion
between moderate speed algorithm updates that can rectify into sys-
tematic attitude change (traditionally denoted as coning). Originally
conceived as a simple first-order algorithm,? today’s high-speed at-
titude algorithms have taken advantage of increased throughputca-
pabilities in modern-day computers and become higher order for
improved accuracy (Refs. 1; 5-7; and 8, Chap. 7). While the atti-
tude updating function has been evolving to its current form, very
little parallel work has been published on the development of the
companion strapdown INS algorithms for specific force accelera-
tion transformation/velocityintegrationand positionintegration, the
subject of this paper.

The specific force transformation algorithm processes the iner-
tial sensor data to calculate an integrated specific force increment
in navigation coordinates over the velocity algorithm update time
interval. The velocity is updated by adding the navigation frame
specific force increment (plus an increment for gravity and coor-
dinate frame rotation effects) to the previous velocity value. A key
function of the transformationalgorithmis to accurately account for
attitude rotation (hence, rotation of the strapdown accelerometers)
during the velocity update time period. In some applications, this
has been achieved using a centering algorithm’ in which attitude
data for the specific force transformation is updated at the center of
the velocity update time interval (thereby introducing a staggered
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attitude update/velocity update software architecture). The trans-
formation operation then consists of integrating the accelerometer
specific force output over the velocity update interval and trans-
forming the integrated specific force increment to the navigation
frame using attitude data at the center of the velocity update time
interval. A variation of the latter approach updates the attitude at
twice the velocity update rate so that the attitude solution between
velocity updates is available for specific force increment transfor-
mation. Another variation calculates the attitude used for specific
force transformation as the average of the computed attitude at the
start and end of the velocity update time interval. A two-speed ap-
proach can also be used for specific force transformationivelocity
integrationin a dynamicenvironmentthat parallels the two-speedat-
titude integration approach (Refs. 5 and 8, Sec. 7.2). A high-speed
algorithm is designed to account for high-frequency angular and
linear oscillations that can rectify into systematic velocity buildup
(traditionally denoted as sculling), and a moderate-speed algorithm
executes the specific force transformation based on inputs from the
high-speed algorithm.

In general, the specific force transformationAelocity integration
algorithms have lacked the analytical sophistication of the attitude
integration algorithms, being typically limited to first-order accu-
racy under maneuvering conditions. Virtually no specialized work
has been reported for the inertial navigation position integration
function. From the writer’s understanding, modern-day strapdown
INSs typically generate position as a simple trapezoidal integration
of velocity at an update rate equal to or lower than the velocity up-
date frequency. For applications requiring precise position change
data in a dynamic environment, such a rudimentary approach to
position integration may prove inadequate.

This paper provides a comprehensive process for the design of
strapdown inertial navigation specific force transformation, veloc-
ity integration, and position integration algorithms. The material
presentedis a condensed version of Ref. 8, Secs. 7.2 and 7.3 (an ex-
pansion of material in Ref. 5), emphasizing a more rigorous analyt-
ical formulation and the use of exact closed-form equations where
possible for ease in computer software documentationivalidation.
The velocity and position algorithms presented are structured using
a two-speed computation format; the moderate-speed algorithm,
e.g., 50-200 Hz, is designed to be exact under constant angu-
lar rate/specific force acceleration conditions during the moderate-
speedupdateinterval;the moderate-speedalgorithmis fed by a high-
speed computation algorithm, e.g., 1-4 kHz, that accounts for dy-
namic variations from constant angular rate/specific force [sculling
for the velocity algorithm and scrolling (writer’s terminology) for
the position algorithm]. Included is a rigorous treatment of navi-
gation coordinate frame rotation during the integration update time
periods.

This paperis organized as follows. Section II defines the coordi-
nate frames utilized. Section III utilizes the Part 1 (Ref. 1) attitude
algorithm derivation as a model to formulate two-speed specific
force acceleration transformationielocity integration algorithms.
Section IV thenuses Sec. III as a framework for the developmentof
position updating algorithms in two forms: a traditional form based
on trapezoidalintegrationand a two-speed high-resolutionform. A
tabular reference summary of the derived algorithms is presented
in Sec. V. Section VI provides a general discussion of the process
followed in selecting algorithms for a particular application and es-
tablishing their execution rates. Concluding remarks are provided
in Sec. VIL

Finally, it is important to recognize that, whereas the original
intent of the two-speed approach was to overcome throughput lim-
itations of early computer technology (1965-1975), that limitation
is rapidly becoming insignificant with continuingrapid advances in
modernhigh-speedcomputers.This providesthe motivationto even-
tually return to a simpler single-speed algorithm structure whereby
all computations are executed at a repetitionrate that is sufficiently
high to accurately account for multiaxis high-frequencyangularrate
and specific force acceleration rectification effects. The two-speed
structure presentedin this paper and in Part 1 (Ref. 1) is compatible
with compression into such a single-speed format as explained in
the particular sections where the algorithms are formulated.

II. Coordinate Frames

A coordinate frame is an analytical abstraction defined by three
consecutively numbered (or lettered) unit vectors that are mutually
perpendicular to one another in the right-hand sense. It can be vi-
sualized as a set of three perpendicularlines (axes) passing through
a common point (origin) with the unit vectors emanating from the
origin along the axes. In this paper, the physical locations of the
coordinate frame origins are arbitrary. A vector’s components (or
projections) in a particularcoordinate frame equal the dot product of
the vector with the coordinate frame unit vectors. The vectors used
in this paper are classified as free vectors and, hence, have no pre-
ferred location in coordinate frames in which they are analytically
described.

The coordinate frames are defined as follows.

1) The E frame is the Earth-fixed coordinate frame used for posi-
tion location definition. It is typically defined with one axis parallel
to the Earth polar axis and with the other axes fixed to the Earth and
parallel to the equatorial plane.

2) The N frame is the navigation coordinate frame having its
Z axis parallel to the upward vertical at the local Earth surface
referenced position location. It is used for integrating acceleration
into velocity and for defining the angular orientation of the local
vertical in the E frame.

3) The L frame is the locally level coordinate frame parallel to
the N frame but with the Z axis parallel to the downward vertical
and X and Y along N frame Y and X axes. Itis used as the reference
for describing the strapdown sensor coordinate frame orientation.

4) The B frame is the strapdown inertial sensor coordinate frame
(body frame) with axes parallel to nominal right-handed orthogonal
sensor input axes.

5) The I frame is the nonrotatinginertial coordinate frame used as
a reference for angular rate measurements. Particular orientations
selected for the / frame are discussed in the sections where its
orientation is pertinent to analytical operations.

III. Velocity Update Algorithms

In this section we develop algorithms for integrating the Ref. 1,
Eq. (20), velocity rate equation using Ref. 1, Egs. (16) and (18), for
the specific force transformation term and using angular rates from
Ref. 1, Egs. (14) and (15), in the Coriolis accelerationterm (angular
rate products with velocity):

W =CNChal. + gy — (why +2why) x v¥ (1)
T

wa = (Cf/) ""’IEE )

Wiy = Fe(udy x ") + pzyuly (3)

where v is the velocity relative to the Earth defined analytically as
the time derivativein the E frame of the position vector from Earth’s
center to the INS, and g p is plumb-bob gravity (or gravity) that, for
astationaryINS, lies along the line of a plumb bob. F¢ is a curvature
matrix (3 x 3) that is a function of position having elements 3,i and
i,3 equal to zero and the remaining elements symmetrical about the
diagonal. For a spherical Earth model, the remaining elements of
F¢ are zero off the diagonal and equal the reciprocal of the radial
distance from the Earth’s center to the INS on the diagonal. For
an oblate Earth model, the remaining F terms represent the local
curvature on the Earth’s surface projected to the INS altitude (see
Ref. 8, Sec. 5.3, for closed-form expression). p,y is the vertical
componentof w¥, . The value selected for pzy depends on the type
of N frame utilized, e.g., wander azimuth or free azimuth designed
to assure that w¥, is nonsingularfor all Earth locations (see Ref. 8,
Sec. 4.6, and Ref. 10, pp. 88-89). uy is a unit vector upward along
the geodetic vertical (the Z axis of the N frame).

Equation (1) uses direction cosine matrix transformed specific
force rather than the alternative Ref. 1, Eq. (17), quaternion trans-
formation approach, e.g., for situations where the B frame attitude
is computedin the form of an attitude quaternion. The velocity inte-
gration algorithm based on quaternionspecific force transformation
can be developed by extension of the results presented here.
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The digital velocity integration algorithm is formulated directly
from Eq. (1) as
vy = vrI;Y—l + Civ AvéFm + A"g/c‘)rm )

m

tm
AVG cor, = / [¢h — (why +2wly) xv¥]dr  (5)
Im—1

' —

Im
Avge =/ Ckal.d (6)
1,

m— 1

where m is the digital velocity integration algorithm update rate
computer cycle index.

If vertical channel gravity/divergence stabilizationis to be incor-
porated, an additionalupdate operation would be includedin Eq. (4)
representingthe vertical velocity control function (Ref. 8, Sec. 4.4.1,
and Ref. 10, pp. 102-103).

Digital al gorithms are formulated next for the gravity/Coriolis ve-
locity increment AvY /Cor 1 EQ. (5) and the integrated transformed
specific force increment AvSF in Eq. (6).

A. Gravity/Coriolis Velocity Increment

The g term in Eq. (5) is a function of positionlocation with very
small horizontal components. Because the position varies smoothly
over a digital algorithm m cycle with limited magnitude change
(particularly in altitude), g% in Eq. (5) can be approximated by its
average value across the m cycle. Because the Eq. (5) Coriolis term
is small (due to the small size of the angular rates) and because
velocity varies smoothly over an m cycle, the Coriolis contributors
can also be approximated by their average value over the m cycle.
The latter rationale forms the basis for the following algorithm for
AV cor, N Eq. (5) using Eq. (3) for wy :

N ~ )N _ N N
AvG/Corm ~ {gp . |:2le L tozy L Uuzy
m—5 m-z m— 3
N N N
+ Fe 1(”ZNXV 1>i|XV I}Tm 7
m-% m— 3 m—3

where m — % designatesthe parameter value midway betweent,,
and t,,, and T,, is the velocity integration algorithm update period
[

The w?, term in Eq. (7) is evaluated with Eq. (2), and g% is cal-
culated from Ref. 1, Eq. (19). Because Avg/cOr isusedin Eq. (4) to
update v from its m — 1 to m cycle value, vY _ 12 is not explicitly
available for Eq. (7) and must be approx1mated based on extrap-
olation from past values. An example is the linear extrapolation
algorithm

V,IZ_% ~ VZ—l +3 [ V-1 —Vf,f_z] = %VZ—l - %V:Z—z ®)
The g’},’, wﬁVE, pzn» and Fc parameters in Eq. (7) are functions of
position, which (from Sec. IV.A) is updated following the velocity
update, possibly at a slower n cycle repetition rate, e.g., five times
slower. Therefore, the designatedm — % value for these parameters
is not explicitly available and must also be approximated based on
extrapolationfrom past values. For example, for linear extrapolation
=)

J

On-t X Ont +=—=[0n-1 = On-2l ©)

where

n = computer cycle index for position updates
J =number of m cycles in each n cycle
r  =number of m cycles since last n cycle, i.e., since f, _

B. Integrated Transformed Specific Force Increment

A digital algorithm for integrated transformed specific force in-
crement equation (6) must account for rotation of the local level L
frame and the strapdown sensor body B frame duringthet,, | tot,,
computer cycle period. Adopting the same notation used in Ref. 1,

Sec. IV.A, to describe discrete orientations of the L and B frames
relative to inertial space I at computer update time instants, Eq. (6)
can be expanded using the Ref. 1, Eq. (3), chain rule as follows:

o L B

L Tom) In—1) Tom—1) B

Ay = C C C rdr (10)

SFm t Ligy_yy "Bl _1, " Bwy
m—1

or, on further expansion,

L Ly Bj
(n—1) — (n—1) (m—1)
Avge, " = Cy, Avgp, an
(m—1)
tm
By By
(m—1) __ (m—1) B
Avg" " = / Cp " aldr (12)
tm—1
Lp L Ly I L
L _ (m) -1 _ (n I} m (-1
Avgp = CL, AvSFm = Ayg + (CL, I> AvSFm
(n—1) (n—1)
(13)

Equations (11-13) allow for the general case whereby the C% matrix
is updated for L frame rotation at a cycle rate (index n) that may
differ from (be slower than) the C é update rate for B frame rotation
(index m). For example, in the interest of minimizing computer
throughput requirements, the software architecture might have the
n cycle L frame update rate set five times slower than the m cycle
B frame update rate. Equations (11-13) are also valid, however, if
we choose to update C} at equal rates for B and L frame motion,
i.e.,n = m. Note that, for n # m, Eq. (13) still requires an L frame
orientatiLon evaluationat the B frame m cycle update time (for L,
in the C matrix). Note also that the form of Eq. (11) is based
on the use of C% at the preceding B frame m cycle, i.e., By, 4,
in the C ‘" " matrix. This implies that C% will be updated for B
frame rotatlon following the Eq. (1 1) transformation operation. It

remains to define algorithms for C fonin Eq. (13) to account for
_
local level frame rotation during spemﬁc force transformation and

for the Avsé‘:") body frame integrated specific force increment
term in Eq. (12).

1. Correction for Local Level Frame Rotation
During Specific Force Transformation

BecausLe of the slow angularrate of the L frame relativeto inertial
space, C,, in Eq. (13) is very close to the identity matrix L.

_1
For many apphcatlons (C —1I) in Eq. (13) can, therefore, be
—-1)
totally ignored as neghglble compared to other acceleration error
sources. For high-accuracy applications where (C 1( ' —I)isto
-1

beincluded,a first-orderformof the Ref. 1 Egs. (49) and (50) usually
suffices, whereby

Ligmy
CLI(,,_I) %I_(Cn—l.mx) (14)
Im
Cn—l.m = / w%L dt (15)
1,

n—1

We then approximatewh inEq. (15)usingEq. (3)inRef. 1,Eq. (13),
and the assumption of slowly changing contributorsas in Sec. III.A,

""’fL = CI%/ (wa + ""’gzv) ~ CI%/ [wan_l.m + IOZNn—l.mugN
+FCn—l.m (ugN X VN)] (16)

where the subscriptn — 1, m indicates the value for the parameter
midway between times f, _; and ?,,.
Substituting Eq. (16) into Eq. (15) yields

~ L[, N N
Comim = Cy [""’IE,,_L,” rTy + pzn, U7y Ty

+FCn—l.m (ugN X AerlV—l.m)] (17)

tm
ARY | E/ v dt (18)
1
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The wﬁVE term in Eq. (17) is evaluated with Eq. (2). As in Sec. IIL.A,
()n—1,m in Eq. (17) must be approximated based on past value ex-
trapolation;e.g.,

On—tn 2 (Ot +20/DIOs1 = Ou—al)  (19)

Because Eq. (17) is used to update vV in Egs. (4), (13), and (14),
current values of vV are not available for evaluating ARY_ Lm D
Eq. (18). Hence, past value extrapolation must be employed, such

asin Sec. IILA:

AIarllv—l.m = %(31’5_1 _V,IZ_Z) for r=1
ARY = E|:3vN -+ mi:l (VN +vV ):|
n—1,m 2 m—1 m-—2 i i—1

i=m+1-—r

for r>1 (20

2. Body Fgame Integrated Specific Force Increment

The Avsé‘:_” integral term in Egs. (11) and (12) is calculated
using a high-speed digital repetition algorithm similar to the type
employed in Ref. 1, Egs. (35) and (36), for attitude updating. The
derivation of the algorithm is initially based on first-order approx-
imations for C Bl"”' Y, The first-order solution is divided into two
parts for applicationof the two-speed algorithm approach: a portion
that can be calculated at the m cycle rate which measures the effect
of constant B frame angularrate and specific force,and a high-speed
portion within the m cycle, which measures dynamic variations in
B frame angular rate/specific force. The first-order m cycle portion
is then expanded to be analytically exact under constant angular
rate/specific force.

Folllg(l)wing the development appr%allch in Ref. 1, Sec. IVA.1,
the CB“‘)'”_ " term in the Eq. (12) Avg;" " integrand is expressed
as

By, - ing (1) 1 - ()
i1 ) Lo

where ¢(t) is the rotation vector defining the general orientation
of frame B relative to frame B Tn—1) for time ¢ greater than #,, _,.
Reference 1 Egs. (32) and (33) show that ¢ () in Eq. (21) can be
approximated by

(p(0)x) + (6()x)" @)

o) ~ a(r) (22)

at) = / wa dr 23)

m — 1

where 7 is an integration time parameter. A first-order approxima-
tion for Eq. (21) that is consistent with Eq. (22) neglects (¢p(¢) x)?
and approximatessin¢ (t) /¢ (t) by unity [assuming that the m cycle
rate is selected fast enough to maintain ¢ (¢) at a reasonably small
value, e.g., less than 0.05 rad]. With Eq. (22), Eq. (21) reduces to

Blign_1y
Cp I+ (ce(t)x) (24)
Substituting Eq. (24) into Eq. (12) then yields to first order

m
A"sBé,(nm_” z/ [I+ (a(t)x)]ak, dr
1

m — 1

tm tm
= / al.dr + / (cu(t)x) aldr (25)
1 1 1

m — m — 1

or, including Eq. (23),

tm
B[m_
Avg" " =, + / (ou(t) x al) dt
m—1

(26)

Uy = V(ly)

t t
a(t) = / Wb dr, v(f) = / al. dr,
1 1

m — 1 m — 1

B
Equations (26) define a method for calculating Avsé‘: “YinEq.(11).
It is instructive to analyze these equations under constant B frame
angular rate w?; and specific force a5, for which
a(t)z(t_tm—l)wIBB» v(t)z(t_tm—l)agp
27

B B _
W;p,agp = const

B
Substituting ce(¢) from Eq. (27) into the Eq. (26) Avsé‘: ~" expres-
sion yields for constant B frame angular rate and specific force

tm
Bl 1 B B
Avge" " = v, +/ ((t —th_ )W, XaSF) dt
tm—1
tm
B B
= v, + (why anF)/ (t—t,_,)dt
tm—1
B sy 1 2
= v, + (L'-’]B X asp)i(tm —ly_1)

1
= v, + _(L'-’]BB (tm

2 — I - l)) X (agp(tm

—Im—1 )) (28)

or, with Egs. (26) and (27) for constant B frame angular rate and
specific force,

Bl(m—l) 1
Avspm =v, + Eam X Uy
t
a(t) = / wyy dr, = afty) (29)
m—1
t
() = / ag; dr, Uy = V(1)
tm—1

m —

Comparing Eq. (26) for the general case with Eq. (29) for the con-
stant angularrate/specific force condition, we see that the difference
is the replacement of the integral term with %am X Uy

For situations where constant angular rate/specific force is a rea-
sonable approximationover the 7, _; to t,, time interval, Eq. (29) is
preferred over Eq. (26) because the integral term (and its attendant
high-speed algorithm) is replaced by %am X v, Which is evaluated
once each m cycle.

A fundamental limitation in Eq. (26) or Eq. (29) is the first-order
approximation that underlies their development, i.e., Eq. (24) for

B B
C.'™Y that was used in the Eq.(12) Avsé‘: - expression.It would

B
be éesirable if the Eq. (24) approximation could be applied only
=Y with the low-frequency

i
B
to the high-frequency content of Cj |
content retaining the full Eq. (21) form. Such an algorithm can be

synthesized by first noting that

%(a(t) x v(1)) = aut) x V() + 6u(t) x V(1)
= a(t) x v@) —v(t) x &) (30)

with a(t) and v(t) as defined in Eq. (26). Upon rearrangement,
Eq. (30) becomes

. d .
a(t) x V() = E(a([) x () +vt) x &) (3

Trivially,
a(t) X O(t) = 2a@) x () + La) x v() (32)

We now substitute Eq. (31) for one of the terms on the right in
Eq. (32) to obtain

. 1d 1 . .
a() xv(t) = =—(a(t) x v(1)) + E(a(t) X 0(1) +v(t) x &)

2 dt
(33)
From Eq. (26) we know that
a(t) = L'-’]BB? ’U(t) = asp (34)
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whereby Eq. (33) assumes the form

a(t) x ak, =

%(a(t) x (1))

1
+ E(a(t) x al, + v(t) x why) (35)

Eq%atlon (35) is an alternate for the integrand in the Eq. (26)

Tom—1)

Avge" "7 expression. Substitutionof Eq. (35) for the integrand then
yields the following equivalent form:
Bl(m - 1
Avspm =v, + E(am X vm)
Lf" B B
+ 3 (a(t) X age +v(t) X ‘-'-’13) dr (36)
1

m — 1

If we now compare AvSF"” Y in Eqgs. (36) and (29) under constant

angular rate/specific force conditions, we see that they are equiva-
lent except for the integral term in Eq. (36). It is easily verified by
substitution of Eq. (27) that the integral term in Eq. (36) vanishes
for constant B frame angular rate/specific force. We conclude that
the integral term in Eq. (36) represents the integrated contributionof

the high-frequency content in the Eq. (12) Avg integrand; the
remainingterms,i.e., Uy, +1 (a,,, XUp), representthe low-frequency
content.

The integral term in Eq. (36), denoted as sculling, measures the
rectification of combined dynamic angular rate/specific force into a
net constant contribution to Avsé‘: ~Y. The rectification is a maxi-
mum under classical sculling motion defined as sinusoidal angular
rate/specific force in which the angular rate about one B frame axis
is at the same frequency and in phase with the specific force along
another B frame axis (with rectified constant specific force then
produced along the average third axis direction). This is the same
principle used by mariners to propel a boat in the forward direction
using a single oar operated with an undulating motion (alsg denoted
as sculling, the original use of the term). Note that the Ay, "” Y in-
tegral term in Eq. (26) has also been denoted as sculling even though
it contains large contributions under constant angular rate/specific
force,i.e., nonscullingconditions. The %(am X v,,) termin Eq. (36)
isidentified here as velocity rotationcompensation. The velocity no-
tation has been adopted to denote that this rotation compensation
term feeds the velocity rate equation (in contrast with a position
rotation compensation term to be discussed in Sec. IV that feeds
the positionrate equation). With these definitions, a comparison be-
tween Egs. (26) and (36) identifies the integral term in Eq. (26) as
representingthe compositeof scullingand velocityrotationcompen-
sation effects. Using the latter terminology, Eq. (36) is rewritten as

(m b

Bl(m—l) _
AVSF,,L = Un + Avrolm + AVsculm (37)

1 t
AVscul(t) = 5 / (a(r) X agF + ’U(‘E) X wlBB) dr
1

m— 1

AVs(:ulm = AVs(:ul (tm)

4 (38)
a(r) = / why dt, a, = a(ty,)
tm—1
v(r) =/ ag dt, U = U(ty)
m—1
Avrotm = %(am X vm) (39)

where Av,,, is the velocity rotation compensationterm and Av,,
is the sculling term. Alternatively, beginning from the Eq. (26) ver-
sion,

Avelo=v A 40
vSFm = Un + Vrot/sculy ( )

t
AVrot/s(:ul(t) = / (a(r) X asF) dr
m—1

(41)
AVrot/s(:ulm = AVrot/s(:ul (tm )

with a(r) and v,, from sculling Eq. (38) and where Av,scu,, 18
the composite sculling and velocity rotation compensation term.

Equations (37-39) are completely equivalent to Egs. (40) and
(41); both equation sets exhibit only first-order accuracy. However,
Eq. (37) is now in a form that enables us to substitute an expanded
expression for the Eq. (39) velocity rotation compensationterm that
makes Eq. (37) exact under constant rate/specific force conditions.
This is an important extension because general motion is typically
dominated by low-frequency angular rate and specific force com-
ponents that may have large amplitudes under extreme maneuvers
(where second-order algorithm errors may not be negligible). The
extensionto exactnessis not possible for Egs. (40) and (41) because
the rotation compensation effect is imbedded within the integral,
which includes the first-order sculling term. The following subsec-
tions derive an exact Av,,, velocity rotation compensation algo-
rithm for Eq. (37) in addition to digital integration algorithms for
the Eq. (38) integral terms. Using the same procedure, a digital inte-
gration algorithm can also be developed for Avyycu,, in Egs. (40)
and (41), as shown in Ref. 8, Sec. 7.2.2.2.2.

Exact velocity rotation compensation. The exact velocity rota-
tion compensation algorithmis defined as the algorithm that, when
subgtituted for Av,,, in Eq. (37), provides an exact solution for
AvSF‘m Y in Eq. (12) under constant B frame angular rate/specific
force conditions. The exact velocity rotation compensatlon algo-
rithm is derived from Eq. (12) using Eq. (21) for C ‘o= inder
constant angularrate/specific force. We first consider the more gen-
eral condition where only the direction of the angular rate vector is
constant, i.e., a nonconing environment in which the angular rate
vector is not rotating. From Eq. (23), for a nonconing angular rate
condition,

al) = a(u,, (x(t)=/ wir. 20 _ 4
. a(t)

m— 1

where w is the magnitude of w?;, and u, is a unit vector along w?,
that is considered constantin the B frame.

As discussed in Ref. 1, Sec. IV.A.1, for the case where w?; is
not rotating, ¢(¢) is equal to a(t) (the integral of wa ). Under this
restriction, Eq. (21) with Eq. (42) for ¢(t) substituted in Eq. (12)
gives for the nonconing angular rate condition

B m
Avs;(:_ V= / [I + sinoe () (ue, X)
1

m — 1

+ (1 = cosa(n) (u, %) Jak, dr (43)

For nonconing angular rate and constant B frame specific force,
Eq. (43) can be expanded to

m tm
By
1) B B :
Avg" ™V = / ag. dt + (uw x aSF) / sino(¢) dt
1 1

m — 1 m— 1

+ (w0 x (uo x aZ)] / ’ (1 - cosa(n)) dr (44)

m — 1

Section III.B.2 nomenclature is now applied with the nonconing
rate/constant specific force assumption and appropriate Eq. (42)
relationships,

Im
v
B B B B m
Uy = / Agp dr = asp(tm —ly_1) = aSFTm» g = T
tn —1 m
(45)
o) _ o
- (OR) w
a(r) O
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and «,, = «(t,,) is the magnitude of «(z,,). Substituting Egs. (45)
into Eq. (44) then yields for nonconing angular rate and constant
specific force

tm
Bl 1 Q,; X Uy .
Av " = v, 4+ — sm(x(t) dt
SFn T
C(m m

am X am X v”‘l
4 G X (i X V) ( ) /

a2 T,

— cos (x(t)) (46)

To evaluate the integral terms in Eq. (46), we now adopt the constant
angular rate condition whereby w in Eq. (42) is constant. Then,

a(t) = w(t —t,_1), w = const 47)
ApplyingEq. (47) in Eq. (46) with Eq. (45) for «,, allows the integral
terms to be evaluated for constant B frame angular rate as

tm T
/ sina(t) dt = —(1 — cosa,,)
1

m— 1 m

fm sin oy,
(1 —cosa(n)dt =T,|1-—=
-1 Uy

Substitution in Eq. (46) then yields the desired form for the exact

(48)

T — 1 . .
Avgp" ' solutionunder constant B frame angular rate and specific
force

By (I —cosay,)

(m—1) m

Avspm =v, + —zam X Uy
a
m
1 sina,,

+ B 1- «, X (am S vm) (49)

o, L

Equation (49) constitutes an exact solution for AvSB;‘: ~Y undercon-
stantangularrate/specific force. We are now in a position to compare
Eq. (49) with Eq. (37) under the same conditionsto identify the exact
velocity rotation compensation term. Under constant rate/specific
force conditions, the sculling term in Eq. (37) vanishes (see dis-

cussionin Sec. I1.B.2), and Ay "” Y is given by

Bl 1y _
AvsFm - vm + Avrolm (50)

If we compare Egs. (49) and (50) it shouldbe clear from its definition
that the exact velocity rotation compensation term Av;,, is

(1 —cosa,,)

Aoy, = > Ay X Uy
o
1 sina,,
+ _2 1- a,, X (am X vm) (51)
C( oy

The trigonometric coefficients in Eq. (51) can be calculated from
the Taylor series formulas

(1 —cosa,,) _ 1

(52)

Equation (51) with Egs. (52) constitute an alternative algorithm for
the Av,,,, velocity rotation compensatlon term in Eq. (39) that will
generate an exact solution for Avg "” Y in Eq. (37) under constant
B frame angularrate/specific force conditions. In contrast, the Ay,
algorithmin Eq. (39) is accurate to only first order. Note that, to first
order in «,,, Eq. (51) with Eq. (52) reduces to the Eq. (39) Av,y,
form (as it should).

Integrated specific force and sculling increments. In this subsec-
tion we developdigital algorithms for calculatingthe v, and Avy,,
integral terms in Eq. (37) and (38) [the c,, term for these equations
is provided from the attitude algorithmin Ref. 1, Egs. (41)]. A sim-
ilar procedure can be used to develop an algorithm for Avoscu,,

in Eqgs. (40) and (41). Following the identical procedure used in
Ref. 1, Sec. IV.A.1, for the coning algorithm, we develop the Avcy,,
sculling algorithm by considering Avg,,, to be the value att =1,
of the general function Av,(¢) [as in Eq. (38)]. Let us consider the
Eq. (38) Avy,(?) integration as being divided into portions up to
and after a general time #, _ | within the #,, _, to t,, interval so that

AVs(:ul(t) = AVscul/_l + (Svscul(t)
(53)

1 t
ea(®) = 3 / (a(r) x @l + v(7) x why) dr

-1

We now define the next / cycle time point #; within the #,, _; to f,,
interval so that Egs. (53) at #; with a(7) and v(7) from Eq. (38),
including initial conditions, become

a(t) =a;-1 + Aa(r)

Aa(t) = / wa dr, Ao, = Aa(t))
-1 (54)
a=a-1+ Aay, a, = ol =1t,)

oa=0 at 7=t,_;

v(t) =v,_; + Av(r)

Av(r)z/ al. dt, Av; = Av(t)
-1 (55)

v =v -1+ Avy, U = vl = ty)

v,=0 at T=1t,_,

AVs(:ul/ = AVscul/_l + 8vscul/

e (1) = % / (cut) x af + v(1) x why)dt
(56)

(Svscul/ = (Svscul (tl)

AVs(:ulm = AVs(:ul/ (tl = tm)a AVs(:ul/ = 0 at 1= tm —1
where [ is the high-speed computer cycle index. Equations (54—
56) constitute the construct of a digital recursive algorithm at the
I computer cycle rate for calculating the Av,y, sculling term and
v,, as a summation of changes in Av,, and v over the ¢,, _| to t,
interval. It remains to determine a digital equivalent for the §vycy,
integral term in Eq. (56). We begin by substitution of c(f) and the
definitions for Aay and Av; from Eq. (54) into §vyey:

1
Vseuly = E(al—l X Av; +v_1 X Aoy)

1
+ % / (Aau(t) x al; + Av(t) x why) dr (57)
-1
Development of a digital algorithm for the integral term in sculling
Eq. (57) is based on an assumed form for the B frame angular
rate/specific force history during the #; _; to #, time interval. Unlike
the coning algorithm, very little published work exists for selecting
angular rate/specific force time histories for application to sculling
algorithm design. In principle, the approaches used for the coning
algorithm can also be applied for sculling, including optimization
for sculling-type motion (see discussion in Ref. 1, Sec. IV.A.1).
For this paper, we provide an example based on general linearly
changing angularrate/specific force over the z;, _ | to #; time interval:
wig XA +B( —1_1), age ¥ C+D({—1,_1) (58)
where A, B, C, and D are constant vectors.

An algorithm for the integral term in Eq. (57) can be developed
by first substituting Eq. (58) for w?; and a&; in Eq. (57) and then
calculating the Eq. (57) integral term analyticallyoverthe #, _; to ¢,
time interval. The intermediate resultis an equation for the Eq. (57)
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integral term as a functionof the A, B, C, and D constant vectors. A
set of A, B, C, and D constantsis then calculated foreach#,_| to ¢,
time interval using successive measurements of integrated angular
rate and specific force increments from the inertial sensors. Two
successive measurements would be required to uniquely determine
the four constant vectors A, B, C, and D for the Eq. (58) linearly
ramping model. (A parabolic model would be characterized by six
constant vectors and require three successive sensor measurements
for determination,etc.) The resultis then substitutedforA, B, C, and
D in the intermediate result (defined earlier) to derive the algorithm
equivalent to the Eq. (57) integral term over the #,_; to #; time
interval. If the successive sensor increments are sampled at the [
cycle rate, measurements would be taken at 7, _; and #, spanning
f_,tot;_y and t,_, to f; (or t,_, to f;, overall). Alternatively®’-!!
the sensor samples can be taken within the #,_ to #; time interval,
two samples per [ cycle for the Eq. (58) linearly ramping model,
three for a parabolic model, etc. For sensor samples taken at the [
cyclerate, the results of the latter procedure (detailedin Ref. 8, Sec.
7.2.2.2.2) show that for the Eq. (58) linearly ramping model, the
algorithm equivalent to Eqs. (54-57) is given by

Aoy, o = integrated angular rate sensor outputs

from Ref. 1, Egs. (46) (59)
1
Av,; =/ dv

P (60)

v=v -1+ Av, v,=vl=1t,), vi=0att=rf,_,

Wewy = %[(al—l + éAal—l) x Av,
+ (v + éAvl—l) x Aay]

(61)

AVs(:ul/ = AVs(:ul/_l + (Svscul/» AVs(:ulm = AVs(:ul/ (tl = tm)

AVgy, =0 at t=t,_,

where
Av; = summation of integrated specific force output
increments from accelerometers
dv = differential integrated specific force increment,

i.e., analytical representation of pulse output from
strapdown accelerometers, as; dt

Equation (61) for Av,,,, has been classified as a second-orderalgo-
rithm becauseitincludes currentand past/ cycle Ac, Av products.
Thel,l—1 cycle Ac, Av product terms in §v,, i.e., the é terms,
stem from the approximation of linearly ramping angular rate and
specific force in the #;, _, to f; time interval. If the angular rate and
specific force terms were approximated as parabolically varying
functions of time, a third-order algorithm would result, containing
[, —1,and ! — 2 cycle A, Av products. If the angular rate and
specific force were approximated as constants over ; _; to t;, the é
terms in Eq. (61) would vanish, resulting in a first-order algorithm
for Avgey,, . Finally, if angular rate and specific force are slowly
varying, we can approximate Avg., as being equal to zero. Alter-
natively (and more accurately), we canset the cyclerate equal to the
m cycle rate, which equates Avg,, t0 8vyy, in Eq. (61) calculated
once at time 7, [and noting from the initial condition definitions in
Eq. (60) and Ref. 1, Egs. (46), that «t; _, and v, _, would be zero].
Note that setting the / and m rates equal can also be achieved by
increasingthe m rate to match the ! rate. The result would be a single
high-speed, higher-order algorithm with a simpler software archi-
tecture than the two-speed approach but requiring more throughput.
Continuing advances in the speed of modern-day computers may
make this the preferred approach for the future.

IV. Position Update Algorithms
In this section we develop digital integration algorithms for cal-
culating positionrelative to the Earth in the form of altitude & above
the Earth’s surface and the C£ direction cosine matrix defining the

angular orientation between the local level N frame and the Earth-
fixed E frame (from which latitude/longitudecan be extracted). Two
algorithm forms are developed: a typical form based on trapezoidal
integration of velocity and a high-resolution form that accounts for
dynamic attitude and velocity changes within the position update
period. The high-resolution algorithm is modeled after the Sec. 111
two-speed velocity update approach.

Both the typical and high-resolutionforms can be represented by
the continuous differential equation form of Ref. 1, Egs. (21) and
(22), repeated here as

h=ub, v~ (62)
CE = Ch(why %) (63)

where £ is altitude above the Earth’s surface. The typical and high-
resolution forms derive from a general updating formulation for &
and CE. The following sections formulate the general position up-
dating process and then derive computationalapproachesfor typical
and high-resolution position updating.

A. Position Updating in General
The general altitude /& updating algorithm is formulated as the
integral of Eq. (62) over a position update cycle n:

h, =h,_, + Ah, (64)

In
Ah, = / ul, vV de (65)
1

n — 1

Allowing for the higher-speeddigital computation loop, i.e., the m
loop for attitude and velocity integration, Eq. (65) can be written as

J
Ah, =uly- > AR) (66)

m=1
tm
ARY = / v dr (67)
I/

If vertical channel gravity/divergence stabilizationis to be incorpo-
rated, an additional operation would be included in Eq. (64) rep-
resenting the altitude control function (see Ref. 8, Sec. 4.4.1, and
Ref. 10, pp. 102-103).

The general updating algorithm for the C£ direction cosine ma-
trix is designed to achieve the same numerical result at the update
times as would the formal continuousintegration of the Eq. (63) C f,
expression at the same time instant. The algorithm is developed by
envisioningthe locallevel navigation N frame orientationhistoryin
the digital updating world [produced in Eq. (63) by w®, ] as being
constructed of successive discrete orientationsrelative to the Earth
(E frame) at each update time instant. The general updating algo-
rithm for Cf, is then constructedas follows using the Ref. 1, Eq. (3),
direction cosine matrix product chain rule:

NE,
E _ (E -1
Cne =Cy, Cy, (68)
™ -1 ™
where
Ng,, = discrete orientation of the N frame in rotating Earth
frame space (E) at computer update time #,
Cy, = CE relating the N frame at time 7, _;
= to the E frame
Cy, = CE relating the N frame at time ¢, to the E frame
o)
NE, _ . . . .
NE‘" " = direction cosine matrix that accounts for
“ N frame rotation relative to the Earth (E) from its
orientation at time #, _ | to its orientation at time #,
Ng, _ .. .
The C NE‘" " matrix in Eq. (68) is defined formally as
™
N N
Em-1 _ ~VEw -1y
CNE(,,) =1+ / CN“) dr (69)
1

n—1

with N in Eq. (69) representingthe N frame attitude at an arbitrary
time in the interval f, _; to t,.
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Following the same development procedure as for C l"” Y in

Ref. 1, Sec. IV.A.1, the C "~ matrix can also be expressed in
terms of the rotation vector deﬁnmg the frame N, attitude rela-
tive to frame Ng,_,,. Applying Ref. 1, Eq. (4), with Taylor series
expansion for the coefficient terms obtains

Ny sin &, —g,,
Ch, =1 €00 + 52006
sing, & L&
PR 1 T + <] (70)
(1—cosg) 1 & &
é—,f = CTRT] a ...

where &, is the rotation vector defining the frame N, attitude at
time ¢, relative to the frame N, Ew_1) attitude at time 7, _ ;.

The angularrate of the N frame relative to the Earth w®  is small
and typically no larger than one or two Earth rates. As such, because
the #, _, to t, update cycle is relatively short, £, will be very small
in magnitude. Because w?, is small and slowly changing over a
typicalt, _, to t, update cycle (due to small changes in velocity and
position over this time period) the N frame rate vector w), can be
approximated as nonrotating. The result is that £, for Eq. (70) can
be calculated as the integral of the simplified form of the Ref. 1,
Eq. (10), rotation vector rate expression whereby the cross-product
terms are neglected:

n
gn%/ wh o dr (71)
7

n — 1

A discrete digital algorithm for the Eq. (71) &, integral can be con-

structed by first approximating Eq. (3) for w}, as
ng%pZNn_lugN—i_FCn_L(ugN va) (72)

where (), _1,, is the value for () midway between times ¢, _, and

t,. Using Eq. (72) in Eq. (71) and applying the Eq. (67) definition
then obtains

J
€& ~pzy uNT 4 Fe | (;;gN x ZARﬁf) (73)

m=1

where 7, is the computern cycle update period#,~f, _ ;. The (), _ 1,2
terms in Eq. (73) are all functions of position, which has not yet
beenupdated. Hence, to calculatethe (), _ > terms, an approximate
extrapolation formula must be used based on previously computed
values for the () parameters. For example, a linear extrapolation
formula using the last two computed values for () would be

Onet ® Ot + HOuo1 = Oual = 2001 = 1002 (74)
The method for calculating the AR,’X term for Egs. (66) and (73)
from the Eq. (67) integral depends on whether typical trapezoidal
integration is used for position updating or whether a more pre-
cise high-resolutionintegration approach is to be applied. Both are
described in the following sections.

B. Typical Position Updating

Applying typical trapezoidal integration for the h and CE updat-
ing process would utilize Eqgs. (64), (66), (68), (70), (73), and (74)
with a trapezoidal integration algorithm in Eq. (67) for ARY:

ARY ~ (¥ 4y _ )T, (75)

C. High-Resolution Position Updating

The high-resolution approach for implementing the & and CZ
updating process utilizes Egs. (64), (66), (63), (70), (73), and (74)
with a high-speeddigital integrationalgorithmin Eq. (67) for ARY.
The digital algorithm for ARY is developed by first expanding the
Eq. (67) v" integrand. Using the expression for v¥ in Eq. (4) with

Eq. (6), v canbe defined as a continuoustime function at a general
time point since the last #,, _; update:

t—t,_
vV = v+ O AVE() + AVY e %

(76)
t
AvE) = / CLal.dr
1

m — 1

Equations (76) are based on the assumption that gravity/Coriolis

term AvY /Cor,, €an be approximated as the integral of a constant

over t,_; to t,,. With Eq. (76), ARY from Eq. (67) is given by
ARY = (vh_, + LAY T, + CY AR

SEm

)

tm t
AR, = / Avii(t) dt, Avi(t) = / CLal dv
17 1

m — 1 m— 1

where ARéF is the L frame coordinate portion of ARY produced
by specific force.

Equations (11), (13), and (36) show that AvéF (t) in Eq. (77) can
be approximated to first order (in body rotation angle) by

L _ cto L(n ) L(r) Lan-1) L(n 1
AvSF(t)—CL(n 1) (t) = )CLM 1)A (1)
_ Loy Lan-1y L(n ) Lan-1y L(n 1)
- (CL(m—l) I)Cl(n 1 Av (t)+CL(n 1 Av ®

(CL(m) _ I) (t— tm—l)CL(m b Ap Lin-1y (t—1t,_1)

Ln—1 La-1 2VsE
(m=1) T, (-1 m T,
Lon—1y A Lon—1)
+ CL(n—l) Avg ™ ()

L Lon—t) Ly (& =1, _1)?
— (C (m) —I)C =1 ApEe=1
Lim -1y Lun-1) VSEn T2

Lm -1y L(n 1)
+CL(,, 1)A (1)

(78)
— (CL("L) _ CL(m—l))A Liw-1 (- tm—l)z

Lin-1 Lin-1y SFm T2

m
Lom—1y A Ln-1
t
+C ) Avg (1)

L,, Bm
( l)A ( l)(t)

Lin-1) 0y —
Avgg () =C Bn—1)

AV;(Cm‘l)(t) =v@)+ %(a(t) PN ’U(t))

1 t
+= / (a(r) x a¥, +v(r) x a)fB) dr
1

2
v(r) = / al.dt
1 1

m — 1
m —

a(r) =/ wB, dr,
tm—1

' —

where
Lot . .
B(‘" 1)> = C% matrix updated for B frame motion at
m = . .

time t,, _; and for L frame motion at
time £, _;

Lm Lon—1

C , = current and past m cycle values for the
Lon-1> " Lin-1

direction cosine matrix relating frame L at
times t, _; and t,, as calculated from
Eq. (14)

In Eq. (78), the I notation in subscripts and superscripts, used for
clarity in Eqs (11) and (13), has been dropped for simplicity. In ad-
dition, (CL:;) b I) and Avs‘" " (t) in the first part of the AvSF(t)
expression have been approximated to be linearly ramping in time
overt, _ tot,. Note also, as in Sec. II1.B.1, that the C . terms
in Eq. (78) can be approximated by the identity matrix for all but

very high-precision applications. Based on Eq. (78) and including
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Eq. (14),the ARéFm termin Eq. (77) can be defined by the equivalent
forms

1 Ln-
ARéFm = _5[(Cn—l.m - Cn—l.m—l)X]AvSIL‘m I)Tm

L — L- B
+C, "V CL" ) ARS,

L1y “Bm-1

) (79)
ARE, = / Ave® V(1) dt
1

m— 1
/tm
1

m— 1

1
[v(t) + E(a(t) xv(1) + Avscul(t)i| dr

with Avgy(t), (), and v(t) from sculling Eq. (38).

Following a similar development path as used in Sec. II1.B.2 for
the body frame integrated specific force increment, the f %(a (1) x
v(t)) df term in the Eq. (79) AR’SBFm expressioncan be revised into a
nonintegral term plus an integral term that vanishes under constant
angular rate/specific force, both being of first-order accuracy. The
nonintegral term will then be extended into a more accurate form
that is exact under constant angular rate/specific force conditions.
We begin by using classical integration by parts substitution [as in
Sec. III.B.2 leading to Eq. (35)] to show that the f %(a ) xv(t))dt
term in Eq. (79) has the following equivalent forms:

ro = /m %(a(t) x v(1))dt

m— 1

r o= /m %(a([) x v(1) dt

m — 1

1 1"
E(Sa'” X v,,,) — 5/; (Sa(t) X agF) dr

m — 1

|
r, = - v
/ 2( (1) x (t))dt (50)

m — 1

tm
= %(am x S.,) + %/ (Su() x why)dr
1

m — 1

Sq () =/ a(r)de, S, () =/ v(r)dt

m— 1 'm — 1
a, = aty), Uy = V()
Sew = Satm)s Son = Sutm)

where S, and S, are time integrals of o and v.
Because r| and r, are analytically equivalent to the original inte-
gral form ry, we can write

/ %(a([) x (1) dr = %(r0 +ri+r2) (81

m — 1

Substituting for ry, r; and r, from Eq. (80) into Eq. (81) and com-
bining terms then yields

/m %(a([) x () dr =

m — 1

(SOZm X v”‘l + am X Sl)m)

AN~

1 m
-< / [Sa(t) x ab, —8,(t) x w¥, — a(r) x v(t)] dr (82)

tm—1
We now substitute Eq. (82) with the Eq. (80) definitions into
Eqgs. (77) and (79) to obtain the desired form for calculating AR,’;’:
ARY = (vN

m—1

ARéFm = _%[(Cn —1.m

+C; "V Cy D ARE

Lo—1) = Bon—1) S SEw

+ %Avg/COrm)Tm + szARéFm

- Cn—l.m—l)X]Avél(::’n_l)Tm (83)

ARgFm = SUm + ARrolm + AIascrlm (84)

1 m
AIascrlm = g / [6Avscul(t) - Sot (t) X agp
1

m — 1

+8,(1) x why + ault) x v(1)] dt (85)

with Avy (1), a(t), v(t), a,y, and v,, from sculling equation (38)
and

Sa(t) =/ o(7) dr, Sam = Saltn)

m— 1

S, (1) =/ u(r)dr, Sun = Sultn) (86)

m— 1
ARy, = é(Sam X v, +a, X Svm)

where AR, is positionrotationcompensationanalogousto the ve-
locity rotation compensationterm in Eqs. (37) and (39), and AR,
is the scrolling term analogous to the sculling term in Eqs. (37) and
(38). The term scrolling was coined by the writer merely to have a
name for the term and also to have one that sounds like sculling but
for position integration (change in the position vector R stressing
the R sound). The complex mathematical derivationsand associated
algorithms that accompany scrolling may be a more appropriaterea-
son for the name.

A key characteristicof Eq. (84) is that the ARy, scrolling term
from Eq. (85) is identically zero under constant body axis angular
rate and specific force conditions. This can be readily verified from
Eq. (85) by substituting a constant angular rate and specific force
vector for the %, and aZ; terms and carrying out the indicated op-
erations analytically. As such, AR, will only produce an output
under the presence of dynamic body axis angularrate/specific force
components. This is an important characteristic because, for most
real dynamic environments, the magnitude of high-frequency an-
gular rate/specific force is small so that first-order approximations
accurately apply (first order in integrated body angular rate/specific
force overthet,, _, tot, time interval). We conclude that the analyt-
ical form for AR, will also yield a reasonably accurate solution
under situations where the low-frequency body angular rate and
specific force components are large.

The Eq. (86) first-order version of positionrotation compensation
AR, can have noticeable second-order error under extreme ma-
neuvers. The form of Eq. (84) that has AR, separate from other
terms allows us to expand AR, to a more accurate form that is
exact under constant angular rate/specific force (as in the first sub-
section of Sec. III.B.2 for the velocity rotation compensation term).
The following sections develop algorithms for the exact position
rotation compensation term in Eq. (84) and for the scrolling and
other integral terms in Eq. (85).

1. Exact Position Rotation Compensation

Animprovedaccuracy versionof AR, forEq. (84)isdeveloped
by specifying the solution to be exact under constant body angular
rate/specific force but to first order, to also equal AR, in Eq. (86)
under general angular rate/specific force conditions. The derivation
begins by returning to the basic definition for ARgFm in Eq. (79):

tm
ARE = / Ave D (1) dt (87)
1,

m— 1

As Bwith Egs. (42) and (44), we now use the exact definition for
Avsg”'”(t) in Eq. (87) based on constant B frame specific force
and nonconing angular rate

tm t
B _ B
ARg —/ / agpdr dt
m—1 Yt —1

m t
+ (uw X agF) / / sina(t) dr dr
Im—1 Im—1
tm t
+ [uw X (uw X agF)]/ / (1 - cosa(r)) drdr (88)
tn—1 Yty
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For constant B frame angularrate (vector direction and magnitude),
as in Eq. (47), the integral terms in Eq. (88) can be evaluated for
constant B frame angular rate as

/ / sina(t)drdt = (oz,,,
(89)
" t —cosa(r)) drdr = L l 2 _ (1 —cosam)
o) 2 m m

From Eq. (47) we can also write

w = C(m /Tm (90)

sina,,)

so that Eq. (89) for constant B frame angular rate becomes

/ / sina(t)dr dr = (1 — sina, )
(x’ﬂ
91
1 (1 —cosa,,)
/ / 1 — cosa(r)) drdr = (2 o )

Applying Eq. (91) in Eq. (88) then obtains for constant B frame
angular rate and specific force:

AR?

Im t T2 .
sin o,
SF al dvdr + (ua, X agF)i - ——
" a’ﬂ a’ﬂ
m—1 Yt —1

+ [uw X (uw X aSF)]T2<; —(1 — cosa,,,))

o,
Equation (92) can be further refined by substitution of S,,, as de-
fined in Eq. (85) for the double integral, applicationof the Eq. (45)
definitions for appropriate terms, and factorization:

B 1 sin @,
ARy =S, + - l_a_ I

+ %(l - (l;z)sam)>(am X)i| (am X vm)Tm (93)

C(m 2 C(m

(92)

The (o, X v,,)T,, term in Eq. (93) can be expressed in an alter-
native form through the following development. Using appropriate
definitions from Eq. (85), we find for constant B frame angular rate
and specific force that

Sim / / ab.drdr = a5, / / dr dr

= EaSFTz = 2’Ume
(94)
t
Som / / wh drde —‘-'-’15/ / dr dr
-1 Yim—1
= EL"’IBTZ Zame

From Eq. (94) we then can show that (c,, Xv,,)T,, underthe Eq. (93)
constant B frame angularrate specific force conditionis equivalently

(am X vm)Tm = SOlm X vm + am + Sl)m (95)

We then substitute Eq. (95) for («,, X v,,)7T,, in Eq. (93) to obtain
for constant B frame angular rate and specific force

B 1 sin o,
ARS =S, +|=[1-—= 1
C{m L

1 1 1 - m
TR T

2 a2
(96)

Equation (96) is now in a form for defining the exactpositionrotation
compensation term by comparison with Eq. (84) for ARgFm . Under
the conditions of constant B frame angular rate and specific force,
the AR, termin Eq. (84)is zero,and ARgFm with Eq. (86) reduces
to

AR =S, +ARy,. ARy, =1(S,, X v, +a, xS,,)

97

We alsonote thatby applying Taylor series expansion to the trigono-
metric terms [as shown subsequently in Eq. (99)] Eq. (96) to first
orderis given by

ARE. =S, +1(Se, X Un + aw xS,,) (98)

Finally, we compare Eq. (96) and its Eq. (98) first-order version with
Eq. (97) to deduce the sought-afterexact position rotation compen-
sation algorithm. Including trigonometric expansion formulas, the
resultis

1 sin o,
ARy, =|—(1-—=]1
oy A

1 /1 1 - m
+ _<§ - w) (amx)i| (Sotm X v, +a, X Svm)

(99)

1 (1 (I—cosa,)) 1 o  «a,

Equations (99) can be utilizedin Eq. (84) in place of AR, fromEq.
(86) to obtain the equivalent higher-order equation for ARgFm that
is exact under constant body angular rate/specific force conditions.

2. Scrolling and Other Integral Term Increments

The computer algorithms used to implement the integration op-
erations in Eq. (85) are executed at high computer repetition rate,
i.e., the sculling/ cycle rate, within the positionupdate m cycle. The
v(t), v, a(t), and o, integral terms in Eq. (85) are provided by
Eqgs. (54) and (55). The remaining integral terms in Eq. (85) can be
rewritten to reflect the high-speed computing cycle as follows:

Sa(t) = So_, + ASa(?)

AS, (1) = / a(r)dr, AS,, = AS,(t)

-1

SO(/ = SO(/_[ + ASO(/? Sotm = SO(/ (tl = tm)
Sy, =0 at t=1t,_,

(100)
Su() =8y, + AS, (D)

AS, (1) = / v(r)dr, AS,, = AS, (1)

-1

Sv/ = Sv/_l + ASU}? Svm = Sv/ (tl = tm)

S, =0 at t=1t,_,



218 SAVAGE

ARSCrl/ = ARSCrl/—l + ‘SRscrl/ s ARscrlm = ARscrl/ (t = tm)

ARscrl/ =0 at t= L1

1
SRy, = é / [6 Aveu () = S, (1) x aku(t)
- (101)
+8,(1) x why (1) + a(t) x v()]dt
Avgen (1) = Avgeuy_ + Vseu (F)

AVs(:ul/ = Avscul(tl)a AVs(:ul/ =0 at r= b —1
with v, (#) from sculling equation (56).

Asinthe secondsubsectionof Sec. III.B.2 for the velocity sculling
algorithm and other integral terms, algorithms can be designed for
the integral terms in Egs. (100) and (101) to be analytically exact
under assumed forms of the angular rate and specific force pro-
file within the [ cycle. Coefficients for the angular rate/specific
force profiles are then determined from sequential integrated an-
gular rate/specific force increments taken at the / cycle rate (or,
alternatively, at a higher-speed sensor sampling rate within the [
cycle). As an example of the [ cycle sensor sampling method, Ref.
8, Sec. 7.3.3.1.2, develops algorithms for the Egs. (100) and (101)
integral terms based on generalized linearly ramping angular rate
and specific force conditions. The overall results are given by

Aoy, o = integrated angular rate sensor outputs
from Ref. 1, Egs. (46)
(102)
Aoy, v; = integrated accelerometer outputs
from algorithm Egs. (61)

ASy =0y T+ (T,/12)(5 Aoy + Aay 1)
Sot/ = Sot/_l + Asa/» Sotm = Sot/ (tl = tm) (103)

Sy, =0 at t=t,_,

ASE =vf [T+ (1,/12) (5 Avf + Avf )

Sv/ = Sv/_l + Asv/» Svm = Sv/ (tl = tm) (104)

Sy, =0 at t=t,_,

AIascrl/ = AIascrl/_l + 8RscrlA/ + 8RscrlB/

8RscrlA/ = AVs(:ul/ —1 Tl

+%[al—l - ﬁ(Aal - Aal—l)] X (ASU/ —Ul—lTl)

+%[v,_1 — ll—zAv, — Av,_l] X (ASa, —a,_lT,)

SRunp, = £[Su_, + (1./24)(Av, — Avy_ )] x Aoy (105)

—L[Se, + (1128 (Acy — Acy_ )] x A,

+(1/6)[ar-1 — t(Acy — Aoy _1)]
X [Ul—l - é(Avl - Avl—l)]

—(1;/2160)(Ac; — Ay _ 1) X (Av; — Av;_y)

AIascrlm = AIascrl/ (tl = tm)a AIascrl/ = 0 at t= tm -1

with Avg,,_, from the Eq. (61) sculling algorithm and where

B
scul

0Ra, = portion of SR, produced by the §v
sculling term
0Rnp, = portion of §R,., produced by all but the §v
sculling term

T = high-speed computer update time interval #;—-# _

B
scul

Equations (105) can be classified as a second-orderalgorithm for
OR.i, because they include current and past cycle Aoy, Av; prod-
ucts. If the angular rate/specific force profile was approximated as
constant over two successive [ cycles, the (Aay — Ay _1) and
(Av; — Av;_) terms in Eq. (105) would vanish, resulting in a
first-order 6R.y, algorithm. Under conditions where the angular
rate and specific force can be approximated as constant, i.e., slowly
varying over an m cycle, AR, in Eq. (105) is approximately zero
and the AR, SRyua,, SRycnp, calculations in Eq. (105) can be
deleted. Alternatively (and more accurately), for slowly varying an-
gular rate and specific force, one ! cycle of Eq. (105) can be ex-
ecuted each m cycle, noting from the initial condition definitions
that oy, v, 1,84 _,,and S,, , are zero. As noted in the second
subsection of Sec. II1.B.2, setting the / and m rates equal can also
be achieved by increasing the m rate to match the / rate. The result
would be a single high-speed, higher-order algorithm with a sim-
plersoftware architecturethan the two-speed approachbutrequiring
more throughput. Continuing advances in the speed of modern-day
computers may make this the preferred approach for the future.

V. Velocity/Position Integration Algorithm Summary

Table 1 is a summary of the algorithms described for the strap-
downinertialnavigationvelocity/positionintegrationfunction listed
in the order that they would be executed in the navigationcomputer.
Note in Table 1 that the normal speed attitude calculationfollows the
normal speed position calculation, in contrast to Table 1 of Ref. 1,
which calculates attitude before position. Having the attitude fol-
low the position calculation allows the high-resolution ARY from
Eq. (77) to be used in Ref. 1, Eq. (53), rather than the less-accurate
Ref. 1, Eq. (56), trapezoidal algorithm form of ARY.

VI. Algorithm and Execution Rate Selection

Section VIof Part 1 (Ref. 1) discussesthe general process of algo-
rithm selection for a given application with required executionrates
to achieve specified accuracy goals. A principal part of this process
involves estimating the algorithm error under anticipated angular
rate/specific force maneuvers/vibrations compared with specified
error budget requirements. Evaluation of candidate algorithm error
characteristicsis generally performed using computerized time do-
main simulatorsthatexercisethe algorithms,in particulargroupings,
at their selected repetitionrates. The simulators generate strapdown
inertial sensor angular rate/specific force profiles for algorithm test
input together with known navigation parameter solutions for algo-
rithm output comparison, e.g., Ref. 8, Secs. 11.2.1-11.2.4.

For the two-speed velocity/positionupdating approachdescribed,
the repetition rate for the moderate speed (m cycle) algorithms
wouldtypicallybe selected based on maximum angularrate/specific
force considerations to minimize power series truncation error in
the moderate- and high-speed algorithms. The repetition rate for
the high-speed (I cycle) algorithms would typically be selected
based on the anticipated strapdown inertial sensor assembly vi-
bration environment to accurately account for vibration induced
sculling/scrolling effects.

For the velocity algorithms, simplified analytical error models can
alsobe used to predicthigh-speedsculling algorithmerror under se-
lected scullingrates/amplitudesas a functionof algorithmrepetition
rate (Refs. 5-7 and 8, Chap. 10). The sculling rates/amplitudes must
be derived either from empirical data or, more commonly, from an-
alytical models of the sensor assembly mount imbalance and its
response to external input vibration at particular frequencies (Ref.
8, Chap. 10). Frequency-domainsimulators can be used to evaluate
high-speed sculling algorithm error under specified input vibration
power spectral density profiles and sensor assembly mount imbal-
ance as a functionof algorithmrepetitionrate (Ref. 8, Chap. 10). For
example, the sculling algorithm described by Eqgs. (59-61) can be
shown by such simulators to have an error of 0.044 ;1g when oper-
atedat a 2-kHzrepetitionrate under exposure to 7.6 g rms wideband
random linear input vibration (flat 0.04 g*/Hz density from 20 to
1000 Hz, then decreasing logarithmically to 0.01 g?/Hz at 2000
Hz). The linear vibration generates a multiaxis 3.6 g/0.00038 rad
rms specific force/angular oscillation of the sensor assembly with a
correspondingrectified sculling accelerationof 1300 g due to the
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Table1 Summary of strapdown INS velocity/position computation algorithms

Algorithm function Input Output Equation number

High-speed calculations

Integrated B frame angular rate increments _ ay, Ref. 1, Table 1
Integrated B frame specific force increments Ay vy, Uy, (55) or (60)
Sculling increment Aoy, oy, Avp, v AvVseul; s AVsculy (56) or (61)
Doubly integrated B frame angular rate and Aoy, o ASqy,, S (100) or
specific force increments (for high-resolution Avy, vy Sams ASy (103), (104)
position algorithm) Sus Som
Scrolling increment (for high-resolution position Aay, o, ASy,;, Sy, AR, (101) or (105)
algorithm) Avy, v, ASy;, Sy, AVse,
Normal-speed calculations for Earth-related parameters
N frame plumb-bob gravity components C f, h gl;,’ Ref. 1, Eq. (19)
N frame Earth rate components C 5 wﬁv £ 2)
Vertical transport rate component Cf, PZN Ref. 8, Sec. 4.6
Curvature matrix Cf,, h Fe Ref. 8, Sec. 5.1.3
Normal-speed velocity calculations
B frame velocity rotation compensation (exact formulation) Qs Uy Aviot,, (51), (52)
B frame velocity rotation compensation Ay, Upy AVro,, (39)
(first-order approximation form)
B
B frame integrated specific force increment U s AViot » AVscul Avsé(: -b 37)
B L L
L frame integrated specific force increment vsé(m b, CBI(" b Avsé(" -h (1
m Iom— 1y m
L frame rotation vector (cycle n — 1 to m) wﬁVE, pzn, Fo, vV Cicim (17), (19), (20)
L
L frame rotation matrix (first-order form) Cicim C Lll(m) (14)
L L @-b
L frame rotation compensation vsé(" b, CLII('”) N (13)
m n—1) m
Integrated Coriolis acceleration and plumb-bob gg, wﬁVE Avg/COrm (7, (), (9)
gravity increment pzn, Fc,v
N frame velocity update véFm , Avg/COrm, vf;’_ . oM 4)
Normal-speed position calculations
Position rotation compensation (high-resolution oy Sap, AR, (99)
position algorithm, exact form) Um s Sum
Position rotation compensation (high-resolution oy Sap, AR, (86)
position algorithm, first-order accuracy form) U s Su,,
Body frame position increment due to specific Svm > ARy, ARgFm (84)
force (high-resolution position algorithm) AR,
N frame position increment (high-resolution ARgFm, v ARY (83)
position algorithm) N L1
LAvG/Corm ’ A"SFmL
-1 m=1
CB(m_ n’ Cn— 1,m» CL(,,_ 1
N frame position increment (trapezoidal v,IX AR,IX (75)
position algorithm)
Altitude change ARY Ahy, (66)
Position rotation vector pzns Fc, ARY &, (73)
N,
Position rotation change matrix £, NZ(") (70)
-1
Altitude update hy—1, Ahy Iy (64)
Ng
Position direction cosine matrix update CE ,C D cE (68)
P Ne-1y” " NE Ny
Normal-speed attitude calculations
Attitude direction cosine matrix update —_ C é Ref. 1, Table 1

following typical sensor assembly mount characteristicsselected as
simulator input parameters: 50-Hz linear vibration mode undamped
naturalfrequency,0.125 linear vibrationmode dampingratio, 71-Hz
rotary vibration mode undamped natural frequency, 0.18 rotary vi-
bration mode damping ratio, 5% sensor assembly mount/isolator
spring/damping imbalance, and 1.4% sensor assembly center of
mass offset from isolator/mount center of force (percent of distance
between isolators).

The capabilitiesof modern-day computersand INS software tech-
nology make it reasonable to specify that the navigation algorithm
error be no greater than 5% of the equivalent error produced by
the INS inertial sensors (whose cost increases dramatically with
accuracy demands). For an INS with a 40-ug accelerometer bias
accuracy requirement (typical for an aircraft INS having 2-3 fps 1 o
velocity accuracy), the 0.044-p1g sculling algorithm error is almost
two orders of magnitude within the 5% allowance, providinga wide
design margin for the algorithm 2-kHz repetition rate selection. For
this case, a 1-kHz sculling algorithm rate would probably be more
appropriate; however, 2 kHz might still be utilized for compatibil-

ity with the 2-kHz rate selected for the coning algorithm in Part 1
(Ref. 1) under the same conditions.

In the case of the positioning algorithms, the typical form pre-
sentedin Sec. IV.B is usually adequate for almost all applications(to
date). For the exceptional cases where very high-resolutionposition
updating is required, the time interval for the accuracy requirement
is usually restricted to brief periods during the application mission
profile. Moreover, for some of these applications, postprocessing
is acceptable using data recorded during the high-resolution time
interval; hence, the complexity of the high-resolution algorithms
would not be a real-time computer throughput issue. For exam-
ple, for synthetic aperture radar (SAR) motion compensation, high-
resolution position data are required for only brief intervals, e.g.,
5-10 s, during SAR data acquisition, which may then be subse-
quently processed for SAR image formation. We also note that, in
high-resolution applications, the Earth-referenced position of the
INS chassis/mount is usually the required output, which equals the
sum of Earth-referenced inertial sensor assembly position (calcu-
lated by the inertial navigation algorithms) plus vibration/specific
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force induced displacement of the sensor assembly relative to the
INS chassis/mount (due to compliance of elastomeric isolators that
interfacethe sensorassembly to the IN'S chassis). The latterdisplace-
ment can be computed under dynamic maneuvers by quasistatic
flexure modeling, i.e., displacement equals average specific force
times the square of the sensor assembly/isolator undamped natural
frequency, and by appropriate digital filtering of vibration-induced
jitter (Ref. 8, Chap. 9). Note that, in principle, the displacement can
also be measured directly using specially installed sensing devices.

As an example of the inertial navigationpositionintegrationalgo-
rithm selection process, let us considera high-resolutionapplication
with an overall INS requirement for position error fluctuationsto be
significantly less than 1 cm during 5-10 s periods (not unusual for
applications where the actual requirementis a function of error fre-
quency contentand not clearly known). Allowing design margin for
error in the sensor assembly to chassis/mount flexure displacement
calculation (described in the preceding paragraph), we budget the
INS accuracy specification into a requirement for the position algo-
rithm to have less than 0.01-cm dynamic position error fluctuation
during 5-10s. Let us further assume for this example that the basic
position algorithm update rate has been selected to be 50 Hz and
that the selected inertial velocity algorithm accuracy is compatible
with high-resolution position updating requirements, e.g., includes
high-rate sculling. Simplified pencil-and-paperanalysis of the typ-
ical form equation (75) position algorithm (or other versions) can
be used to assess its accuracy at 50 Hz using the high-resolution
algorithm to represent the correct truth model. An analytical model
for the high-resolution ARgFm incrementtruth model can be derived
using Eq. (25) for AvZ; in Eq. (79):

in
ARgFm =/ AvE () dr
tn—1

. (106)
AVE(1) = / [14 () x )]ad. dt

m— 1

Neglectingthe small L frame rotationeffect, it can be shown that po-
sition updating based on the Eq. (75) typical algorithmis equivalent
to Eq. (79) with AR’SBFm replacedby the typical algorithm equivalent
AR, givenby

ARZ =

1 A,B
SF/typn = 28VsE, Tn»

AvE, = AvE(ta) (107)
For the Eq. (58) linearly ramping specific force/angular rate model
in Egs. (106) and (107), the position increments for the truth model
AR, and for the typical algorithm ARG, , . become

AR, =1iCT:+iD+AXOT,

+L(AxD+1BxC)T!+ +B x DT} o8,
ARL ., =4CT2+1(D+A X C)T}

+1(AxD+1iB x C)T} + LB x DT}

Comparing AR, with the AR§,  truth model in Eq. (108)
allows the error in ARgF/Iypm to be assessed for selected maneu-
ver values. Under a constant C specific force maneuver, AR5 Jtyom
equals ARgFm and, hence, is error free. ForD =3 g/sorforC=3g
with A =1 rad/s, the calculated error in AR?F — (using 7,, =
0.02 s for the 50-Hz update rate) is 0.00196 cm or 50 x 0.00196 =
0.098 cmin 1 s. Compared with the 0.01 cm in 5-10 s requirement,
the 0.098 cm in 1 s figure would be considered unacceptable.
Position algorithm assessment under vibration can also be ana-
lytically estimated. For example, for the 3.6 g rms sensor assembly
vibration (in the preceding sculling example), the associated veloc-
ity vibrationis 11.2 cm/s rms centered around the sensor assembly
50-Hz mount resonance (which would be accurately measured by
the hypothesized velocity algorithm). The aliasing error associated
with sampling the vibrating velocity at 50 Hz for the Eq. (75) al-

gorithm can produce a 11.2 x 0.02 = 0.22 cm error each position
update. If the error is random per update, the total cumulative error
in 1 s (50 updates) would be 0.22 x /50 = 1.6 cm; if the error is
systematic, the positionerrorin 1 s would be 0.22 x 50 = 11.2 cm.
In either case, the algorithm error greatly exceeds the 0.01 cm over
5-10 s requirement.

Based on such analyses, let us assume we have elected to use
the Egs. (83) and (84) high-resolution position algorithm to assure
5-10s, 0.01-cmhigh-qualityresolution. The next questionis which
terms in Eq. (84) are to be included. The S,,, term in Eq. (84) is
the dominant term for integrating velocity into position and must be
included. Under a 3-g constant specific force maneuver, §,,, from
Eq. (85) equals 0.59 cm per 50-Hz position update cycle or 29.4
cm in 1 s. The next most important term is the AR,, position
rotation compensation term. Using Eq. (86) with Eq. (85) input,
the magnitude of AR, under a constant 3 g/1 rad/s maneuver is
0.0039 cm per update cycle or 0.20-cm cumulative position change
in 1 s. (Note, for a 3-g/s linearly ramping specific force, S,,, also
equals 0.0039 cm per cycle and sums to 0.20 cm in 1 s.) For the
0.01 cm over 5-10 s requirement, the AR, termis, therefore, also
needed. The question of whether to include the AR, term can
be addressed by analyzing the magnitude of AR, under dynamic
vibration motion using a rearranged version of Eq. (84):

AIascrlm = ARgFm - Sv - ARrolm (109)

m

Consider the 3.6-g rms vibration condition under 1-rad/s constant
angularrate. For a 3.6-g rms pure sine wave, i.e.,3.6 X /2 =5.1-g
amplitude, at the 50-Hz isolator resonance frequency, the magni-
tudes of S,,, and v,, over 0.02 s are, from Egs. (85), 0.32 cm and
0 cm/s, respectively. For the 1 rad/s rate over 0.02 s, o, is 0.02 rad.
Thus, from Eq. (86), AR, is (0.32 x 0.02)/6 =0.0011 cm, which,
if systematic, accumulates in 1 s to 0.0011 x 50 = 0.053 cm. If
random from cycle to cycle, the error accumulationover 10 s would
be 0.0011 x /(50 x 10) = 0.024 cm. The true solution AR, for
this particular case can be demonstrated by analytical integrationof
Eq. (106) to be ARgFm = S,,,- Thus, from Eq. (109) and the latter
AR, analyses,the cumulativemagnitude of AR, is 0.053 cm/s
(if systematic) and 0.024 cm over 10 s (if random). To meet the
accuracy requirement of 0.01 cm over 5-10 s, we conclude that
AR, will also be required. The final question is which particu-
lar terms in the Eq. (105) ARy, algorithmare needed. The answer
can be obtained from similar individual analyses of each termin Eq.
(105) to identify which are significant relative to the requirement.
A simpler approach s to arbitrarily, but conservatively, use the full
Eq. (105) form. The rationale might be that the savings in using a
simplified version,e.g., without the second-orderterms, is not worth
the time and cost for justification, assuming computer throughput
is not an issue. The latter approach has additional merit because it
totally frees the system designer of concernfor INS algorithm error
during the development optimization process of the system using
the INS.

The position algorithm selection process just described is fairly
rudimentary, admittedly conservative, but sufficient if the outcome
is the conservative approach of applying the full high-resolutional-
gorithm, particularly if the accuracy requirement cannot be clearly
defined. Had the choicebeen to use the typical algorithmor an alter-
nate version thereof, a more sophisticated process would have been
required to assure adequate performance over a more accurate and
complete set of defined operating conditions. For example, com-
plex maneuver/vibration profiles can be simulated and input to the
trial algorithm, with its accuracy evaluatedusing the high-resolution
algorithm (with the same input) as a reference. In this regard, the
high-resolutionalgorithm can be viewed as a truth model for posi-
tion algorithm evaluation but available for use if the trial algorithm
is inadequate. An assessmentof the need to include particular terms
in the scrolling portion of the high-resolutionalgorithmcan be made
similarly by calculatingthe magnitude of each term under simulated
inputvserrorallowances. (A termis neededifits magnitude exceeds
the allowance.) The latter step can be augmented using analytical
models for input conditions, similar to the approach described in
the last example.
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VII. Concluding Remarks

Reference 1 defined requirements for the strapdown INS inte-
gration algorithms in the form of continuous differential equations
and developed the attitude integration algorithms. In Part 2, we
have presented a comprehensive design process for development of
the specific force transformationielocity integration and position
integration algorithms based on the two-speed updating approach
described in Part 1 (Ref. 1) for attitude integration: use of an ex-
act moderate-speedalgorithm for the basic integration function fed
by a high-speed algorithm to measure high-frequency rectification
effects. The moderate-speed algorithms are analytically exact un-
der constant angular rate/specific force; the high-speed algorithms
account for deviations from constant angular rate/specific force
(sculling for the velocity algorithm and scrolling for the position al-
gorithm). Where computer throughputrestrictions are not an issue,
the two-speed structure can be compressed into a single high-speed
format by operating the moderate-speedalgorithmat the high-speed
rate. A summary of the velocity/position integration algorithms de-
veloped herein is provided in Table 1 as a listing in the order they
would be executed in the navigation computer. A similar table is
provided in Part 1 (Ref. 1) for the attitude integration algorithms.
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