
What a Year!
Java 10 and 10 Big
Java Milestones
Java has made tremendous strides in the past 12 months, with exciting
new features and capabilities for developers of all kinds.

http://www.oracle.com

Table of Contents
INTRODUCTION

Twelve Months of Java Excitement 3

JAVA 10 AND 10 BIG JAVA MILESTONES

01: Java 10 Debuts a New Six-Month Feature Release Model 4

02: Application Class-Data Sharing Speeds Startup,
Saves Memory 4

03: Link-Time Utility Optimizes Application Bytecode
for Deployment 5

04: Experimental Java-Based JIT Compiler 6

05: The Parallel Full Garbage Collector Dumps the Trash Efficiently 6

06: Java Platform Module System Shrinks Java Deployments 7

07: Convenience Factory Methods Make Small Collections a Snap 7

08: Optional Class Enhancements Handles Null 8

09: Stream API Enhancements Help Solve Coding Challenges 9

10: JShell Gives Developers Immediate Feedback
When Learning Java 9

The #1 Platform for Development in the Cloud 10

What a Year! Java 10 and 10 Big Java Milestones 2

Introduction:
Twelve Months of Java Excitement

Since its first release in 1995, the Java
language and Java platform have grown
and evolved—and today, Java remains
the cornerstone platform for desktop,
server, embedded systems, and now
cloud development.

Never content to rest on their well-earned
laurels, Oracle and the Java community are
taking the Java platform to new heights—
and that includes both the open source
OpenJDK and the commercially licensed
Oracle Java SE products.

Take a tour of 10 new changes released
with Java 9 and Java 10 over the past
12 months—a period that saw two releases
of the Java platform.

What a Year! Java 10 and 10 Big Java Milestones 3

“Java remains the cornerstone
platform for desktop, server,
embedded systems, and now
cloud development.”

This accelerated schedule allows
for rapid iterations of the Java
platform, and the ability, for Java
developers, to leverage new APIs
and features faster than ever.

01: JAVA 10 DEBUTS A NEW SIX-MONTH FEATURE
RELEASE MODEL

Twelve busy months. Two releases, Java 9 and Java 10. What’s going on?

Easy: Starting with Java 10, released in March 2018, Java has moved to a faster release
cadence, with relatively smaller feature releases every six months. This is a significant
change from Java’s previous model of one large release every two to three years.

This accelerated schedule allows for rapid iterations of the Java platform, and the ability,
for Java developers, to leverage new APIs and features faster than ever.

Before JDK 10, Java’s improvements on APIs, the language, and JVM were only delivered
when big features were ready—that is, every three years, more or less. That’s too slow to
keep up with today’s ever-accelerating pace of innovation.

For Java to remain competitive, the Java community determined that the platform must
not just continue to move forward — it must move forward faster than ever before, with a
smoother delivery of new features.

Shipping a Java release every six months is rapid enough to ensure that small features
can be delivered quickly, while allowing enough time to properly integrate larger features
when they are ready. As you can see with the features added with Java 10, just six months
after the release of Java 9, this new cadence ensures that Oracle can deliver value on each
release and maintain the high quality expected by the Java community.

02: APPLICATION CLASS-DATA SHARING SPEEDS STARTUP,
SAVES MEMORY

The Application Class-Data Sharing functionality, now available to everyone in Java 10,
allows application classes to be placed in a shared archive. The benefit can be significantly
faster startup times, as well as reduced memory footprint.

In previous releases of Java, each process had its own copy of all application classes. The
JVM loaded a fresh copy of those classes each time it created a new process. With cloud
applications having potentially tens of thousands of classes—and continually creating
and killing processes—this is not only wasteful of memory and resources, but also
time-consuming.

With Application Class-Data Sharing, the classes are loaded into a shared memory space as
needed. When a process is created and needs an already loaded class, the JVM points to
shared-class metadata instead of loading new instances of the classes for each process.

Code Sample #1: Application Class-Data Sharing
Using the AppCDS archive

Once the AppCDS archive is created, you can use it when starting the application. Do this by
specifying the -Xshare:on -XX:+UseAppCDS command-line options, with the -XX:SharedArchiveFile
option to indicate the name of the archive file. For example:

$ java -Xshare:on -XX:+UseAppCDS -XX:SharedArchiveFile=hello.jsa \

 -cp hello.jar HelloWorld

What a Year! Java 10 and 10 Big Java Milestones 4

“With jlink, there is now a
single tool that can analyze the
entire application, and perform
optimizations to ensure that
the distribution only contains
what is required.”

This functionality extends the previous, more limited Class-Data Sharing functionality,
which allowed the application’s bootstrap class loader to share class data prior to beginning
execution. Beginning with Java 10, the JVM can also load and share application class data
while the application is running. This new feature is also ideally suited to microservices and
serverless architecture.

03: LINK-TIME UTILITY OPTIMIZES APPLICATION BYTECODE
FOR DEPLOYMENT

An application is designed. Written. Tested. Ready to deploy to the targeted server or other
device containing a JVM. However, sometimes there are opportunities to optimize the size
of the application beyond what’s normally done by the Java compiler and JVM runtime
environment. That’s where jlink comes in.

jlink, a new utility added with Java 9, introduces further improvements at link time, which is
an optional phase between compile time (when the developer’s source code is translated
into JVM-readable bytecode) and runtime (when the bytecode is loaded into and executed
on the target device’s JVM). Link time provides a unique opportunity to perform what’s
known as whole-world optimization on the complete application.

Large programs can now be written and compiled in discrete, manageable pieces, called
modules. A finished program might include many modules created by the development
team, as well as modules reused from other projects or from open source communities.
However, not every application will need the same set of modules. In the past, it was
time-consuming to minimize the runtime needed for an application, and the level of
granularity available was not as good as what can now be achieved.

With jlink, there is now a single tool that can analyze the entire application, and perform
optimizations to ensure that the distribution only contains what is required—the necessary
modules and their dependencies.

What a Year! Java 10 and 10 Big Java Milestones 5

The output from running jlink is a custom runtime image, which is reduced in size, compared
to the complete JDK image, and easier to distribute and deploy. Not only that, but since the
jlink-optimized custom runtime image contains only what’s necessary for the application,
the image can be loaded and executed more efficiently by the JVM.

04:
EXPERIMENTAL JAVA-BASED JIT COMPILER

A just-in-time (JIT) compiler translates programming code into fast, efficient machine-
optimized computer code only a few moments before it’s needed by the application. Thanks
to the rapid iterations of software driven by the Java release cadence, developers can get
their hands on Graal, an experimental JIT now included with OpenJDK in Java 10.

Graal is the basis of the experimental Java ahead-of-time (AOT) compiler, which was first
introduced in JDK 9. Enabling it to be used as an experimental JIT compiler in Java 10 is one
of the initiatives of Project Metropolis, and is the next step in investigating the feasibility of
a Java-based JIT for the JDK. Graal has the potential to improve application performance by
aggressively optimizing code for specific microprocessor architectures.

The Graal JIT is strictly experimental at this stage, and can only compile code for Linux
running on the x86 platform. The goal is for developers to get hands-on experience using
Graal as a JIT, and for contributors to the Java platform to run a battery of standardized tests
on Graal in their own software development and deployment environments.

The benefits: Java developers gain access to technologies quickly, thanks to the faster
release cadence—and work can proceed more quickly on the Graal JIT.

05: THE PARALLEL FULL GARBAGE COLLECTOR DUMPS
THE TRASH EFFICIENTLY

In Java, garbage collection (GC) is the process of looking at memory, identifying which
objects are in use and which are not, and deleting the unused objects. GC frees up memory
for use by other objects in the program—and without GC, many programs would eventually
run out of memory. The JVM runs GC automatically based on various criteria, such as a large
number of unreferenced, no-longer-used objects that are still consuming memory.

The highly efficient garbage collector in Java is named G1. Most of the time, the JVM
runs G1 in conjunction with application threads so that programs keep running without
interruption. Sometimes, however, the JVM needs to run a “full garbage collection” when
there are excessive unreferenced objects in memory. In those cases, the JVM pauses
application execution for a few moments and runs G1 in “full GC mode,” dedicating all
available processor resources to run GC as fast as possible.

New for Java 10, the full GC mode functionality of the G1 garbage collector has been
rewritten as faster parallel code. Previously, full GC functionality ran in only a single thread.
The benefit: The full GC executes faster, thereby pausing application execution for a shorter
period of time.

“Thanks to the rapid iterations
of software driven by the Java
release cadence, developers
can get their hands on Graal, an
experimental JIT now included
with OpenJDK in Java 10.”

New for Java 10, the full GC mode
functionality of the G1 garbage
collector has been rewritten as
faster parallel code.

What a Year! Java 10 and 10 Big Java Milestones 6

“With cloud-based servers
that can run hundreds or
thousands of Java applications,
the Java community saw the
need to break Java SE and
Java applications into modules
that contained essential
functionality.”

06: JAVA PLATFORM MODULE SYSTEM SHRINKS
JAVA DEPLOYMENTS

The Java Platform Module System (JPMS), introduced with Java 9 in September 2017,
optimizes the process of configuring and deploying large Java programs.

Previously, with only a few exceptions, it was difficult to break the Java platform, and large
programs, into smaller pieces that can be used on small devices—or to eliminate parts of
the Java platform that aren’t needed to save memory or storage space. This often resulted in
wasted resources.

With cloud-based servers that can run hundreds or thousands of Java applications, and
with Java applications themselves becoming larger and more complex, the Java community
saw the need to break Java SE and Java applications into modules that contained essential
functionality.

The JPMS, a central component of Project Jigsaw, allows the Java SE platform to be
decomposed into a set of components, which can be assembled by developers into custom
configurations that contain only the functionality actually required by the developer’s
application. These custom configurations can be optimized to run faster in some cases,
and also be more secure by removing unneeded functions and APIs.

07: CONVENIENCE FACTORY METHODS MAKE SMALL
COLLECTIONS A SNAP

In Java, a collection is a set of objects. The collection might be as simple as a list of numbers,
or may be as complex as a queue, tree, or hash. Developers frequently use collections
throughout applications—perhaps hundreds of collections may be used.

Sometimes those collections are large or complicated, and the objects within the collection
are changed while the program is running. Often, however, developers require collection
that is small, simple, and unchanging—like a list of the numbers from 1 to 10.

What a Year! Java 10 and 10 Big Java Milestones 7

Traditionally, Java requires several lines of code to create such small, unmodifiable
collections, with separate lines of code to declare and initialize an empty collection, then one
line of code to add each individual element, and a final instruction to declare the resulting
collection immutable.

The convenience factory methods for collections, introduced in Java 9, are used for creating
collections with small numbers of elements. The code can be written in a single expression.
The benefit: Collections are easier to create and the code is easier to understand.

08:
OPTIONAL CLASS ENHANCEMENTS HANDLES NULL

The Optional class, introduced with Java 8, is used to extend objects to indicate that the
value of the object may be null—literally no value, which is not the same as zero or an empty
string. Normally, a program throws an error when it unexpectedly tries to manipulate an
object with a null value. However, in some situations, null may be a valid state for an object,
and thus the need to create the Optional class.

The Java community decided to extend the Optional class with enhancements, which
appeared in Java 9. One enhancement is the Stream method, which facilitated converting
a stream of Optional objects into a stream of values. Without the Stream method, the
programmer would have to write code to filter out null values before converting the objects
into values, or otherwise process those objects.

Code Sample #2: Optional Class Enhancement
Stream of Optional

// Convert List<CustomerID> to List<Customer>, ignoring unknowns

// Java 8

List<Customer> list = custIDlist.stream()

.map(Customer::findByID)

.filter(Optional::isPresent)1

.map(Optional::get)2

.collect(Collectors.toList());

// Java 9 adds Optional.stream(), allowing filter/map to be fused into a flatMap:

List<Customer> list = custIDlist.stream()

.map(Customer::findByID)

.flatMap(Optional::stream)3

.collect(Collectors.toList());

Assume findByID() returns Optional<Customer>

1 Let only present Optionals through

2 Extract values from them

3 Optional.stream() allows filter() and map() to be fused into flatMap()

“The convenience factory
methods for collections,
introduced in Java 9, are used
for creating collections with
small numbers of elements.”

What a Year! Java 10 and 10 Big Java Milestones 8

The value of the Optional class enhancement is it’s easier to work with Optional objects,
which not only simplifies the developer’s work, but also makes it easier to create robust
code that will hand the presence of null values, a common source of runtime errors.

09: STREAM API ENHANCEMENTS HELP SOLVE CODING
CHALLENGES

Streams are a sequence of elements that can be worked on either sequentially or in parallel.
To process a stream, the group of source elements is placed in a pipeline; operations are
applied to the pipeline; and then a terminal operation determines what to do with the results.
If only some elements in the stream need to be processed, the programmer specifies a filter,
which is applied to the pipeline.

Streams provide an efficient way to process data, in part because streams are lazy and
don’t waste processor resources: Computation on the source data is only performed when
the terminal operation is initiated, and source elements are consumed only as needed.
Streams are becoming increasingly important, especially for developers using functional
methodologies, or who are moving to cloud-based serverless computing.

Java 8 saw the first implementation of streams in the Java platform. The Java community
enhanced the Streams API in Java 9 to add more methods. The iterate method, for
example, offers a simple way to create loops that are bounded by a maximum value or
condition, reducing the possibility of infinite loops.

Code Sample #3: Stream API Enhancements
Here’s a simple example that takes the new static “iterate”, and the new “takeWhile”:

IntStream

.iterate(1, n -> n + 1)

.takeWhile(n -> n < 10)

.forEach(System.out::println);

Overall, the Stream API enhancements in Java 9 offer important improvements to
developers using streams, making code easier to write and understand.

10: JSHELL GIVES DEVELOPERS IMMEDIATE FEEDBACK WHEN
LEARNING JAVA

The Java libraries contain thousands of packages, classes, and interfaces with their
respective methods and fields. It can be a challenge for developers to figure out exactly
which library can help solve a particular programming problem most elegantly—or most
effectively. Another challenge: Learning how to program these libraries often takes some
trial and error before one masters it.

JShell, introduced with Java 9, is a tool designed specifically to help developers with that
trial-and-error process, which is set up as what’s called a Read-Eval-Print Loop (REPL).
In other words, load the data, test the code, and see the results immediately.

“JShell, introduced with Java 9,
is a tool designed specifically
to help developers with that
trial-and-error process.”

What a Year! Java 10 and 10 Big Java Milestones 9

“Java is the #1 platform for
development in the cloud,
and with more than 12 million
developers worldwide running
Java, the platform has never
been so popular.”

JShell is a command-line tool that facilitates the developer to interactively evaluate
declarations, statements, and expressions of the Java programming language. Most
importantly: Statements and expressions need not occur within a method, and variables and
method need not occur within a class. That eliminates a lot of the overhead needed to set up
the tests so that developers can focus on the REPL scenario itself.

The benefit: Developers can experiment with the Java language and libraries quickly,
interactively test how a class or method will work in their specific application context, get
immediate feedback, and then quickly leverage what they have learned in their programs.

THE #1 PLATFORM FOR DEVELOPMENT IN THE CLOUD

Java is the #1 platform for development in the cloud, and with more than 12 million
developers worldwide running Java, the platform has never been so popular. The past 12
months have seen two new releases of Java—and with releases on a six-month schedule,
the best will only get better.

Visit website to see how Java 10 powers our digital world—and can power yours, too.

What a Year! Java 10 and 10 Big Java Milestones 10

https://developer.oracle.com/java10

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties
or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a
particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either
directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic
or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

180xxxx | xxxxxx

ORACLE CORPORATION

Worldwide Headquarters
500 Oracle Parkway, Redwood Shores, CA 94065, USA

Worldwide Inquiries
TELE + 1.650.506.7000 + 1.800.ORACLE1

FA X + 1.650.506.7200
oracle.com

CONNECT WITH US

 facebook.com/oracle youtube.com/oracle linkedin.com/company/oracle twitter.com/oracle

http://www.oracle.com
http://facebook.com/oracle
http://facebook.com/oracle
http://youtube.com/oracle
http://youtube.com/oracle
http://linkedin.com/company/oracle
http://linkedin.com/company/oracle
http://twitter.com/oracle
http://twitter.com/oracle
http://www.oracle.com

