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able to bring the difference between and 5 below each of these three numbers; we
must be able to bring it below any positive number. And, by the same reasoning, we can! If
we write (the Greek letter epsilon) for an arbitrary positive number, then we find as 
before that

This is a precise way of saying that is close to 5 when is close to 3 because says
that we can make the values of within an arbitrary distance from 5 by taking the val-
ues of within a distance from 3 (but ).

Note that can be rewritten as follows:

then    

and this is illustrated in Figure 1. By taking the values of ( ) to lie in the interval
we can make the values of lie in the interval .

Using as a model, we give a precise definition of a limit.

Definition Let be a function defined on some open interval that contains the
number , except possibly at itself. Then we say that the limit of as

approaches is L, and we write

if for every number there is a number such that

then    

Since is the distance from to and is the distance from to ,
and since can be arbitrarily small, the definition of a limit can be expressed in words 
as follows:

means that the distance between and can be made arbitrarily small 
by taking the distance from to sufficiently small (but not 0).

Alternatively,

means that the values of can be made as close as we please to 
by taking close enough to (but not equal to ).

We can also reformulate Definition 2 in terms of intervals by observing that the in-
equality is equivalent to , which in turn can be written 
as . Also is true if and only if , that is, 

. Similarly, the inequality is equivalent to the pair of inequalities
. Therefore, in terms of intervals, Definition 2 can be stated 

as follows:

means that for every (no matter how small is) we can find
such that if lies in the open interval and , then lies in 

the open interval 
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We interpret this statement geometrically by representing a function by an arrow diagram
as in Figure 2, where maps a subset of onto another subset of .

The definition of limit says that if any small interval is given around , then
we can find an interval around such that maps all the points in

(except possibly ) into the interval . (See Figure 3.)

Another geometric interpretation of limits can be given in terms of the graph of a func-
tion. If is given, then we draw the horizontal lines and and
the graph of . (See Figure 4.) If , then we can find a number such
that if we restrict to lie in the interval and take , then the curve

lies between the lines and . (See Figure 5.) You can see
that if such a has been found, then any smaller will also work.

It is important to realize that the process illustrated in Figures 4 and 5 must work for
every positive number , no matter how small it is chosen. Figure 6 shows that if a smaller

is chosen, then a smaller may be required.

Use a graph to find a number such that

if    then    

In other words, find a number that corresponds to in the definition of a limit
for the function with and .
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SOLUTION A graph of is shown in Figure 7; we are interested in the region near the
point . Notice that we can rewrite the inequality

as

So we need to determine the values of for which the curve lies
between the horizontal lines and . Therefore we graph the curves

, , and near the point in Figure 8. Then we use
the cursor to estimate that the -coordinate of the point of intersection of the line
and the curve is about . Similarly, intersects
the line when . So, rounding to be safe, we can say that

if    

This interval is not symmetric about . The distance from to the
left endpoint is and the distance to the right endpoint is 0.12. We can
choose to be the smaller of these numbers, that is, . Then we can rewrite our
inequalities in terms of distances as follows:

if    

This just says that by keeping within 0.08 of 1, we are able to keep within 0.2 
of 2.

Although we chose , any smaller positive value of would also have
worked.

The graphical procedure in Example 1 gives an illustration of the definition for ,
but it does not prove that the limit is equal to 2. A proof has to provide a for every .

In proving limit statements it may be helpful to think of the definition of limit as a chal-
lenge. First it challenges you with a number . Then you must be able to produce a suitable
. You have to be able to do this for every , not just a particular .

Imagine a contest between two people, A and B, and imagine yourself to be B. Person A
stipulates that the fixed number should be approximated by the values of to within a
degree of accuracy (say, 0.01). Person B then responds by finding a number such that if

, then . Then A may become more exacting and challenge
B with a smaller value of (say, 0.0001). Again B has to respond by finding a correspon-
ding . Usually the smaller the value of , the smaller the corresponding value of must be.
If B always wins, no matter how small A makes , then 

Prove that .

SOLUTION
1. Preliminary analysis of the problem (guessing a value for ). Let be a given

positive number. We want to find a number such that

if    

But . Therefore we want 
such that

if    

that is, if    then    

This suggests that we should choose .
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In Module 1.7/3.4 you can explore the
precise definition of a limit both graphically and
numerically.
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2. Proof (showing that this works). Given , choose . If
, then

Thus

if    

Therefore, by the definition of a limit,

This example is illustrated by Figure 9.

Note that in the solution of Example 2 there were two stages—guessing and proving. 
We made a preliminary analysis that enabled us to guess a value for . But then in the sec-
ond stage we had to go back and prove in a careful, logical fashion that we had made a cor-
rect guess. This procedure is typical of much of mathematics. Sometimes it is necessary to
first make an intelligent guess about the answer to a problem and then prove that the guess
is correct.

The intuitive definitions of one-sided limits that were given in Section 1.5 can be pre-
cisely reformulated as follows.

Definition of Left-Hand Limit

if for every number there is a number such that

if    

Definition of Right-Hand Limit

if for every number there is a number such that

if    

Notice that Definition 3 is the same as Definition 2 except that is restricted to lie in the
left half of the interval . In Definition 4, is restricted to lie in the
right half of the interval 

Use Definition 4 to prove that 

SOLUTION
1. Guessing a value for . Let be a given positive number. Here and ,

so we want to find a number such that
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After the invention of calculus in the 17th cen-
tury, there followed a period of free development
of the subject in the 18th century. Mathemati-
cians like the Bernoulli brothers and Euler were
eager to exploit the power of calculus and boldly
explored the consequences of this new and won-
derful mathematical theory without worrying too
much about whether their proofs were com-
pletely correct.

The 19th century, by contrast, was the Age of
Rigor in mathematics. There was a movement to
go back to the foundations of the subject—to
provide careful definitions and rigorous proofs.
At the forefront of this movement was the 
French mathematician Augustin-Louis Cauchy
(1789–1857), who started out as a military engi-
neer before becoming a mathematics professor
in Paris. Cauchy took Newton’s idea of a limit,
which was kept alive in the 18th century by the
French mathematician Jean d’Alembert, and
made it more precise. His definition of a limit
reads as follows: “When the successive values
attributed to a variable approach indefinitely a
fixed value so as to end by differing from it by 
as little as one wishes, this last is called the
limit of all the others.” But when Cauchy used
this definition in examples and proofs, he often
employed delta-epsilon inequalities similar to 
the ones in this section. A typical Cauchy proof
starts with: “Designate by and two very
small numbers; . . .” He used because of the
correspondence between epsilon and the French
word erreur and because delta corresponds to
différence. Later, the German mathematician
Karl Weierstrass (1815–1897) stated the defini-
tion of a limit exactly as in our Definition 2.

	

Cauchy and Limits
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