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Strapdown Inertial Navigation Integration
Algorithm Design Part 1: Attitude Algorithms

Paul G. Savage¤

Strapdown Associates, Inc., Maple Plain, Minnesota 55359

This series of two papers provides a rigorous comprehensive approach to the design of the principal software
algorithmsutilized in modern-day strapdown inertial navigationsystems: integration of angular rate into attitude,
acceleration transformation/integration into velocity, and integration of velocity into position. The algorithms
are structured utilizing the two-speed updating approach originally developed for attitude updating in which
an analytically exact equation is used at moderate speed to update the integration parameter (attitude, velocity,
or position) with input provided from a high-speed algorithm measuring dynamic angular rate/acceleration ef-
fects within the parameter update time interval [coning for attitude updating, sculling for velocity updating, and
scrolling (writer’s terminology) for high-resolution position updating]. The algorithm design approach accounts
for angular rate/speci� c force acceleration measurements from the strapdown system inertial sensors as well as
rotation of the navigation frame used for attitude referencing and velocity integration. This paper, Part 1, de� nes
the overall design requirement for the strapdown inertial navigation integration function and develops direction
cosine and quaternion forms for the attitude updating algorithms. Part 2 [Savage, P. G., “Strapdown Inertial
Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithms,” Journal of Guidance, Control,
and Dynamics (to be published)] deals with design of the velocity and position integration algorithms. Although
Parts 1 and 2 often cover fundamental inertial navigation concepts, the material presented is intended for use by
the practitioner who is already familiar with basic inertial navigation concepts.

Nomenclature
A; A1; A2; A3 = arbitrary coordinate frames
C A1

A2
= direction cosine matrix that transforms a vector

from its A2 frame projection form to its
A1 frame projection form

I = identity matrix
q A1

A2
= attitude quaternion that transforms a quaternion

vector from its A2 frame component form to its
A1 frame component form

q
A1¤
A2

= attitude quaternion q A1
A2

conjugate having the
same � rst element as q A1

A2
but with the negative

of elements 2–4 in q A1
A2

q1 = identity quaternion having 1 for the � rst
element and zero for the remaining three

V = vector without speci� c coordinate frame
designation

V A = column matrix with elements equal to the
projection of V on frame A axes

.V A£/ = skew symmetric (or cross product) form of V A ,
represented by the square matrix
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4
0 ¡VZ A VY A

VZ A 0 ¡VX A

¡VY A VX A 0

3

5

where VX A , VY A, VZ A are the components of
V A ; matrix product of .V A£/ with another
A-frame vector equals the cross product of V A

with the vector in the A frame
V A

q = quaternion four vector equivalent to V A ,

µ
0

V A

¶
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! A1 A2 = angular rate of coordinate frame A2 relative to
coordinate frame A1; when A1 is the inertial I
frame, !A1 A2 is the angular rate measured by
angular rate sensors mounted on frame A2

I. Introduction

I NERTIAL navigation is the process of calculating position by
integration of velocity and computing velocity by integration

of total acceleration. Total acceleration is calculated as the sum of
gravitationalacceleration,plus the accelerationproducedby applied
nongravitational forces (known as speci� c force acceleration). An
inertial navigation system (INS) consists of a navigation computer
for the integration function, a precision clock for timing the inte-
gration operations, an accelerometer assembly for measuring the
speci� c force acceleration, gravitation model software resident in
the navigation computer for calculating gravitational acceleration
as a function of calculated position, and an attitude reference for
de� ning the angular orientation of the accelerometer triad as part
of the velocity calculation. In a modern day INS, the attitude refer-
ence is provided by a software integration function residing in the
INS computer using inputs from a three-axis set of inertial angu-
lar rate sensors. The angular rate sensor and accelerometer triads
are mounted to a common rigid structure within the INS chassis to
maintain precision alignment between each inertial sensor. Such an
arrangement has been denoted as a strapdown INS because of the
rigid attachment of the inertial sensors within the chassis, hence, to
the vehicle in which the INS is mounted.

The primary functions executed in the INS computer are the an-
gular rate into attitude integrationfunction (denotedas attitude inte-
gration), use of the attitudedata to transformmeasured acceleration
into a suitable navigation coordinate frame where it is integrated
into velocity (denoted as velocity integration), and integration of
the navigation frame velocity into position (denoted as position in-
tegration). Thus, three integration functions are involved, attitude,
velocity,and position,eachofwhich requireshighaccuracyto assure
negligible error compared to inertial sensor accuracy requirements.

From a historical perspective, since the basic strapdown inertial
navigation concept was originally formulated in the 1950s, strap-
downanalystshaveprimarily focusedon thedesignofalgorithmsfor
the attitude integration function. Invariably, the design approaches
were driven by the capabilities and limitations of contemporary
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� ight computer technology. In the late 1950s and in the 1960s, two
approacheswere pursued by strapdown analysts (in various organi-
zations) for the attitude integration function1¡5: high-speedattitude
updating, e.g., 10–20 kHz, using � rst-order digital algorithms, and
lower-speed attitude updating, e.g., 50–100 Hz, using higher-order
algorithms. The high-speedapproach was promoted as a means for
accurately accounting for high-frequencyangular rate components
that can rectify into systematic three-dimensional attitude change;
however, computer technologyof that time period was only capable
of executing simpli� ed � rst-order equations of limited accuracy for
the attitude updating algorithms. In contrast, the higher-order al-
gorithm proponents touted improved analytical accuracy compared
to � rst-order algorithms; however, the improved accuracy was de-
graded due to the associated increase in executable operations per
attitude update cycle and, hence, a slower attitude update rate to
satisfy contemporary computer throughput limitations. Tradeoffs
between the two approacheswere clouded by the emergence of the
attitudequaternionas the preferredapproachfor the analytical form
of the computed attitude parameter (vs the traditional direction co-
sine matrix attitude representation). For the algorithms investigated
during that time period, the quaternion showed improved accuracy
in high-frequencyangular rate environments.

In 1966, the writer proposed a new two-speed approach for the
attitude integration function6 whereby the attitude updating oper-
ation is divided into two parts: a simple high-speed, � rst-order
algorithm portion coupled with a more complex moderate-speed,
higher-order algorithm portion whose input was provided by the
high-speedalgorithm.The simpli� ed high-speedportion accounted
for high-frequency angular oscillations within the attitude update
cycle that can rectify into systematic attitude buildup (traditionally
denoted as coning). Taken together, the combined accuracy of the
two-speed approach was equivalent to operating the higher-order
algorithmat the high-speed rate (for improved accuracy); however,
due to the simplicity of the high-speed algorithm, the combined
computer throughput requirement was no greater than for original
high-speed, � rst-order attitude updating algorithms. The utility of
the Ref. 6 two-speed algorithm design approach was limited by its
basic analyticalformulationas a Picard-typerecursiveintegrationof
the continuousform attitude rate differentialequation in which both
the moderate- and high-speed algorithms were generated simulta-
neously. The complexity of the analytical recursive integration de-
sign process limited expansionof the higher-order,moderate-speed
algorithm (to only second order in Ref. 6, which was considered
acceptable at that time).

In an unrelated design activity, Jordan7 in 1969 suggested a two-
speed approach for the strapdown attitude updating function in
which the analyticalformulationat the onsetwas basedon two sepa-
ratelyde� nedcalculations:a moderate-speed,classicalclosed-form,
(exact) higher-orderattitudeupdatingalgorithmbased on input atti-
tude change, and a simpli� ed high-speed, second-order integration
algorithmthat measured the attitude change input for the moderate-
speed algorithm. In 1971, Bortz8 extended the Jordan concept to
have the high-speed calculation based on a differential equation
that, when integrated, measures the exact attitude change input to
the exact attitude updatingalgorithm.The exact moderate-speedat-
titude algorithmcan be structuredto any speci� ed orderof accuracy
by truncation of two trigonometriccoef� cients. In practice, simpli-
� ed forms of the Bortz attitudechangedifferentialequationare used
for the high-speed function. References 7 and 8 thereby provided a
more general form of the two-speed attitude updating approach in
which the moderate-speed,higher-order algorithm and high-speed,
simpli� ed algorithm can be independently tailored to meet particu-
lar applicationrequirements.(Interestingly,Ref. 8 proposed an ana-
log implementation for a simpli� ed version of the high-speed algo-
rithm.) A secondarybene� t derived from the Ref. 7 and 8 two-speed
approach (proposed using direction cosines for the exact moderate-
speed attitude update operation) is that the moderate-speed por-
tion can also be formulated with an analytically exact, closed-form
quaternion updating algorithm using the identical high-speed input
applied for direction cosine updating. Thus, the new two-speed ap-
proach has equal accuracy for either direction cosine or quaternion
updating,both of which derive from analyticallyexact, closed-form

equations (assuming that Taylor series expansion for trigonometric
coef� cients is carried out to comparable accuracy order).

Most modern-day strapdown INSs for aircraft utilize attitude up-
dating algorithms based on a two-speed approach. The repetition
rate for the moderate-speed algorithm portion, e.g., 50–200 Hz, is
typically designed,based on maximum angular rate considerations,
to minimize power series truncation error effects in the moderate-
and high-speed algorithms. The repetition rate for the high-speed
algorithm, e.g., 1–4 kHz for an aircraft INS with 1 n mph 50 per-
centile radial position error rate, is designed, based on the antici-
pated strapdown inertial sensor assembly vibration environment, to
accurately account for vibration-induced coning effects. Continu-
ing two-speed attitude algorithm development work has centered
on variations for the high-speed integration function. Originally
conceived as a simple � rst-order algorithm,6 today’s high-speed
attitude algorithms have taken advantage of increased throughput
capabilities in modern-day computers and become higher order for
improved accuracy (Refs. 9–11 and 12, Sec. 7.1). While the atti-
tude updating function has been evolving to its current form, very
little parallel work has been published on the development of the
companion strapdown INS algorithms for acceleration transforma-
tion/velocity integrationand position integration (the subject of the
Ref. 13, Part 2, paper).

This paper, Part 1, de� nes the overall design requirement for
the strapdown inertial navigationintegration function and describes
a comprehensive design process for developing the attitude inte-
gration algorithms based on the two-speed approach. The material
presentedis a condensedversionof Ref. 12, Sec. 7.1 (which is an ex-
pansion of material in Ref. 9), emphasizinga more rigorous analyt-
ical formulation and the use of exact closed-form equations,where
possible, for ease in computer software documentation/validation
(which is also consistentwith modern-day � ight computer technol-
ogy). Included in the attitude algorithmdesign process is a rigorous
treatmentofmethodsfor accountingfornavigationcoordinateframe
rotation during the attitude update time periods.

The paper is organizedas follows.SectionII providesbackground
material regarding coordinate frames and attitude parameters used.
Section III provides a complete set of typical strapdown inertial
navigation attitude, velocity, and position equations in continuous
differential equation format, which serves as a framework for the
equivalent algorithm design process. Section IV develops the two-
speed attitude integration algorithm (for both direction cosine and
quaternionformulationsincludingnavigationframerotationeffects)
in a generic form for the high-speed portion and describes a par-
ticular form to illustrate the design of one of the classical high-
speed, second-order coning computation algorithms. A tabular ref-
erence summary of the attitude integration algorithms is presented
in Sec. V. Section VI provides a general discussion of the process
followed in selecting algorithms for a particular application and es-
tablishingtheir executionrates.Concludingremarks are providedin
Sec. VII.

Finally, it is important to recognize that although the original
intent of the two-speed approach was to overcome throughput lim-
itations of early computer technology (1965–1975), that limitation
is rapidly becoming insigni�cant with continuing rapid advances in
modern high-speed computers. This provides the motivation to re-
turn to a simpler single-speedalgorithmstructure whereby all com-
putations are executed at a repetition rate that is suf� ciently high
to accurately account for multiaxis high-frequencyangular rate and
accelerationrecti� cation effects. The two-speed structurepresented
in both Parts 1 and 2 is compatible with compression into such a
single-speed format as explained in the particular sections where
the algorithms are formulated.

II. Coordinate Frames and Attitude
Orientation Relationships

This section de� nes the coordinate frames used in this paper and
generically describes the properties of the direction cosine matrix,
the attitude quaternion, and the rotation vector, attitude parameters
utilizedto representtheangularrelationshipbetweentwo coordinate
frames.
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A. Coordinate Frame De� nitions
A coordinate frame is an analytical abstraction de� ned by three

consecutivelynumbered (or lettered) unit vectors that are mutually
perpendicular to one another in the right-hand sense. It can be vi-
sualized as a set of three perpendicularlines (axes) passing through
a common point (origin) with the unit vectors emanating from the
origin along the axes. In this paper, the physical locations of the
coordinate frame origins are arbitrary. A vector’s components (or
projections) in a particularcoordinateframe equal the dot productof
the vector with the coordinate frame unit vectors. The vectors used
in this paper are classi� ed as free vectors and, hence, have no pre-
ferred location in coordinate frames in which they are analytically
described.

The coordinate frames are de� ned as follows.
1) The E frame is the Earth � xed coordinate frame used for

position location de� nition. It is typically de� ned with one axis
parallel to the Earth polar axis with the other axes � xed to the Earth
and parallel to the equatorial plane.

2) The N frame is the navigation coordinate frame having its
Z axis parallel to the upward vertical at the local Earth surface
referenced position location. It is used for integrating acceleration
into velocity and for de� ning the angular orientation of the local
vertical in the E frame.

3) The L frame is the locally level coordinateframe parallel to the
N frame but with Z axis parallel to the downward vertical, and X
and Y axes along N frame Y and X axes. It is used as the reference
for describing the strapdown sensor coordinate frame orientation.

4) The B frame is the strapdown inertial sensor coordinate frame
(body frame) with axes parallel to nominal right-handedorthogonal
sensor input axes.

5) The I frame is the nonrotating inertial coordinate frame used
as a reference for angular rotation measurements. Particular orien-
tations selected for the I frame are discussed in the sections where
its orientation is pertinent to analytical operations.

B. Attitude Parameter De� nitions
The direction cosine matrix is de� ned as a square matrix whose

columns are an orthogonal set of unit vectors, each equal to a unit
vector along a coordinate axis of frame A2 as projected onto the
axes of coordinate frame A1:

C A1
A2

D
£
uA1

1A2
uA1

2A2
uA1

3A2

¤
(1)

where uA1
i A2

is the unit vector along A2 frame axis i projected on
coordinate frame A1 axes.

From this basic de� nition it can be demonstrated that the element
in row i , column j of C A1

A2
equals the cosine of the angle between

frame A1 axis i and frame A2 axis j , that the transpose of C A1
A2

equals its inverse, the columns of C A1
A2

transposeequal frame A1 axis
unit vectors projected on frame A2 axes, and the product of C A1

A2
with a vector projected on frame A2 axes equals the components of
the vector projected on frame A1 axes (and the converse for C A1

A2
transpose):

V A1 D C A1
A2

V A2 ; V A2 D
¡
C A1

A2

¢T
V A1 D C A2

A1
V A1 (2)

Equations (2) can be used to derive the directioncosinematrix chain
rule,

C A3
A1

D C A3
A2

C A2
A1

(3)

The rotation vector de� nes an axis of rotation and magnitude for
rotation about the axis. Imagine frame A1 being rotated from its
starting attitude to a new attitude by rotation about the rotation
vector through an angle equal to the rotation vector magnitude.
Now call frame A2 the new attitude of frame A1. By this de� nition
of frame A2 , an arbitrarily de� ned rotation vector uniquely de� nes
the attitude of frame A2 relative to the original frame A1 attitude.
Conversely, for a given attitude of frame A2 relative to frame A1, a
rotation vector can be de� ned that is consistent with this attitude.
Thus, a rotationvector can be used to de� ne the attitudeof frame A2

relative to frame A1. Analytically, it can be shown (Refs. 4, 9, and

12, Sec. 3.2.2.1) that the relationship between the rotation vector
and the direction cosine matrix is given by

C A1
A2

D
µ

I C
sin Á

Á
.Á£/ sin Á C

.1 ¡ cos Á/

Á2
.Á£/2

¶
(4)

where Á and Á are the rotation vector and its magnitude. A unique
property of the rotation vector is that it has identical components in
the A1 and A2 frames (Ref. 12, Sec. 3.2.2.1); hence, Á in Eq. (4)
represents either ÁA1 or ÁA2 .

The attitude quaternion is a four vector, i.e., four components,
de� ned as a function of the rotation vector (Refs. 4 and 9; 12, Sec.
3.2.4; and 14, pp. 73–76)

q A1
A2

D

2

4
cos 0:5 Á

sin 0:5 Á

0:5 Á
0:5 Á

3

5 (5)

From Eq. (5), it is easilyveri� ed that the sum of the squaresof theq A1
A2

elements is unity. The coordinate frame transformation equations
associated with q A1

A2
are in quaternion algebra (Refs. 4, 9, and 12,

Sec. 3.2.4.1)

V A1
q D q A1

A2
V A2

q q
A1¤
A2

; V A2
q D q

A1¤
A2

V A1
q q A1

A2
D q A2

A1
V A1

q q
A2¤
A1

(6)

Equations (6) can be used to derive the attitude quaternion chain
rule,

q A3
A1

D q A3
A2

q A2
A1

(7)

C. Attitude Parameter Rate Equations
The rates of change of the Sec. II.B attitude parameters (Refs. 4,

8, 9, and 12, Sec. 3.3) are given by

PC A1
A2

D C A1
A2

¡
!A2

I A2
£

¢
¡

¡
! A1

I A1
£

¢
C A1

A2
(8)

Pq A1
A2

D 1
2
q A1

A2
!

A2
I A2q

¡ 1
2
!

A1
I A1q

q A1
A2

(9)

PÁ D ! A1
A1 A2

C 1

2
Á £ ! A1

A1 A2

C 1

Á2

µ
1 ¡ Á sinÁ

2.1 ¡ cos Á/

¶
Á £

¡
Á £ ! A1

A1 A2

¢
(10)

III. Continuous Form Strapdown
Inertial Navigation Equations

The differential equations that de� ne the primary operations typ-
ically performed in a strapdown inertial navigation system (Refs. 9;
12, Chap. 4; and 15, pp. 77–103 and 156–177) are given as follows.

Attitude rate

PC L
B D C L

B

¡
! B

I B £
¢

¡
¡
!L

I L £
¢
C L

B (11)

or, alternatively,

Pq L
B D 1

2
q L

B !B
I Bq

¡ 1
2 !L

I Lq
q L

B (12)

Local level frame rotation rate

!L
I L D C L

N

¡
!N

I E C !N
E N

¢
(13)

!N
I E D

¡
C E

N

¢T
!E

I E (14)

!N
E N D FC

¡
uN

Z N £ vN
¢

C ½Z N uN
Z N (15)

Acceleration transformation

aL
SF D C L

B aB
SF (16)

or, alternatively,

aL
SFq

D q L
B aB

SFq
q L¤

B (17)

aN
SF D C N

L aL
SF (18)
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Velocity rate

gN
P D gN ¡

¡
!N

I E £
¢¡

!N
I E £

¢
RN (19)

PvN D aN
SF C gN

P ¡
¡
!N

E N C 2!N
I E

¢
£ vN (20)

Position rate
PC E

N D C E
N

¡
!N

E N £
¢

(21)

Ph D uN
Z N ¢ vN (22)

where

R = position vector from Earth’s center to the INS
v = velocity (rate of change of position) relative to the

Earth de� ned analytically as the time derivative of
R in the E frame

h = altitude above the Earth de� ned as the distance from
the INS to the Earth surface measured along a line
from the INS that is perpendicular to a tangent plane
on the Earth’s reference geoid16 surface

FC = curvature matrix (3 £ 3) that is a function of position
(C E

N ; h) with elements 3,i and i ,3 equal to zero and the
remaining elements symmetrical about the diagonal.
For a spherical Earth model, the remaining elements
are zero off the diagonal and the reciprocal of the
radial distance from Earth center to the INS on the
diagonal. For an oblate Earth model, the remaining
terms represent the local curvature on the Earth
surface projected to the INS altitude (see Ref. 12,
Sec. 5.3, for closed-form expression)

uZ N = unit vector upward along the geodetic vertical
(the Z axis of the N frame)

½Z N = vertical component of !N
E N ; the value selected for

½Z N depends on the type of N frame utilized
(e.g., wander azimuth or free azimuth designed
to assure that !N

E N is nonsingular for all Earth
locations (Refs. 12, Sec. 4.6, and 15, pp. 88–99)

aSF = speci� c force acceleration de� ned as the acceleration
relative to nonrotating inertial space produced by
applied nongravitationalforces, measured by
accelerometers

g = mass attraction gravitational acceleration or
gravitation (a function of R)

gP = plumb-bob gravity or gravity, which, for a stationary
INS, lies along the line of a plumb bob

Analytical models for g can be found in Refs. 16; 17, Sec. 4.4; and
18, Sec. 6.3. See Ref. 12, Sec. 5.4.1, for N frame components of
gP .

In performing the strapdown inertial navigation function, the
strapdown INS computer integrates the latter attitude rate, veloc-
ity rate, and position rate equations using suitable integration algo-
rithms.

The following points are worthy of note regarding the form of
the latter navigation equations. Both direction cosine and quater-
nion attitude forms are shown for the body attitude rate/acceleration
transformation operations. Either can be used in practice with vir-
tually identical results. The velocity is de� ned relative to the Earth
(E frame) and the velocity rate equation is written in the locally
level de� ned N frame (for integration into velocity). This is typi-
cal for many terrestrial navigation applications, e.g., aircraft INS.
Other coordinate frame options are also used for velocity de� nition
and the velocity rate equation, e.g., for tactical and strategic mis-
sile guidance.The position rate equationsde� ne positionas altitude
plus the angular orientation of the N frame relative to the E frame
[from which latitude and longitude can be extracted and R calcu-
lated (Refs. 12, Secs. 4.5.1 and 4.5.3, and 15, pp. 88, 89)]. Position
can also be de� ned for the position rate equation as simply R [from
whichC E

N andh canbe calculated(Ref. 12,Sec. 4.5.4)]. Altituderate
equation(22) appears trivial,butnot necessarilywhen one considers
a rotatingoblate Earth model, a rotating N frame over the Earth, and
the stated altitudede� nition. Reference12, Secs. 4.4 and 5.5, shows

that Eq. (22) is exact for a rotating oblate Earth model. If vertical
channel gravity/divergence control is to be incorporated to prevent
exponentiallyunstable vertical channel error growth, Eqs. (20) and
(22) would include an additional vertical control term (Refs. 12,
Sec. 4.4.1; 15, pp. 102–103; and 18, Sec. 10.3).

IV. Attitude Update Algorithms
In this section we develop algorithmic forms for direction cosine

matrix rate equation (11) and attitude quaternion rate equation (12)
suitable for integration in a digital computer.The algorithmswill be
structuredusing what is now the traditional two-speed approach6¡8

in which analytically exact closed-form equations are applied for
the basic attitude update function using inputs from a higher speed
algorithmdesignedto measureattitudechangeover thebasicattitude
update cycle.

A. Attitude Direction Cosine Matrix
The updating algorithm for the C L

B direction cosine matrix is
designed to achieve the same numerical result at the attitude update
times as would the formal continuousintegrationof the Eq. (11) PC L

B
expressionat the same time instant.The algorithmis constructedby
envisioning the body B frame and local level L frame orientation
histories in the digital updating world [producedin Eq. (11) by !B

I B
and !L

I L ] as being constructed of successive discrete orientations
relative to nonrotating inertial space (I ) at each update time instant.
To be completelygeneral,we also allow thatC L

B updatingoperations
for L frame angular motion may not necessarily occur at the same
time instant that C L

B is updated for B frame motion, e.g., for a
multirate digital computation loop structure where C L

B is updated
at a higher rate for B frame rotation than for L frame rotation. In
the interests of minimizing computer throughput requirements, the
software architecture might have L frame updates occurring 5–10
times slower than B frame updates. The nomenclature we adopt to
describe the coordinate frame orientation history is as follows:

BI.m/
= discrete orientation of the body B frame in

nonrotating inertial space I at computer
update time tm

m = computer cycle index for B frame angular
motion updates to C L

B
L I.n/

= discrete orientation of the locally level L frame
in nonrotating inertial space (I ) at computer
update time tn

n = computer cycle index for L frame
angular motion updates to C L

B

With these de� nitions, the general updating algorithm for C L
B is

constructed as follows using the Eq. (3) direction cosine matrix
product chain rule:

C
L I.n ¡ 1/

B I.m /
D C

L I.n ¡ 1/

B I.m ¡ 1/
C

B I.m ¡ 1/

BI.m /

(23)

C
L I.n/

B I.m/
D C

L I.n/

L I.n ¡ 1/
C

L I.n ¡ 1/

B I.m/

(24)

where

C
L I.n ¡ 1/

B I.m ¡ 1/
= C L

B relating the B frame at time tm ¡ 1 to
the L frame at time tn ¡ 1

C
L I.n/

B I.m/
= C L

B relating the B frame at time tm to
the L frame at time tn

C
B I.m ¡ 1/

B I.m/
= direction cosine matrix that accounts

for B frame rotation relative to inertial
space from its orientation at time tm ¡ 1

to its orientation at time tm
C

L I.n/

L I.n ¡ 1/
= direction cosine matrix that accounts for

L frame rotation relative to inertial space
from its orientation at time tn ¡ 1

to its orientation at time tn

The algorithmdescribedby Eqs. (23) and (24) relates body B frame
and local-level L frame orientationsat separate times and provides
for B and L frame inertial angularmotion updates to C L

B at different
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update rates. Unlike the B frame (which can be rotating dynami-
cally at 200–300 deg/s), the inertial angular rate of the local level
L frame is generally small, equal to Earth’s rotation rate plus L
frame angular rate relative to the Earth (transport rate, which is
typically never larger than a few Earth rates). Consequently, the
L frame update can generally be performed at a lower rate than
the B frame update with comparable accuracy. Note the update
rate requirement for B and L frame motion is based, in part, on
minimizing errors in the approximatehigh-speed algorithmused to
measure attitude change (see Secs. IV.A.1 and IV.A.2). The B and
L frame motion updates to C L

B are performed by the C
B I.m ¡ 1/

B I.m /
and

C
L I.n/

L I.n ¡ 1/
terms in Eqs. (23) and (24), algorithmsforwhich arederived

separately next.

1. Body Frame Rotation
Equation (23) updates the C L

B attitude direction cosine matrix
using C

B I.m ¡ 1/

BI.m/
to account for angular rate of the strapdown sen-

sor (body) B frame relative to nonrotating space !B
I B . The formal

de� nition for C
BI.m ¡ 1/

B I.m/
is

C
BI.m ¡ 1/

B I.m/
D I C

Z tm

tm ¡ 1

PC
B I.m ¡ 1/

B.t /
dt (25)

where B.t/ is the B frame attitude at an arbitrary time in the inter-
val tm ¡ 1 to tm .

The C
B I.m ¡ 1/

B I.m/
matrix can also be expressed in terms of a rotation

vector de� ning the frame BI.m/
attitude relative to frame BI.m ¡ 1/

.
Applying Eq. (4) using Taylor series expansion for the coef� cient
terms obtains

C
BI.m ¡ 1/

BI.m/
D I C sin Ám

Ám
.Ám £/ C 1 ¡ cosÁm

Á2
m

.Ám£/.Ám £/

sin Ám

Ám
D 1 ¡

Á2
m

3!
C

Á4
m

5!
¡ ¢ ¢ ¢ (26)

.1 ¡ cos Ám/

Á2
m

D 1

2!
¡ Á2

m

4!
C Á4

m

6!
¡ ¢ ¢ ¢

where Ám is the rotation vector de� ning the frame BI.m/
attitude

relative to frame BI.m ¡ 1/
at time tm . The Ám rotation vector can be

computedby treatingÁ as a general rotationvectorde� ning the gen-
eral B frame attitude relative to frame BI.m ¡ 1/

for time greater than
tm ¡ 1. Then Á is calculatedas the integral from time tm ¡ 1 of the gen-
eral PÁ equation,with Á forEq. (26) evaluatedas the integralsolution
at time tm . Treating frame BI.m ¡ 1/

for Á de� nition as the nonrotating
inertial reference frame I , we obtain the following for the general
PÁ expression by application of Eq. (10) with general frame A2 re-
placed by body frame B and general frame A1 replaced by inertial
frame I for angular rate description:

PÁ D !B
I B C 1

2
Á £ ! B

I B C 1

Á2

³
1 ¡ Á sin Á

2.1 ¡ cos Á/

´
Á £

¡
Á £ !B

I B

¢

(27)

where Á is the rotation vector de� ning the general attitude of frame
B relative to frame BI.m ¡ 1/

for time greater than tm ¡ 1 . Equation (27),
commonly referred to as the Bortz equation,8 relates the change in
B frame attitude to the B frame inertial angular rate !B

I B that would
be measured by strapdown angular rate sensors.

The attitude rotation vector Ám for Eq. (26) is then obtained as
the integral of Eq. (27) from time tm ¡ 1, evaluated at time tm

Á.t/ D
Z t

tm ¡ 1

PÁ.¿/ dt ; Ám D Á.tm / (28)

where ¿ is the running integrationtime variable.To reduce the num-
ber of computationsinvolved in calculating PÁ with Eq. (27), simpli-
fying assumptions are incorporated.For example, through a power

series expansion, the scalar multiplier of the Á £ .Á £ !B
I B / term

in Eq. (27) can be approximated as

1
Á2

³
1 ¡ Á sin Á

1 ¡ cos Á

´
D 1

12

³
1 C 1

60
Á2 C ¢ ¢ ¢

´
¼ 1

12
(29)

hence, Eq. (27) to second order in Á is given by

PÁ ¼ !B
I B C 1

2 Á £ !B
I B C 1

12 Á £
¡
Á £ !B

I B

¢
(30)

Through simulation and analysis (analytical expansion under hy-
pothesizedanalyticallyde� nable angular motion conditions), it can
be shown that to second-order accuracy in Á

1
2

¡
Á £ ! B

I B

¢
C 1

12
Á £

¡
Á £ !B

I B

¢
¼ 1

2
® £ ! B

I B (31)

where

®.t/ D
Z t

tm ¡ 1

!B
I B d¿ (32)

Equation (31) is extremely signi� cant because it enablesEq. (27) to
be simpli� ed to second-order accuracy, i.e., in error to third order
in Á, by retaining only � rst-order terms. Thus, Eq. (27) becomes to
second-order accuracy

PÁ ¼ !B
I B C 1

2 ® £ !B
I B (33)

Substituting Eq. (33), Eq. (28) is given by

Ám D
Z tm

tm ¡ 1

£
!B

I B C 1
2

¡
®.t/ £ ! B

I B

¢¤
dt (34)

Finally, with Eq. (32) we obtain

Ám D ®m C ¯m (35)

with

®.t/ D
Z t

tm ¡ 1

! B
I B d¿; ®m D ®.tm/

(36)

¯m D 1

2

Z tm

tm ¡ 1

¡
®.t/ £ !B

I B

¢
dt

where ¯m is the coning attitude motion from tm ¡ 1 to tm . The ¯m
term has been coined the coning term because it measures the ef-
fects of coning motion components present in !B

I B . Coning motion
is de� ned as the condition whereby an angular rate vector is itself
rotating.For !B

I B exhibitingpure coningmotion(the! B
I B magnitude

being constant but the vector rotating), a � xed axis in the B frame
that is approximatelyperpendicularto the plane of the rotating !B

I B
vector will generate a conical surface as the angular rate motion
ensues (hence, the term coning to describe the motion). Under con-
ing angular motion conditions, B frame axes perpendicular to !B

I B
appear to oscillate (in contrast with nonconing or spinning angular
motion in which axes perpendicularto !B

I B rotate around !B
I B ).

For situations where !B
I B is not rotating, it is easily seen from

Eq. (36) that ®.t/ will be parallel to !B
I B ; hence, the cross product

in the ¯m integrand will be zero and ¯m will be zero. Under these
conditions, Eq. (34) reduces to the simpli� ed form

Ám D
Z tm

tm ¡ 1

!B
I B dt (37)

when ! B
I B is not rotating. Note that Eq. (37) also applies to the

exact Ám Eqs. (27) and (28) for a nonrotating !B
I B , i.e., without

approximation.This is readily veri� ed by observing from Eq. (27)
that Á.t/ will initially be aligned with !B

I B as the PÁ.t/ integration
begins and will then remain parallel to !B

I B because its cross prod-
ucts with Á.t/ in the PÁ.t/ expressionwill remain zero. Under these
conditions, Eqs. (27) and (28) also reduce to Eq. (37).

Integrated angular rate and coning increment algorithms are dis-
cussed next. A discrete digital algorithm form of the ®m integrated
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rate and ¯m coning expressions in Eq. (36) can be developed by
considering ¯m to be the value at t D tm of the general function
¯.t/, where from Eq. (36)

¯.t/ D 1

2

Z t

tm ¡ 1

¡
®.¿ / £ !B

I B

¢
d¿ (38)

Let us now consider the integration of Eq. (38) as divided into a
portion up to and after a general time tl ¡ 1 within the tm ¡ 1 to tm
interval so that Eq. (38) is equivalently

¯.t/ D ¯l ¡ 1 C 1¯.t/; ¯m D ¯.tm /

(39)
1¯l D 1

2

Z tl

tl ¡ 1

¡
®.t/ £ !B

I B

¢
dt

where ¯l ¡ 1 is the value of ¯.t/ at t D tl ¡ 1 and l is the computer
cycle index for t D tl cycle times. Note that by its de� nition, the
l cycle index is faster than the m cycle index. We now de� ne the
next l cycle time point tl within the tm ¡ 1 to tm interval so that at tl ,
Eq. (39), including initial conditions, become

¯l D ¯l ¡ 1 C 1¯l; ¯m D ¯l .tl D tm /

¯l D 0 at t D tm ¡ 1
(40)

1¯l D
1

2

Z tl

tl ¡ 1

¡
®.t/ £ !B

I B

¢
dt

Through a similar process, the ®.t/ expression for Eq. (40) is ob-
tained by manipulation of ®.t/ in Eqs. (36) as

®.t/ D ®l ¡ 1 C 1®.t/; 1®.t/ D
Z t

tl ¡ 1

!B
I B d¿

(41)
1®l D 1®.tl /; ®l D ®l ¡ 1 C 1®l

®m D ®l .tl D tm/; ®l D 0 at t D tm ¡ 1

With Eqs. (41), Eqs. (40) are equivalently

1¯l D 1

2
.®l ¡ 1 C 1®l / C 1

2

Z tl

tl ¡ 1

¡
1®.t/ £ !B

I B

¢
dt

(42)
¯l D ¯l ¡ 1 C 1¯l; ¯m D ¯l .tl D tm /

¯l D 0 at t D tm ¡ 1

Equations(41)and (42) constitutethe constructof a digitalrecursive
algorithmat the l computercycle rate for calculating®m and the ¯m
coning term as a summation of changes in ®, ¯ over the tl ¡ 1 to tl
interval. It remains to determine a digital equivalent for the Eq. (42)
integral term in 1¯l .

Continuing work in attitude algorithm developmenthas centered
on the design of digital algorithms for evaluating the coning equa-
tion (42) integral term. In general, the methods utilized assume a
general analytical form for the angular rate pro� le !B

I B in the tl ¡ 1

to tl time interval, e.g., a truncated general polynomial in time. The
Eq. (42) integral is then analyticallydetermined as a function of the
general rate pro� le coef� cients, e.g., the polynomial coef� cients.
Finally, the coef� cients for the angular rate pro� le are calculated to
� t successive integrated angular rate increment measurements. For
the example that follows, the angular rate pro� le is approximatedas
a constantplus a linear buildup in time with the constant and ramp-
ing coef� cients calculated from the current and previous values of
1®l . A more sophisticatedversionof this algorithmmight includea
parabolic-with-timeterm in the assumed angular rate pro� le, utiliz-
ing the current, past, and past-past values of 1®l for coef� cient de-
termination.Recent work in this area10;11 calculates the angular rate
pro� le coef� cients from angular rate sensor measurements taken
within the tl ¡ tl ¡ 1 time interval (an extensionof the techniquepro-
posed in Ref. 19 for single-speedalgorithm enhancement), thereby
incorporatinga third computationcycle rate into the overall attitude

updateprocessarchitecture:attitude(C L
B ) updateandconing(¯l ) up-

date (as discussed thus far) and sensor sampling for the coning
update.Re� nements on the latter technique10;11 utilize a general an-
gular rate pro� le that is de� ned directly in terms of its impact on
the Eq. (42) integral as a sum of weighted cross products between
successive integrated angular rate increment sensor samples taken
over the tl ¡ tl¡1 time interval (similar to the approach presented in
Ref. 19 over the tm ¡ 1 to tm interval). The weighting coef� cients in
the latter case are then optimized for best average performance in a
pure coning environment, i.e., !B

I B constant in magnitude,but rotat-
ing. Each of the latter design approaches are based on curve � tting
techniquesfor an assumed angular rate pro� le shape.Each resulting
algorithm behaves differently in rate environments for which it was
not designedand in the presenceof angular rate sensor quantization
noise. Selection of the preferred algorithm should include simula-
tion analysis to con� rm acceptable performance under operational
rate environments and sensor noise characteristics.

We concludethis sectionby providingan exampleof an algorithm
for the Eq. (42) integral term based on the body rate term ! B

I B being
approximated to � rst order by the truncatedpower series expansion

!B
I B ¼ A C B.t ¡ tl ¡ 1/; A and B D const (43)

References 9–11 and 12, Sec. 7.1.1.1.1, show that for the Eq. (43)
motion over the interval from tl ¡ 2 to tl

Z tl

tl ¡ 1

¡
1®.t/ £ ! B

I B

¢
dt D 1

12
.1®l ¡ 1 C 1®l / (44)

Substituting Eq. (44) into Eq. (42) then yields

1¯l D 1
2

¡
®l ¡ 1 C 1

6 1®l ¡ 1

¢
£ 1®l (45)

Equation (45)hasbeen classi� ed as a second-orderalgorithmfor ¯m
because it includescurrent and past l cycle 1® products in the 1¯l
equation. From the analysis leading to Eq. (44), the l and l ¡ 1 1®
product term in 1¯l , i.e., the 1

6
term, stems from the approximation

of linearly ramping angular rate in the tl ¡ 2 to tl time interval. If the
angular rate was approximated as a parabolically varying function
of time, a third-order algorithm would result containing l, l ¡ 1,
and l ¡ 2 1® products. If the angular rate was approximated as a
constant over tl ¡ 1 to tl , the 1

6 term for 1¯l in Eq. (45) would van-
ish, resulting in a � rst-order algorithm for ¯m . Finally, if angular
rates are slowly varying, we can approximate ¯m as being equal
to zero. Alternatively (and more accurately), we can set the l cycle
rate equal to the m cycle rate, which equates ¯m in Eqs. (45) to
1¯l calculated once at time tm [and noting from the initial con-
dition de� nition in Eq. (41) that ®l ¡ 1 would be zero]. The latter
algorithm was developed in Ref. 4. Note that setting the l and m
rates equal can also be achieved by increasing the m rate to match
the l rate. The result is a single, high-speed,higher-orderalgorithm
with a simpler software architecture than the two-speed approach,
but requiringmore throughput.Continuingadvances in the speed of
modern-daycomputersmay make this the preferredapproachfor the
future.

The overall digital algorithm for ®m and ¯m in Eq. (35) is deter-
mined from the given results as a composite of Eqs. (41), (42), and
(45)

1®l D
Z tl

tl ¡ 1

d®; ®l D ®l ¡ 1 C 1®l

(46)
®m D ®l .tl D tm/; ®l D 0 at t D tm ¡ 1

1¯l D 1
2

¡
®l ¡ 1 C 1

6 1®l ¡ 1

¢
£ 1®l ; ¯l D ¯l ¡ 1 C 1¯l

(47)
¯m D ¯l.tl D tm /; ¯l D 0 at t D tm ¡ 1
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where

d® = differential integrated angular rate increment,
i.e., analytical representationof pulse output from
strapdown angular rate sensors, !B

I B dt
1®l = summation of integrated angular rate output

increments from angular rate sensors

2. Local Level Frame Rotation
Equation (24) updates the C L

B attitudedirectioncosine matrix us-
ingC

L I.n/

L I.n ¡ 1/
to accountfor angularrateof thelocal-levelcoordinateL

frame relative to nonrotatingspace !L
I L . The derivation for C

L I.n/

L I.n ¡ 1/

directlyparallels that used to determineC
B I.m ¡ 1/

BI.m /
in Sec. IV.A.1. The

formal de� nition for C
L I.n/

L I.n ¡ 1/
is

C
L I.n/

L I.n ¡ 1/
D I C

Z tn

tn ¡ 1

PC L.t/
L I.n ¡ 1/

dt (48)

where L.t/ is the L frame attitude at an arbitrary time in the interval
tn ¡ 1 to tn .

The C
L I.n/

L I.n ¡ 1/
matrix can also be expressed in terms of the rotation

vector de� ning the frame L I.n/
attitude relative to frame L I.n ¡ 1/

.
Applying Eq. (4) with Taylor series expansion for the coef� cient
terms obtains

C
L I.n/

L I.n ¡ 1/
D I ¡ sin ³n

³n
.³n£/ C .1 ¡ cos³n/

³ 2
n

.³n£/.³n£/

sin ³n

³n
D 1 ¡ ³ 2

n

3!
C ³ 4

n

5!
¡ ¢ ¢ ¢ (49)

.1 ¡ cos³n/

³ 2
n

D
1

2!
¡

³ 2
n

4!
C

³ 4
n

6!
¡ ¢ ¢ ¢

where ³n is the rotation vector de� ning the frame L I.n/
attitude at

time tn relative to the frame L I.n ¡ 1/
attitude at time tn ¡ 1 . Note in

Eq. (49) that the sign for the [.sin ³n=³n/.³n£/] term is negative in
contrast with the similar term in the Eq. (26) C

BI.m ¡ 1/

B I.m/
expression.

This is because the C
L I.n/

L I.n ¡ 1/
matrix has the opposite phase sense

from C
BI.m ¡ 1/

BI.m/
[or C A2

A1
in Eq. (4)] in that C

L I.n/

L I.n ¡ 1/
transformsvectors

from L I.n ¡ 1/
to L I.n/

, whereasC
BI.m ¡ 1/

BI.m/
transformsvectors from BI.m /

to BI.m ¡ 1/
. As such, the C

L I.n/

L I.n ¡ 1/
form in Eq. (49) is the transpose of

the Eq. (26) C
BI.m ¡ 1/

BI.m/
expression form.

Because the tn ¡ 1 to tn update cycle is relatively short, ³n will be
very small in magnitude.Because !L

I L is small and slowly changing
overa typicaltn ¡ 1 to tn updatecycle(dueto small changesin velocity
and position over this time period) the L frame rate vector !L

I L can
be approximatedas nonrotating.The result is that ³n for Eq. (49) can
be calculated as the integral of the simpli� ed form of the Eq. (10)
rotation vector rate equation whereby the cross-product terms are
neglected,

³n ¼
Z tn

tn ¡ 1

!L
I L dt (50)

We note in passing that based on the smallness of ³n as already
discussed,Eq. (49) for C

L I.n/

L I.n ¡ 1/
can also be simpli� ed. For example,

a second-order version (accurate to second order in ³n ) is from
Eq. (49),

C
L I.n/

L I.n ¡ 1/
¼ I ¡ .³n£/ C 1

2 .³n£/.³n£/ (51)

The computer memory/throughputadvantagesof utilizinga simpli-
� ed form of Eq. (49) for C

L I.n/

L I.n ¡ 1/
[such as Eq. (51)] are trivial for

today’s modern computer technology compared to the disadvan-
tages of increased software validation/documentation complexity
and loss in accuracy. The accuracy loss is generally minor during

navigation; however, it might not be negligible during initial align-
ment operations (prior to the start of inertial navigation) where the
C

L I.n/

L I.n ¡ 1/
matrix is used to apply tilt updates to C L

B (Refs. 12, Sec.
6.1.2, and 15, pp. 120–121). Initial tilt alignment corrections to C L

B
can be fairly large, e.g., 0.1–1.0 deg, which can produceundesirable
errors in C L

B during the initial alignment process if too simpli� ed a
version of Eq. (49) is utilized. The closed-loop servo action of the
initial alignment operations would eventually correct the resulting
attitude error generated in C L

B ; however, it could leave a residual or-
thogonality/normalityerrorin theC L

B rows(andcolumns). The result
would be the requirementto includean orthogonality/normalization
correction algorithm (see Sec. IV.A.3) as an outer loop in the C L

B
update processing.

A discrete digital algorithm for the Eq. (50) ³n integral can be
constructedby � rst combining Eqs. (13) and (15) to obtain the !L

I L
integrand and then approximating

!L
I L ¼ C L

N

µ
!N

I E
n ¡ 1

2

C ½Z N
n ¡ 1

2

uN
Z N C FC

n ¡ 1
2

¡
uN

Z N £ vN
¢¶

(52)

where the subscriptn ¡ 1
2

is the value for ( ) midway between times
tn ¡ 1 and tn . Using Eq. (52) in Eq. (50) then obtains

³n ¼ C L
N

µ
!N

I E
n¡ 1

2

Tn C½Z N
n¡ 1

2

uN
Z N Tn CFC

n¡ 1
2

³
uN

Z N £
jX

1RN
m

´¶

(53)
with !N

I E evaluated using Eq. (14) and

1RN
m ´

Z tm

tm ¡ 1

vN dt (54)

where Tn is the computer n cycleupdate period tn ¡ tn ¡ 1 and j is the
number of computer m cycles over the tn ¡ 1 to tn n-cycle computer
update period.

The subscriptedn ¡ 1
2 terms in Eq. (53) are all functions of posi-

tion, which (from Part 2, Ref. 13) is updated following the attitude
updateat the n-cycle rate.Hence, to calculatethese terms in Eq. (52),
an approximateextrapolationformula must be used based on previ-
ously computed values of the ( ) parameters. For example, a linear
extrapolation formula using the last two computed values for ( )
would be

. /n¡ 1
2

¼ . /n ¡ 1 C 1
2 [. /n ¡ 1 ¡ . /n ¡ 2] D 3

2 . /n ¡ 1 ¡ 1
2 . /n ¡ 2 (55)

In Part 2 (Ref. 13) we � nd that the vN velocity update follows the
attitude update. Therefore, current and past m-cycle values of vN

are available for evaluating the Eq. (54) integral for 1RN
n . Using a

trapezoidal integration algorithm for Eq. (54) obtains

1RN
m ¼ 1

2

¡
vN

m C vN
m ¡ 1

¢
Tm (56)

where Tm is the computer m cycle update period tm ¡ tm ¡ 1.
Part 2 (Ref. 13) also develops a high-resolutionversion of 1RN

m
for precision position updating that accounts for dynamic angular
rates and accelerationswithin the m ¡ 1 to m cycle update interval.

3. Normalization and Orthogonalization
From its basic de� nition in Sec. II.B, the columns (and rows)

of C L
B represent orthogonal unit vectors, which, therefore, should

be unity in magnitude (normality condition) and mutually orthog-
onal to one another (orthogonality condition). In addition to the
basic C L

B update algorithms already described, a normalizationand
orthogonalization algorithm is frequently included to ensure that
the C L

B rows and columns remain normal and orthogonal. Factors
that cause C L

B orthogonality/normality error include C L
B orthogo-

nality/normality initialization error, software programming error,
roundoff error due to insuf� cient computer wordlength for the to-
tal numberof C L

B algorithmupdate cycles expected,and insuf� cient
numberof termscarriedin theEqs. (26)and (49)Taylorseriesexpan-
sions (truncationerror). It is important to note (Ref. 12, Sec. 3.4.1)
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that orthogonality and normalization errors can only be produced
from errors in the software implementationof Eqs. (23), (24), (26),
and (49), not fromerrors in the algorithmsfeedingtheseequationsor
from inertial sensorinputerrors.The overalldesign/veri� cationpro-
cess for the C L

B integrationalgorithmsoftwaremust assureerror-free
programmingand acceptableroundoff/truncationerror for theangu-
lar rate environment anticipated over the expected navigation time
period, a readily achievable goal with today’s computer/software
development technology. Nevertheless, inclusion of a C L

B orthog-
onality/normality correction algorithm has been traditionally em-
ployed in many strapdown inertial navigation software packages
for enhanced accuracy and to relax the more stringent requirement
of not allowing any orthogonality/normalization error in the ba-
sic C L

B updating operations. The algorithms used for normaliza-
tion/orthogonalizationare based on the property that the transpose
of a direction cosine matrix equals its inverse (see Sec. II.B); con-
sequently, the product of C L

B with its transpose should be identity.
Variations from this condition measure the orthogonality/normality
error, which can then be used by a control algorithm in iterative
fashion for correction (Refs. 9; 12, Secs. 7.1.1.3; and 15, pp. 216–

218).

B. Attitude Quaternion
The updatingalgorithmfor the q L

B attitudequaternionis designed
to achieve the same numerical result at the attitude update times as
would the formal continuous integration of the Eq. (12) Pq L

B expres-
sion at the same time instant. The updating algorithm for the q L

B
attitude quaternion is developed following the identical procedure
used for the C L

B updating algorithm derivation in Sec. IV.A. Thus,
using the Eq. (7) attitude quaternion chain rule, we write

q
L I.n ¡ 1/

B I.m/
D q

L I.n ¡ 1/

BI.m ¡ 1/
q

B I.m ¡ 1/

BI.m/

(57)

q
L I.n/

B I.m /
D q

L I.n/

L I .n ¡ 1/
q

L I.n ¡ 1/

B I.m/

(58)

where

q
L I.n ¡ 1/

B I.m ¡ 1/
= q L

B relating the B frame at time tm ¡ 1 to the
L frame at time tn ¡ 1

q
L I.n/

B I.m/
= q L

B relating the B frame at time tm to the
L frame at time tn

q
BI.m ¡ 1/

B I.m/
= attitude quaternion that accounts for B frame

rotation relative to inertial space from its
orientation at time tm ¡ 1 to its orientation
at time tm

q
L I.n/

L I.n ¡ 1/
= attitude quaternion that accounts for L frame

rotation relative to inertial space from its
orientation at time tn ¡ 1 to its orientation at time tn

The updates for qL
B are performed by q

B I.m ¡ 1/

B I.m/
and q

L I.n/

L I.n ¡ 1/
in Eqs.

(57) and (58), algorithms for which are derived separately next.

1. Body Frame Rotation

Equation (57) updates the qL
B attitude quaternion using q

B I.m ¡ 1/

BI.m/

to account for angular rotation rate !B
I B of the strapdown sensor

(body) B frame relative to nonrotatingspace. The formal de� nition

for q
B I.m ¡ 1/

BI .m/
is

q
B I.m ¡ 1/

BI.m/
D q1 C

Z tm

tm ¡ 1

Pq
B I.m ¡ 1/

B.t/ dt (59)

where B.t/ is the B frame attitude at an arbitrary time in the inter-
val tm ¡ 1 to tm .

The q
B I.m ¡ 1/

BI.m/
attitudequaternioncan also be expressed in terms of

a rotation vector de� ning the frame BI.m/
attitude relative to frame

BI.m ¡ 1/
. Applying Eq. (5) with Taylor series expansionfor the coef-

� cient terms obtains

q
BI.m ¡ 1/

B I.m/
D

2

4
cos 0:5 Ám

sin 0:5 Ám

0:5 Ám
0:5Ám

3

5

(60)
sin 0:5 Ám

0:5 Ám

D 1 ¡ .0:5 Ám /2

3!
C .0:5 Ám /4

5!
¡ ¢ ¢ ¢

cos 0:5 Ám D 1 ¡ .0:5 Ám /2

2!
C .0:5 Ám /4

4!
¡ ¢ ¢ ¢

The Ám rotation vector in Eq. (60) for attitude quaternion updating
is identical to Ám used in Sec. IV.A.1 for C L

B directioncosine matrix
updatingand is calculatedusing the identical algorithmprovidedby
Eqs. (35), (41), and (42) or Eqs. (35), (46), and (47).

2. Local Level (L) Frame Rotation

Equation (58) updates the q L
B attitude quaternion using q

L I.n/

L I.n ¡ 1/

to account for angular rate of the local-level coordinate L frame
relative to nonrotatingspace !L

I L . The formal de� nition for q
L I.n/

L I.n ¡ 1/

is

q
L I.n/

L I.n ¡ 1/
D q1 C

Z tn

tn ¡ 1

PqL.t/
L .n ¡ 1/

dt (61)

with L.t/ in Eq. (61) representingthe L frame attitudeat an arbitrary
time in the interval tn ¡ 1 to tn .

The q
L I .n/

L I.n ¡ 1/
attitude quaternion can also be expressed in terms

of the rotation vector de� ning the frame L I.n/
attitude relative to

frame L I.n ¡ 1/
. Applying Eq. (5) with Taylor series expansion for the

integral terms yields

q
L I.n/

L I.n ¡ 1/
D

2

4
cos 0:5 ³n

¡
sin 0:5 ³n

0:5 ³n
0:5 ³n

3

5

sin 0:5 ³n

0:5 ³n
D 1 ¡ .0:5 ³n/2

3!
C .0:5 ³n/4

5!
¡ ¢ ¢ ¢ (62)

cos 0:5 ³n D 1 ¡ .0:5 ³n/2

2!
C .0:5 ³n/4

4!
¡ ¢ ¢ ¢

The negative sign on ³n accounts for the opposite phase sense of
q

L I.n/

L I.n ¡ 1/
, which describes the frame L I.n ¡ 1/

attitude relative to frame
L I.n/

compared with the rotation vector ³n phase sense, which de-
scribes the frame L I.n/

attitude relative to frame L I.n ¡ 1/
. The ³n

rotation vector in Eqs. (62) is identical to ³n used for C L
B direc-

tion cosine matrix updating and is calculated using the identical
computational algorithm described in Sec. IV.A.2 and provided by
Eqs. (53), (55), and (56).

An approximate form of Eqs. (62) that is comparable in accu-
racy to direction cosine updating Eq. (51) is readily obtained by
substitution and truncation

q
L I.n/

L I.n ¡ 1/
D

³
1 ¡ 0:5.0:5 ³n/2

¡0:5 ³n

´
(63)

The comments in Sec. IV.A.2 regarding the advisability of using
the simpli� ed Eq. (51) direction cosine local-level frame updating
algorithmalsoapplyregardinguseofEq. (63) for attitudequaternion
updating rather than the complete Eqs. (62) form.

3. Normalization
To preserve the fundamental attitude quaternion normality char-

acteristic discussed in Sec. II.B, a normalization algorithm is fre-
quently incorporated as an outer-loop function in the q L

B attitude
quaternionupdatingprocess.The discussionin Sec. IV.A.3 fordirec-
tion cosinematricesregardingthe need for a normalization/orthogo-
nalization function is equally applicablefor the attitude quaternion,
the only exception being that orthogonalization has no meaning
in the de� nition for the quaternion (as it does for the attitude di-
rection cosine matrix); hence, the orthogonalization discussion in
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Table 1 Summary of strapdown INS attitude computation algorithms

Algorithm function Input Output Equation number

High-speed calculations
Integrated B frame angular rate increments 1®l ®l , ®m (41) or (46)
Coning increment 1®l , ®l ¯m (42) or (47)

Normal-speed calculations for Earth related parameters
N frame Earth rate components C E

N !N
I E

(14)

Vertical transport rate component C E
N ½Z N Ref. 12, Sec. 4.6

Curvature matrix CE
N ; h FC Ref. 12, Sec. 5.3

Normal-speed velocity calculations
N frame velocity update —— vN Part 2 (Ref. 13)

Normal-speed attitude calculations
B frame rotation vector ®m , ¯m Ám (35)

B frame rotation matrix (for attitude direction Ám C
BI.m ¡ 1/

BI.m /

(26)
cosine matrix updating)

B frame rotation quaternion (for attitude Ám q
BI.m ¡ 1/

BI.m/

(60)
quaternion updating)

Attitude update for B frame rotation (direction C
L I.n ¡ 1/

B I.m ¡ 1/

, C
B I.m ¡ 1/

B I.m/

C
L I.n ¡ 1/

B I.m/

(23)
cosine matrix form)

Attitude update for B frame rotation q
L I.n ¡ 1/

BI.m ¡ 1/

, q
B I.m ¡ 1/

B I.m /

q
L I.n ¡ 1/

BI.m /

(57)
(quaternion form)

N frame position increment vN 1RN
m (56)

L frame rotation vector !N
I E , ½Z N , FC , 1RN

m ³n (53), (55)

L frame rotation matrix for attitude direction ³n C
L I.n/

L I.n ¡ 1/

(49)
cosine matrix updating (exact form)

L frame quaternion for attitude ³n q
L I.n/

L I.n ¡ 1/

(62)
quaternion updating (exact form)

Attitude update for L frame rotation C
L I.n ¡ 1/

BI.m/
, C

L I.n/

L I.n ¡ 1/
C

L I.n/

BI.m/

(24)
(direction cosine matrix form)

Attitude update for L frame rotation q
L I.n ¡ 1/

B I.m/
, q

L I.n/

L I.n ¡ 1/
q

L I.n/

BI.m/

(58)
(quaternion form)

Normalization and orthogonalization corrections C L
B CL

B Sec. IV.A.3
(for attitude direction cosine matrix)

Normalization corrections q L
B qL

B Sec. IV.B.3
(for attitude quaternion)

Normal-speed position calculations
Position direction cosine matrix and altitude update —— C E

N , h Part 2 (Ref. 13)

Sec. IV.A.3 does not apply. If a quaternionnormalizationalgorithm
is to be utilized, it is based on comparing the magnitude of q L

B with
unity andusing thevariationfromunity to iterativelyupdateq L

B with
a control algorithm(Refs. 9; 12, Sec. 7.1.2.3; and 15, pp. 216–218).

V. Attitude Integration Algorithm Summary
Table 1 summarizes the algorithms described for the strapdown

inertial navigation attitude integration function listed in the order
they would be executed in the navigation computer. Table 1 lists
the algorithm function, input parameters, output parameters, and
equation number.

VI. Algorithm and Execution Rate Selection
Faced with the multitude of potential strapdown inertial naviga-

tion algorithms to choose from, the software designer must ulti-
mately choose one set for the application at hand. The algorithms
presented in this Part 1 and the subsequent Part 2 (Ref. 13) papers
are but one version of many similar algorithms developed over the
years by several authors. The process of selecting the algorithm set
for a particularapplicationshould consider the allowable algorithm
error under anticipated angular rates/accelerations/vibrations, the
capability of the projected target navigation computer for the re-
quired algorithm execution rate, and the complexity of the design
procedure for software validation/documentationwith the selected
algorithms.

Evaluation of candidate algorithm error characteristics is gen-
erally performed using computerized time-domain simulators that
exercise the algorithms in particulargroupings at their selected rep-
etition rates. The simulators generate simulated strapdown inertial
sensor angular rate/accelerationpro� les for algorithm test input to-
gether with known navigation parameter solutions for algorithm
output comparison, e.g., Ref. 12, Sec. 11.2. For the attitude al-
gorithms discussed, simpli� ed analytical error models can also be

used to predict high-speed coning algorithm error under speci� ed
coning rates/amplitudes as a function of algorithm repetition rate
(Refs. 9–11 and 12, Sec. 10). The coning rates/amplitudes must be
derivedeither fromempiricaldata or, more commonly,fromanalyti-
cal models of the sensorassemblymount imbalanceand its response
to external input vibration at particular frequencies (Ref. 12, Sec.
10). Frequency-domain simulators can be used to evaluate high-
speed coning algorithm error under speci� ed input vibration power
spectral density pro� les and sensor assembly mount imbalance as
a function of algorithm repetition rate (Ref. 12, Sec. 10). For ex-
ample, the coning algorithm described by Eqs. (46) and (47) can
be shown by such simulators to have an error rate of 0.00037 deg/h
when operatedat a 2-kHz repetitionrate under exposureto 7.6 g rms
widebandrandomlinearinputvibration(� at 0.04g2/Hz densityfrom
20 to 1000Hz, then decreasinglogarithmicallyto 0.01 g2/Hz at 2000
Hz). The linear vibration generates a 0.0003-rad multiaxis angular
oscillationof the sensor assembly with a correspondingconing rate
of 9.9 deg/h due to the following typical sensor assembly mount
characteristics selected as simulator input parameters: 50-Hz linear
vibration mode undamped natural frequency,0.125 linear vibration
modedampingratio,71-Hz rotaryvibrationmodeundampednatural
frequency,0.18 rotary vibration mode damping ratio, 5% sensor as-
sembly mount mechanical isolator spring and damping imbalance,
and 1.4% sensor assembly center of mass offset from mechanical
c.g. mount center (percent of distance between isolators).

The capabilitiesof modern-daycomputer and INS software tech-
nologymake it reasonableto specify that the attitudealgorithmerror
be no greater than 5% of the equivalent error produced by the INS
inertial sensors (whose cost increases dramatically with accuracy
demands). For an INS with a 0.007-deg/h angular rate sensor bias
accuracy requirement (for a typical aircraft INS having 1 n mph
50 percentile radial position error rate), the 0.00037-deg/h coning
algorithm error rate satis� es the 5% allowance.
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So long as the selected integrationalgorithmis analyticallyvalid,
it can be improved in accuracy by increasing its repetition rate.
Continuing computer technology advances (increasing speed and
decreasing program memory cost), therefore, tend to diminish any
advantages one algorithm might have over another (usually mea-
sured, primarily, by accuracy for a given repetition rate and, sec-
ondarily, by required program memory). Excessively high repeti-
tion rates are to be avoided, however (even if computer throughput
allowances permit) to limit error buildup caused by computer � -
nitewordlengtheffectsand recti� cationof high-frequencymultiaxis
sensor errors (high-frequencyerror output from one inertial sensor
that is frequency correlated with outputs from sensors in the other
axes, denoted as pseudoconingerror for the coning computation in
Part 1 and pseudosculling error for the sculling part of the veloc-
ity calculation in Ref. 13, Part 2). The � nite computer wordlength
error effect is generally not a major factor with modern computer
technology, typically having 64-bit double precision � oating point
wordlengths.The pseudoconing/sculling issue must be resolved on
an individual design basis dependingon the characteristicsof high-
frequencyerror effectsanticipatedfrom the inertial sensor assembly
in its operationaldynamicenvironment.A generalgroundrule to fol-
low in coning/sculling algorithm repetition rate selection is to run
the algorithms only as fast as required to accurately measure an-
ticipated real multiaxis high-frequency angular rates/accelerations
that can potentially rectify into real attitude/velocity change, but
no faster, to minimize the likelihood of rectifying high-frequency
sensor output error into attitude/velocity error buildup.

The ultimate selection of algorithms to be used in a particular
application is generally made based on the previous experience of
the responsibledesignengineer.The authorhas had long experience
with the algorithms described and feels comfortable adapting them
to any strapdown application. They are well de� ned analytically,
can be programmed using a simple sequential software executive
structure, readily lend themselves to straightforwardvalidationpro-
cedures, and are easily adapted to the requirements and constraints
of particular applications.

VII. Concluding Remarks
We have de� ned the overall requirement for the strapdown iner-

tial navigationintegrationfunction(in the formof continuousdiffer-
ential equations) and developed the attitude integration algorithms
based on the two-speed updating approach: an exact algorithm for
moderate speed updating fed by a simpli� ed high-speed algorithm.
The high-speed algorithm contains a simple summing operation of
angular rate sensor inputs plus an approximate coning motion inte-
gration function. Under conditions where the angular rate vector is
not rotating,i.e., zeroconing,theconingtermbecomeszero, the sim-
ple summing operationbecomesan analyticallyexact representation
of the attitude change, and the overall attitude update operation is
error free. Where computer throughput restrictionsare not at issue,
the two-speed structure presented can be compressed into a single
high-speed format by operating the moderate-speed algorithm at
the high-speed rate. This general form for the two-speed attitude

algorithm de� nes a framework for design of the velocity/position
integrationalgorithmsin Part 2 (Ref. 13) to have similar characteris-
tics: analytical exactness under constant angular rate/speci� c force
accelerationand usinga small approximatehigh-speedcomputation
to measure deviations from the latter condition (denoted as sculling
for the velocity algorithm and scrolling for the position algorithm).
A summary of the attitude integrationalgorithms developed is pro-
vided in Table 1 as a listing in the order they would be executed
in the navigation computer. A similar table is provided in Part 2
(Ref. 13) for the velocity/position integration algorithms.
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