
Dispatcher IPC Interface
Version 2.2

Abstract
This document describes the “Dispatcher IPC Interface.” The dispatcher is a command line tool
which the application launches in a separate process. The dispatcher manages the transports,
as well as sending and receiving data over the network. The application sends and receives
data by communicating with this process. This interface is most useful if the application is
written in a different language than the transports or changes to the networking code in the
application are not possible. A dispatcher application can in fact use the Transport API Interface
internally, serving as a proxy process that the client application will communicate through. This
is discussed in more detail in Section 4.1. A dispatcher implementation that wraps the Go
implementation of the Transports API is available as a reference implementation
[PT2-DISPATCHER].

PTs began as a project of the Tor Project, so Tor is occasionally referenced for
backwards-compatibility. However, PTs provide a generic interface for any application to use.

Table of Contents
1. Dispatcher IPC Interface Specification

1.1 Pluggable Transport Configuration Parameters
1.1.1. Common Configuration Parameters
1.1.2. Pluggable PT Client Configuration Parameters
1.1.3. Pluggable PT Server Environment Variables
1.1.4 Command Line Flags

1.2. Pluggable Transport To Parent Process Communication
1.2.1. Common Messages
1.2.2. Pluggable PT Client Messages

1.2.2.1. Notes
1.2.3. Pluggable PT Server Messages

1.3. Pluggable Transport Shutdown
1.4. Pluggable PT Client Per-Connection Arguments
1.5 UDP Support

1.5.1 Obfuscating Proxy Architecture
1.5.2. Configuring the Transports
1.5.3. Implementation of the PT Client
1.5.4. Integration with TCP Transports
1.5.5. Implementation of the PT Server
1.5.6. Configuring Proxy Modes

2. References

Appendix A. Example Client Pluggable Transport Session

Appendix B. Example Server Pluggable Transport Session

Appendix C. Changelog

1. Dispatcher IPC Interface Specification
When the transport runs in a separate process from the application, the two components
interact through an IPC interface. The IPC interface serves to ensure compatibility between
applications and transports written in different languages.

1.1 Pluggable Transport Configuration Parameters
When using the IPC interface, Pluggable Transport proxy instances are configured by their
parent process at launch time via a set of well defined environment variables and command line
flags.

The "TOR_PT_" prefix is used in all environment variable names. This prefix was originally
introduced for namespacing reasons and is kept for preserving backwards compatibility with the
PT 1.0 specification.

1.1.1. Common Configuration Parameters
When launching either a PT Client or PT Server Pluggable Transport, all of the common
configuration parameters specified in section 1.1.1 are optional unless otherwise specified in the
documentation for the specific parameter. For configuration parameters which are available as
either environment variables or command line flags, either may be used, but the application
MUST NOT specify both an environment variable and the corresponding command line flag
simultaneously. Additional configuration parameters specific to PT Clients are specified in
section 1.1.2 and configuration parameters specific to PT Servers are specified in section 1.1.3.

TOR_PT_MANAGED_TRANSPORT_VER or -ptversion
Specifies the versions of the Pluggable Transport specification the parent process supports,
delimited by commas. All PTs MUST accept any well-formed list, as long as a compatible
version is present.

Valid versions MUST consist entirely of non-whitespace, non-comma printable ASCII
characters.

The version of the Pluggable Transport specification as of this document is "2.2".

Examples
TOR_PT_MANAGED_TRANSPORT_VER=1,1a,2.2,this_is_a_valid_version
shapeshifter-dispatcher -ptversion 1,1a,2.2,this_is_a_valid_version

TOR_PT_STATE_LOCATION or -state
Specifies a path to a directory where the PT is allowed to store state that will be persisted
across invocations. This can be either an absolute path or a relative path. If a relative path is

used, it is assumed to be relative to the current directory. The directory is not required to exist
when the PT is launched, however PT implementations SHOULD be able to create it as
required.

If "TOR_PT_STATE_LOCATION" environment variable or -state flag is not specified, PT proxies
MUST use the current working directory of the PT process as the state location.

PTs MUST only store files in the path provided, and MUST NOT create or modify files elsewhere
on the system.

Examples
TOR_PT_STATE_LOCATION=/var/lib/tor/pt_state/
shapeshifter-dispatcher -state /var/lib/tor/pt_state/

TOR_PT_EXIT_ON_STDIN_CLOSE or -exit-on-stdin-close
Specifies that the parent process will close the PT proxy's standard input (stdin) stream to
indicate that the PT proxy should gracefully exit.

PTs MUST NOT treat a closed stdin as a signal to terminate unless this environment variable or
flag is present and is set to "1".

PTs SHOULD treat stdin being closed as a signal to gracefully terminate if this environment
variable or flag is set to "1".

Example
TOR_PT_EXIT_ON_STDIN_CLOSE=1
shapeshifter-dispatcher -exit-on-stdin-close

-ipcLogLevel
Controls what log messages are sent from the dispatcher to the application using LOG
messages.

The log level MUST be one of the following:
● NONE
● ERROR
● WARN
● INFO
● DEBUG

Logging at the same log level or above will be sent. For instance, if the -ipcLogLevel is set to
ERROR then only ERROR messages will be sent to the application, whereas if the -ipcLogLevel
is set to INFO then ERROR, WARN, and INFO (but not DEBUG) messages will be sent to the

application. The NONE log level is a special case which indicates that no LOG messages
should be sent to the application.

The default log level is NONE.

Example
-ipcLogLevel DEBUG

-transport
Specifies the name of the PT to use.

The application MUST set either a single transport with -transport or a list of transports with one
of the following: -transports (client or server), TOR_PT_CLIENT_TRANSPORTS (client only), or
TOR_PT_SERVER_TRANSPORTS (server only).

The application MUST NOT set both a single transport and a list of transports simultaneously.

Example
shapeshifter-dispatcher -transport shadow

-optionsFile
Specifies the path to a file containing the transport options. This path can be either an absolute
path or a relative path. If a relative path is used, it is relative to the current directory.

The contents of the file MUST be in the same format as the argument to the -options parameter.

The application MUST NOT specify both -options and -optionsFile simultaneously.

-mode
Sets the proxy <mode>.

The mode MUST be one of the following:
● transparent-TCP
● transparent-UDP
● socks5
● STUN

The default if no mode is specified is socks5.

1.1.2. Pluggable PT Client Configuration Parameters
When launching either a PT Client, the common configuration parameters specified in section
1.1.1 as well as the client-specific configuration parameters specified in section 1.1.2 are

optional unless otherwise specified in the documentation for the specific parameter. For
configuration parameters which are available as either environment variables or command line
flags, either may be used, but the application MUST NOT specify both an environment variable
and the corresponding command line flag simultaneously.

-client
Specifies that the PT proxy should run in client mode.

If neither -client or -server is specified, the PT proxy MUST launch in client mode.

Example
shapeshifter-dispatcher -client

TOR_PT_CLIENT_TRANSPORTS or -transports
Specifies the PT protocols the client proxy should initialize, as a comma separated list of PT
names.

PTs SHOULD ignore PT names that it does not recognize.

The application MUST set either a single transport with -transport or a list of transports with one
of the following: -transports (client or server), TOR_PT_CLIENT_TRANSPORTS (client only), or
TOR_PT_SERVER_TRANSPORTS (server only).

The application MUST NOT set both a single transport and a list of transports simultaneously.

Example
TOR_PT_CLIENT_TRANSPORTS=obfs2,obfs4
shapeshifter-dispatcher -transports obfs2,obfs4

-proxylistenaddr
This flag specifies the <address>:<port> on which the dispatcher client should listen for
incoming application client connections. When this flag is used, the dispatcher client will use this
address and port instead of making its own choice.

The <address>:<port> combination MUST be an IP address supported by `bind()`, and MUST
NOT be a host name.

Applications MUST NOT set more than one <address>:<port> pair.

A combined address and port can be set using -proxylistenaddr. Alternatively, -proxylistenhost
and -proxylistenport can be used to separately set the address and port respectively. If a
combined address and port is specified then a separate host and port cannot be specified and
vice versa.

Example
shapeshifter-dispatcher -proxylistenaddr 127.0.0.1:5555

-proxylistenhost
This flag specifies the <address> on which the dispatcher client should listen for incoming
application client connections. When this flag is used, the dispatcher client will use this address
instead of making its own choice.

The <address> combination MUST be an IP address supported by `bind()`, and MUST NOT be
a host name.

Applications MUST NOT set more than one <address>:<port> pair.

A combined address and port can be set using -proxylistenaddr. Alternatively, -proxylistenhost
and -proxylistenport can be used to separately set the address and port respectively. If a
combined address and port is specified then a separate host and port cannot be specified and
vice versa.

Example
shapeshifter-dispatcher -proxylistenhost 127.0.0.1 -proxylistenport 5555

-proxylistenport
This flag specifies the <port> on which the dispatcher client should listen for incoming
application client connections. When this flag is used, the dispatcher client will use this port
instead of making its own choice.

The <address>:<port> combination MUST be an IP address supported by `bind()`, and MUST
NOT be a host name.

Applications MUST NOT set more than one <address>:<port> pair.

A combined address and port can be set using -proxylistenaddr. Alternatively, -proxylistenhost
and -proxylistenport can be used to separately set the address and port respectively. If a
combined address and port is specified then a separate host and port cannot be specified and
vice versa.

Example
shapeshifter-dispatcher -proxylistenhost 127.0.0.1 -proxylistenport 5555

TOR_PT_PROXY or -proxy
Specifies an upstream proxy that the PT MUST use when making outgoing network
connections. It is a URI [RFC3986] of the format:

<proxy_type>://[<user_name>[:<password>][@]<ip>:<port>.

The "TOR_PT_PROXY" environment variable is OPTIONAL and MUST be omitted if there is no
need to connect via an upstream proxy.

Examples
TOR_PT_PROXY=socks5://tor:test1234@198.51.100.1:8000
TOR_PT_PROXY=socks4a://198.51.100.2:8001
TOR_PT_PROXY=http://198.51.100.3:443
shapeshifter-dispatcher -proxy http://198.51.100.3:443

1.1.3. Pluggable PT Server Environment Variables
When launching either a PT Server, the common configuration parameters specified in section
1.1.1 as well as the server-specific configuration parameters specified in section 1.1.3 are
optional unless otherwise specified in the documentation for the specific parameter. For
configuration parameters which are available as either environment variables or command line
flags, either may be used, but the application MUST NOT specify both an environment variable
and the corresponding command line flag simultaneously.

-server
Specifies that the PT proxy should run in server mode.

If neither -client or -server is specified, the PT proxy MUST launch in client mode.

Example
shapeshifter-dispatcher -server

TOR_PT_SERVER_TRANSPORTS or -transports
Specifies the PT protocols the server proxy should initialize, as a comma separated list of PT
names.

PTs SHOULD ignore PT names that it does not recognize.

Parent processes MUST set this environment variable when launching a server-side PT reverse
proxy instance.

Example
TOR_PT_SERVER_TRANSPORTS=obfs4,shadow
shapeshifter-dispatcher -transports obfs4,shadow

TOR_PT_SERVER_TRANSPORT_OPTIONS or -options

Specifies per-PT protocol configuration directives, as a JSON string value with options that are
to be passed to the transport.

If there are no arguments that need to be passed to any of PT transport protocols,
"TOR_PT_SERVER_TRANSPORT_OPTIONS" and -options MAY be omitted.

The application MUST NOT specify both -options and -optionsFile simultaneously.

Example
TOR_PT_SERVER_TRANSPORT_OPTIONS=”{shadow: {password: \”password\”, cipherName:
\“AES-128-GCM\”}}”
shapeshifter-dispatcher -options ”{shadow: {password: \”password\”, cipherName:
\“AES-128-GC<\”}}”

TOR_PT_SERVER_BINDADDR or -bindaddr
A comma separated list of <key>-<value> pairs, where <key> is a PT name and <value> is the
<address>:<port> on which it should listen for incoming client connections.

The keys holding transport names MUST be in the same order as they appear in
"TOR_PT_SERVER_TRANSPORTS".

The <address> MAY be a locally scoped address as long as port forwarding is done externally.

The <address>:<port> combination MUST be an IP address supported by `bind()`, and MUST
NOT be a host name.

Applications MUST NOT set more than one <address>:<port> pair per PT name.

The bind address MUST be set, either using a combined bindaddr (with either the
"TOR_PT_SERVER_BINDADDR" environment variable or the -bindaddr flag) or in separate
parts using -transport, -bindhost, and -bindport.

If a combined bindaddr is used (with either the "TOR_PT_SERVER_BINDADDR" environment
variable or the -bindaddr flag) then -transport, -bindhost, and -bindport MUST NOT be used.
Similarly, if -transport, -bindhost, or -bindport is used then -bindaddr MUST NOT be used.

Example
TOR_PT_SERVER_BINDADDR=obfs4-198.51.100.1:1984,shadow-127.0.0.1:4891
shapeshifter-dispatcher -bindaddr obfs4-198.51.100.1:1984,shadow-127.0.0.1:4891

-bindhost
Specifies the <address> part of the server bind address when used in conjunction with
-transport and -bindport.

The <address> MAY be a locally scoped address as long as port forwarding is done externally.

The <address> MUST be an IP address supported by `bind()`, and MUST NOT be a host name.

Applications MUST NOT set more than one <address> using -bindhost.

The bind address MUST be set, either using a combined bindaddr (with either the
"TOR_PT_SERVER_BINDADDR" environment variable or the -bindaddr flag) or in separate
parts using -transport, -bindhost, and -bindport.

If a combined bindaddr is used (with either the "TOR_PT_SERVER_BINDADDR" environment
variable or the -bindaddr flag) then -transport, -bindhost, and -bindport MUST NOT be used.
Similarly, if -transport, -bindhost, or -bindport is used then -bindaddr MUST NOT be used.

If -bindhost is specified, then -transport and -bindport must also be used.

-bindport
Specifies the <port> part of the server bind address when used in conjunction with -transport
and -bindhost.

Applications MUST NOT set more than one <port> using -bindport.

The bind port MUST be set, either using a combined bindaddr (with either the
"TOR_PT_SERVER_BINDADDR" environment variable or the -bindaddr flag) or in separate
parts using -transport, -bindhost, and -bindport.

If a combined bindaddr is used (with either the "TOR_PT_SERVER_BINDADDR" environment
variable or the -bindaddr flag) then -transport, -bindhost, and -bindport MUST NOT be used.
Similarly, if -transport, -bindhost, or -bindport is used then -bindaddr MUST NOT be used.

If -bindport is specified, then -transport and -bindhost must also be used.

TOR_PT_ORPORT or -orport on the server or -target on either the client or server
Specifies the destination that the PT reverse proxy should forward traffic to after transforming it
as appropriate, as an <address>:<port>. Unless otherwise specified in the documentation of the
specific transport being used, the address can be an IPv4 IP address, an IPv6 IP address, or a
domain name.

Connections to the target destination MUST only contain application payload. If the parent
process requires the actual source IP address of client connections (or other metadata), it
should set "TOR_PT_EXTENDED_SERVER_PORT" instead.

The target destination MUST be set. A combined address and port can be set using
TOR_PT_ORPORT, -orport, or -target. Alternatively, -targethost and -targetport can be used to
separately set the address and port respectively. If a combined address and port is specified
then a separate host and port cannot be specified and vice versa.

Example
TOR_PT_ORPORT=127.0.0.1:9001
shapeshifter-dispatcher -orport 127.0.0.1:9001
shapeshifter-dispatcher -target 93.184.216.34:9001
shapeshifter-dispatcher -target
[2001:0db8:85a3:0000:0000:8a2e:0370:7334]:1122
shapeshifter-dispatcher -target example.com:9922

-targethost
Specifies the <address> of the destination that the PT reverse proxy should forward traffic to
after transforming it as appropriate. Unless otherwise specified in the documentation of the
specific transport being used, the address can be an IPv4 IP address, an IPv6 IP address, or a
domain name.

Connections to the target destination MUST only contain application payload. If the parent
process requires the actual source IP address of client connections (or other metadata), it
should set "TOR_PT_EXTENDED_SERVER_PORT" instead.

The target destination MUST be set. A combined address and port can be set using
TOR_PT_ORPORT, -orport, or -target. Alternatively, -targethost and -targetport can be used to
separately set the address and port respectively. If a combined address and port is specified
then a separate host and port cannot be specified and vice versa.

If -targethost is specified, then -targetport must also be specified.

Example
shapeshifter-dispatcher -targethost 93.184.216.34 -targetport 9001

-targetport
Specifies the <port> of the destination that the PT reverse proxy should forward traffic to after
transforming it as appropriate.

Connections to the target destination MUST only contain application payload. If the parent
process requires the actual source IP address of client connections (or other metadata), it
should set "TOR_PT_EXTENDED_SERVER_PORT" instead.

The target destination MUST be set. A combined address and port can be set using
TOR_PT_ORPORT, -orport, or -target. Alternatively, -targethost and -targetport can be used to

separately set the address and port respectively. If a combined address and port is specified
then a separate host and port cannot be specified and vice versa.

If -targetport is specified, then -targethost must also be specified.

Example
shapeshifter-dispatcher -targethost 93.184.216.34 -targetport 9001

TOR_PT_EXTENDED_SERVER_PORT or -extorport
Specifies the destination that the PT reverse proxy should forward traffic to, via the Extended
ORPort protocol [EXTORPORT] as an <address>:<port>.

The Extended ORPort protocol allows the PT reverse proxy to communicate per-connection
metadata such as the PT name and client IP address/port to the parent process.

Example
TOR_PT_EXTENDED_SERVER_PORT=127.0.0.1:4200
shapeshifter-dispatcher -extorport 127.0.0.1:4200

TOR_PT_AUTH_COOKIE_FILE or -authcookie
Specifies an absolute filesystem path to the Extended ORPort authentication cookie, required to
communicate with the Extended ORPort specified via
"TOR_PT_EXTENDED_SERVER_PORT".

If the parent process is not using the ExtORPort protocol for incoming traffic,
"TOR_PT_AUTH_COOKIE_FILE" MUST be omitted.

Example
TOR_PT_AUTH_COOKIE_FILE=/var/lib/tor/extended_orport_auth_cookie
shapeshifter-dispatcher -authcookie
/var/lib/tor/extended_orport_auth_cookie

1.2. Pluggable Transport To Parent Process Communication
When using the IPC method to manage a PT in a separate process, in addition to environment
variables and command line flags, a custom protocol is also used to communicate between the
application parent process and PT sub-process. This protocol is communicated over the
stdin/stdout channel between the processes. This is a text-based, line-based protocol using
newline-terminated lines. Lines in the protocol conform to the following grammar:

<Line> ::= <Keyword> <OptArgs> <NL>
<Keyword> ::= <KeywordChar> | <Keyword> <KeywordChar>

<KeywordChar> ::= <any US-ASCII alphanumeric, dash, and underscore>
<OptArgs> ::= <Args>*
<Args> ::= <SP> <ArgChar> | <Args> <ArgChar>
<ArgChar> ::= <any US-ASCII character but NUL or NL>
<SP> ::= <US-ASCII whitespace symbol (32)>
<NL> ::= <US-ASCII newline (line feed) character (10)>

The parent process MUST ignore lines received from PT proxies with unknown keywords.

1.2.1. Common Messages
IPC messages specified in section 1.2.1 are common to both clients and servers.

When a PT proxy first starts up, if the "TOR_PT_MANAGED_TRANSPORT_VER" environment
variable or -ptversion flag are set, then the proxy MUST determine which version of the
Pluggable Transports Specification is being used, to ensure that it is compatible.

Upon determining the version to use, or lack thereof, the PT proxy responds with one of two
messages: VERSION-ERROR or VERSION. If the application does not specify a list of
compatible versions, then the PT proxy MUST respond with a VERSION message. The version
reported SHOULD be the latest version supported by the PT proxy.

VERSION-ERROR <ErrorMessage>

The "VERSION-ERROR" message is used to signal that there was no compatible Pluggable
Transport Specification version present in the "TOR_PT_MANAGED_TRANSPORT_VER" list.

The <ErrorMessage> SHOULD be set to "no-version" for historical reasons but MAY be set to a
useful error message instead.

As this is an error, this message is written to STDERR.

PT proxies MUST terminate with the exit code EX_CONFIG (78) after outputting a
"VERSION-ERROR" message.

Examples
VERSION-ERROR no-version

VERSION <ProtocolVersion>

The "VERSION" message is used to signal the Pluggable Transport Specification version (as in
"TOR_PT_MANAGED_TRANSPORT_VER") that the PT proxy will use to configure it's
transports and communicate with the parent process.

The version for the environment values and reply messages specified by this document is "2.2".

PT proxies MUST either report an error and terminate, or output a "VERSION" message before
moving on to client/server proxy initialization and configuration.

This message is written to STDOUT.

Examples
VERSION 2.2

After version negotiation has been completed the PT proxy MUST then validate that all of the
required environment variables are provided, and that all of the configuration values supplied
are well formed.

At any point, if there is an error encountered related to configuration supplied via the
environment variables, it MAY respond with an error message and terminate.

ENV-ERROR <ErrorMessage>

The "ENV-ERROR" message is used to signal the PT proxy's failure to parse the configuration
environment variables (3.2).

The <ErrorMessage> SHOULD consist of a useful error message that can be used to diagnose
and correct the root cause of the failure.

As this is an error, this message is written to STDERR.

PT proxies MUST terminate with error code EX_USAGE (64) after outputting a "ENV-ERROR"
message.

Examples
ENV-ERROR No TOR_PT_AUTH_COOKIE_FILE when TOR_PT_EXTENDED_SERVER_PORT set

LOG <LogLevel> <Message>

The “LOG” message is used to carry logging information from the dispatcher to the application.

The LogLevel parameter MUST be one of the following:
● ERROR
● WARN
● INFO
● DEBUG

The Message parameter MUST be a UTF-8 encoded string.

Examples
LOG DEBUG This is an example debug log message.

1.2.2. Pluggable PT Client Messages
IPC messages specified in section 1.2.2 are specific to PT clients.

After negotiating the Pluggable Transport Specification version, PT client proxies MUST first
validate "TOR_PT_PROXY" environment variable or -proxy flag if it is set, before initializing any
transports.

If an upstream proxy is provided, PT client proxies MUST respond with a message indicating
that the proxy is valid, supported, and will be used OR a failure message.

PROXY DONE

The "PROXY DONE" message is used to signal the PT proxy's acceptance of the upstream
proxy specified by "TOR_PT_PROXY".

This message is written to STDOUT.

PROXY-ERROR <ErrorMessage>

The "PROXY-ERROR" message is used to signal that the upstream proxy is
malformed/unsupported or otherwise unusable.

As this is an error, this message is written to STDERR.

PT proxies MUST terminate immediately with error code EX_UNAVAILABLE (69) after
outputting a "PROXY-ERROR" message.

Example
PROXY-ERROR SOCKS 4 upstream proxies unsupported.

After the upstream proxy (if any) is configured, PT clients then iterate over the requested
transports in "TOR_PT_CLIENT_TRANSPORTS" and initialize the listeners.

For each transport initialized, the PT proxy reports the listener status back to the parent via
messages to stdout and error messages to stderr.

CMETHOD <transport> <'socks5',’transparent-TCP’,’transparent-UDP’,’STUN’>
<address:port>

The "CMETHOD" message is used to signal that a requested PT transport has been launched,
the protocol which the parent should use to make outgoing connections, and the IP address and
port that the PT transport's forward proxy is listening on.

This message is written to STDOUT.

Examples
CMETHOD obfs4 socks5 127.0.0.1:19999
CMETHOD meeklite transparent-TCP [::1]:19999
CMETHOD shadow transparent-UDP [::1]:1234
CMETHOD obfs4 STUN 127.0.0.1:8888

CMETHOD-ERROR <transport> <ErrorMessage>

The "CMETHOD-ERROR" message is used to signal that requested PT transport was unable to
be launched.

As this is an error, this message is written to STDERR.

Outputting a "CMETHOD-ERROR" does not result in termination of the PT process, as even if
one transport fails to be initialized, other transports may initialize correctly.

Examples
CMETHOD-ERROR trebuchet no rocks available

Once all PT transports have been initialized (or have failed), the PT proxy MUST send a final
message indicating that it has finished initializing.

CMETHODS DONE

The "CMETHODS DONE" message signals that the PT proxy has finished initializing all of the
transports that it is capable of handling.

This message is written to STDOUT.

Upon sending the "CMETHODS DONE" message, the PT proxy initialization is complete.

1.2.2.1. Notes

Unknown transports in the "TOR_PT_CLIENT_TRANSPORTS" environment variable or
-transports flag are ignored entirely, and MUST NOT result in a "CMETHOD-ERROR" message.

Thus it is entirely possible for a given PT proxy to immediately output "CMETHODS DONE"
without outputting any "CMETHOD" or "CMETHOD-ERROR" lines. This does not result in
termination of the PT process.

Parent processes MUST handle "CMETHOD"/"CMETHOD-ERROR" messages in any order,
regardless of ordering in "TOR_PT_CLIENT_TRANSPORTS".

1.2.3. Pluggable PT Server Messages
IPC messages specified in section 1.2.3 are specific to PT servers.

PT server reverse proxies iterate over the requested transports in
"TOR_PT_CLIENT_TRANSPORTS" and initialize the listeners.

For each transport initialized, the PT proxy reports the listener status back to the parent via
messages to stdout and error messages to stderr.

SMETHOD <transport> <address:port> [options]

The "SMETHOD" message is used to signal that a requested PT transport has been launched,
the protocol which will be used to handle incoming connections, and the IP address and port
that clients should use to reach the reverse-proxy.

This message is written to STDOUT.

If there is a specific <address:port> provided for a given PT transport via the
"TOR_PT_SERVER_BINDADDR" environment variable or -bindaddr flag, the transport MUST
be initialized using that as the server address.

The OPTIONAL 'options' field is used to pass additional per-transport information back to the
parent process.

The currently recognized 'options' are:

ARGS:[<Key>=<Value>,]+[<Key>=<Value>]

The "ARGS" option is used to pass additional key/value formatted information that clients will
require to use the reverse proxy.

Equal signs and commas MUST be escaped with a backslash.

Tor: The ARGS are included in the transport line of the Bridge's extra-info document.

Examples
SMETHOD obfs2 198.51.100.1:19999

SMETHOD obfs4 198.51.100.1:4444
ARGS:cert=60RNHBMRrf+aOSPzSj8bD4ASGyyPl0mkaOUAQsAYljSkFB0G8B8m9fGvGJC
pOxwoXS1baA;iatMode=0

SMETHOD meeklite [2001:0db8:85a3:0000:0000:8a2e:0370:7334]:2323
ARGS:url=https://meek-reflect.appspot.com/;front=www.google.com

SMETHOD-ERROR <transport> <ErrorMessage>

The "SMETHOD-ERROR" message is used to signal that requested PT transport reverse proxy
was unable to be launched.

As this is an error, this message is written to STDERR.

Outputting a "SMETHOD-ERROR" does not result in termination of the PT process, as even if
one transport fails to be initialized, other transports may initialize correctly.

Example
SMETHOD-ERROR trebuchet no cows available

Once all PT transports have been initialized (or have failed), the PT proxy MUST send a final
message indicating that it has finished initializing.

SMETHODS DONE

The "SMETHODS DONE" message signals that the PT proxy has finished initializing all of the
transports that it is capable of handling.

This message is written to STDOUT.

Upon sending the "SMETHODS DONE" message, the PT proxy initialization is complete.

1.3. Pluggable Transport Shutdown
The recommended way for Pluggable Transport using applications and Pluggable Transports to
handle graceful shutdown is as follows:

(Parent) Set "TOR_PT_EXIT_ON_STDIN_CLOSE" when launching the PT proxy, to indicate
that stdin will be used for graceful shutdown notification.

(Parent) When the time comes to terminate the PT proxy:

● Close the PT proxy's stdin.
● Wait for a "reasonable" amount of time for the PT to exit.
● Attempt to use OS specific mechanisms to cause graceful PT shutdown (eg: 'SIGTERM')
● Use OS specific mechanisms to force terminate the PT (eg: 'SIGKILL',

'TerminateProcess()').

PT proxies SHOULD monitor stdin, and exit gracefully when it is closed, if the parent supports
that behavior.

PT proxies SHOULD handle OS specific mechanisms to gracefully terminate (eg: Install a signal
handler on 'SIGTERM' that causes cleanup and a graceful shutdown if able).

PT proxies SHOULD attempt to detect when the parent has terminated (eg: via detecting that
it's parent process ID has changed on U*IX systems), and gracefully terminate.

PT proxies exiting after a graceful shutdown should use exit code EX_OK (0).

1.4. Pluggable PT Client Per-Connection Arguments
Certain PT transport protocols require that the client provides per-connection arguments when
making outgoing connections. On the server side, this is handled by the "ARGS" optional
argument as part of the "SMETHOD" message.

On the client side, arguments are passed via the Dispatcher IPC protocol. This protocol is
based on SOCKS5 and uses the SOCKS5 protocol authentication mechanism. If no
per-connection settings are present, authentication type 0x00 (no authentication required) is
used.

If there are connection settings present, the authentication type 0x09 (IANA assigned, “JSON
Parameter Block”) is used, followed by the serialized per-connection parameter data. The
serialization process for the parameters is defined as follows:

● They keys and values are inserted into a map
● This map is serialized JSON to a UTF-8 string.
● The UTF-8 string is converted to a sequence of bytes. (This is trivial for a UTF-8 string.)
● The number of bytes is counted.
● The byte count is encoded as a 4-byte sequence in network byte order (big-endian).
● The encoded count is prepended to the byte sequence.

The following error codes are defined for the response when connection settings are present:
● X’10’ - Connection settings size too large
● X’11’ - Timeout reading connection settings

● X’12’ - Error parsing connection settings
● X’13’ - Connection settings have invalid or missing keys or values

While the byte count is encoded as a 4-byte sequence, which is capable of expressing
connection setting sizes up to 4GB, it is not required that the implementation support the
maximum possible size. If a size larger than is supported by the implementation is specified, the
X’10’ error code can be used. Additionally, an implementation-dependent timeout should
included for receiving the connection settings. If this timeout is exceeded, the X’11’ error code
can be used. Error code X’12’ is returned if the connection parameters are not properly encoded
JSON. Error code X’13’ is used if the connection settings are not correct for the specific
transport being used.

Example
\x00\x00\x00\x39{"shared-secret": "rahasia", "secrets-file": "/tmp/blob"}

1.5 UDP Support
All transports that are currently implemented use TCP. Therefore, this proposal will focus on
adding UDP application support using the existing TCP transports. This means that the Client
App will send UDP packets to the PT Client, TCP packets will be sent between the obfuscation
and the PT Server, and then the PT Server will send UDP packets to the Server App.

1.5.1 Obfuscating Proxy Architecture
The PT client and PT server together form what appears to the Client App and Server App as a
proxy. Unlike a normal single-hop proxy, the PT proxy must be split into two components. This is
because, in the use case in which a PT is used, application traffic cannot transit the network
between the Client App and the Server App due to filtering. Therefore, a traditional single hop
relay will not generally work as either one side or the other will encounter filtering. With PTs, the
proxy is broken into two pieces. The PT Client talks to the Client App locally. The PT Server
talks to the Server App over the unfiltered Internet. The PT Client talks to the PT Server using
an obfuscated protocol. The application protocol is therefore tunnelled inside the transport
protocol.

The architecture of the obfuscating proxy therefore has 4 parts: the Client App, the PT Client,
the PT Server, and the Server App. These components are arranged in a bidirectional pipeline
where data flows from the Client App, through the pipeline to the Server App, and back again.

1.5.2. Configuring the Transports
Each side of the transport (the client and the server) requires certain configuration information in
order to function. Many transports require a destination address for the next link in the pipeline.
The PT Client may require the address of the PT Server, and likewise the PT Server may
require the address of the Server App. However, this is not always required. In the case of
domain fronting, for instance, the PT Client chooses the PT Server as part of the domain
fronting implementation and so external configuration is not required. Additionally,

transport-specific parameters may be required. For instance, the PT Client may require the
public key of the PT Server in order to authenticate its identity. Configuration information for PTs
is broken up into two types. The first type is a static global configuration provided to the PT
process when the PT binary is started. The information is provided by a host process, such as
Tor. The host passes the configuration information in through a combination of environment
variables and a textual protocol provided through standard input (section 3.3). The second type
is per-connection configuration information provided as part of the SOCKS handshake.

In the case of UDP, these configuration mechanisms are missing. The host role is normally
provided by Tor, but Tor does not support UDP. Additionally, there is no SOCKS handshake to
pass in per-connection configuration information. However, the transports still need all of this
configuration information in order to function. In the UDP use case, per-connection configuration
information is specified globally with command line flags. The advantage of this approach is that
neither a host process nor a shell script wrapper is necessary. The PT process can be launched
directly from the command line using command line arguments. The limitation of this approach
is that configuration parameters cannot be specified on a per-connection basis.

1.5.3. Implementation of the PT Client
The role of the PT Client in UDP mode is to accept UDP packets and relay them over an
existing TCP-based transport. The first step is for the PT Client to listen for UDP packets on a
designated port. The second step is to relay these packet over a TCP-based transport, which
requires two things: a transport connection must be established, and the packets must be
converted into a data stream to be written to the transport connection.

Establishing a transport connection requires bridging a mismatch between the semantics of
packet-based UDP protocols and connection-based TCP transports. TCP transports are opened
and later closed, ending the connection. However, UDP protocols are connectionless. There is
no intrinsic way to tell when the first packet will start arrive or when the last packet has arrived.
Therefore, the PT Client must establish transport connections using lazy instantiation. The PT
Client will maintain a pool of transport connections. Each connection will be associated with a
PT Server destination address. When the PT Client receives a UDP packet with a PT Server
destination address not represented in the pool, a new transport connection will be created and
added to the pool. Otherwise, the existing connection will be used. Additionally, connections will
be closed and removed from the pool based on a timeout system. When a connection has not
been used for some time, it will be closed. The specific timeout used can be configured. It is
also possible that a connection will be closed by the PT Server or due to an error. In this case,
the transport will be removed from the pool. The following table shows the state transitions that
occur with this implementation.

Event Current State New State Effect

Packet received No matching
Connection in pool

New Connection
added to pool with
state = Waiting

Packet dropped

Packet received Matching Connection
in pool with state =
Waiting

Packet dropped

Packet received Matching Connection
in pool with state =
Connected

Packet sent using
Connection

Connection
successful

Connection in pool
with state = Waiting

Connection in pool
with state =
Connected

Connection closed Connection in pool
with state =
Connected

Remove Connection
from pool

Connection failed Connection in pool
with state = Waiting

Remove Connection
from pool

Write failure sending
packet

Connection in pool
with state =
Connected

Remove Connection
from pool

Packet dropped

Timeout since last
packet

Matching Connection
in pool

Remove Connection
from pool

Table 1. Client-side UDP state transitions

1.5.4. Integration with TCP Transports

Configuration of the transports is described in section 1.5.2. The remaining integration
necessary is to take the receiving UDP packets and convert them to a data stream that can be
transmitted over a TCP-based transport connection. The basic mechanism for doing this is
described in RFC 5389, “Session Traversal Utilities for NAT (STUN)”. Section 7.2.2, “Sending
over TCP or TLS-over-TCP”, describes the necessity for adding additional framing to tell where
individual UDP packets start and end within the datastream. The particular implementation of
this framing is left unspecified in the RFC.

Two methods of framing can be used. The first is for transparent UDP proxies where the format
of the UDP packets is unknown. An example use case for this mode is an OpenVPN proxy. For
this mode, a simple two byte length in network byte order can be used to prefix UDP packet
payload data. The second mode is specifically for STUN packets. An example use case for this

mode is when proxying to a TURN server. As STUN packets already contain a header including
a length for the payload, STUN packets can simply be concatenated without additional external
framing. Extraction of the individual packets from the data stream on the server side requires
knowledge of which framing was used by the client.

1.5.5. Implementation of the PT Server
The PT Server receives a data stream over a TCP-based transport connection. It then retrieves
the individual packets from the data stream and forwards them on as UDP packets. Two modes
of operation are proposed for the PT Server: transparent UDP proxy mode and STUN-aware
mode. In the transparent proxy mode, a simple two byte length in network byte order is prefixed
to each packet to act as framing metadata. In this mode, packets retrieved from the data stream
are forwarded to a destination address specified as a configuration parameter to the PT Server.
The STUN-aware mode is similar, except that instead of using external framing metadata, the
data stream is treated as a series of STUN packets. The STUN length data is retrieved from the
STUN packet headers and used to retrieve the STUN packets. The packets are then forwarded
onto a TURN server, the address of which is specified in the PT Server configuration
parameters. The goal of the STUN-aware mode is to support the use of existing public TURN
servers.

In addition to retrieving packets from the data stream and relaying them onto a UDP Server
App, the PT Server must also receive UDP packets from the Server App and relay them back
over the transport connection to the PT Client. In this function it follows similar logic to the PT
Client. The state transitions possible in the PT Server are similar to those in the PT Client, but
there are also differences. If a UDP packet is received and no matching transport connection is
available, the packet cannot be delivered and is dropped. Relatedly, connections in the
connection pool are always in a Connected state and never in a Waiting state. Therefore
Connection states are removed from the state transition table for the PT Server. The following
table shows the state transitions that occur with this implementation.

Event Current State New State Effect

Packet received No matching
Connection in pool

Packet dropped

Packet received Matching Connection
in pool

Packet sent using
Connection

Connection closed Connection in pool Remove Connection
from pool

Write failure sending
packet

Connection in pool Remove Connection
from pool

Packet dropped

Timeout since last
packet

Matching Connection
in pool

Remove Connection
from pool

Table 2. Server-side UDP state transitions

1.5.6. Configuring Proxy Modes
There is currently no mechanism for PT Servers to support multiple proxy modes
simultaneously. When transport connections are received by the PT Server, the data stream
must be interpreted as data from one of the TCP proxy modes (either transparent proxy or
SOCKS proxy) or one of the UDP proxy modes (either transparent UDP proxy or STUN-aware
proxy to a TURN server). Which mode the PT Server will operate in will be determined by PT
Server configuration parameters. It is therefore important to ensure that the PT Client and PT
Server are operating in the same mode.

2. References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, March 1997.

[RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L., "SOCKS Protocol
Version 5", RFC 1928, March 1996.

[EXTORPORT] Kadianakis, G., Mathewson, N., "Extended ORPort and TransportControlPort",
Tor Proposal 196, March 2012.

[RFC3986] Berners-Lee, T., Fielding, R., Masinter, L., "Uniform Resource Identifier (URI):
Generic Syntax", RFC 3986, January 2005.

[RFC1929] Leech, M., "Username/Password Authentication for SOCKS V5", RFC 1929, March
1996.

[PT2-DISPATCHER] Wiley, Brandon., Shapeshifter Dispatcher.
https://github.com/OperatorFoundation/shapeshifter-dispatcher

Appendix A. Example Client Pluggable Transport
Session
Environment variables
TOR_PT_MANAGED_TRANSPORT_VER=2
TOR_PT_STATE_LOCATION=/var/lib/tor/pt_state/
TOR_PT_EXIT_ON_STDIN_CLOSE=1
TOR_PT_PROXY=socks5://127.0.0.1:8001
TOR_PT_CLIENT_TRANSPORTS=shadow,obfs4

Messages the PT Proxy writes to stdin
VERSION 2 PROXY DONE
CMETHOD shadow socks5 127.0.0.1:32525
CMETHOD obfs4 socks5 127.0.0.1:37347
CMETHODS DONE

Appendix B. Example Server Pluggable Transport
Session
Environment variables
TOR_PT_MANAGED_TRANSPORT_VER=2
TOR_PT_STATE_LOCATION=/var/lib/tor/pt_state
TOR_PT_EXIT_ON_STDIN_CLOSE=1
TOR_PT_SERVER_TRANSPORTS=shadow,obfs4 TOR_PT_SERVER_BINDADDR=shadow-198.51.100.1:1984

Messages the PT Proxy writes to stdin
VERSION 2
SMETHOD shadow 198.51.100.1:1984
SMETHOD obfs4 198.51.100.1:43734
ARGS:cert=HszPy3vWfjsESCEOo9ZBkRv6zQ/1mGHzc8arF0y2SpwFr3WhsMu8rK0zyaoyERfbz3ddFw,iat-mode=0
SMETHODS DONE

https://github.com/OperatorFoundation/shapeshifter-dispatcher

Appendix C. Changelog
PT 2.2

● Implemented proposal 0006 - User Settable Proxy Listen Address
● Implemented proposal 0008 - Reduce Number of Required IPC Parameters
● Implemented proposal 0009 - Reduce Use of Microformats in IPC Parameters
● Implemented proposal 0012 - Improve Logging in IPC
● Added -client and -server flags
● Deleted section 1.1.4 Command Line Flags as it is has become redundant
● Removed references to obsolete transports

PT 2.1
● Implemented proposal 0002 - Modularization of Specification

PT 2.0
● Modified SOCKS authentication method to use IANA-assigned designator
● Added error response codes for per-connection arguments
● Renamed version flag to ptversion to avoid naming conflict with goptlib
● Standardized use of Dispatcher IPC language throughout
● Added length to per-connection parameter encoding

