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CHAPTER |

Limits and Continuity

DEFINITION

If € is any positive number, no matter how small, we must be able to ensure that
| f(x) — L| < € by restricting x to be close enough to (but not equal to) a. How close
is close enough? It is sufficient that the distance |x — a| from x to a be less than a
positive number § that depends on €. (See Figure 1.36.) If we can find such a § for any
positive €, we are entitled to conclude that lim,_,, f(x) = L.

A formal definition of limit
We say that f(x) approaches the limit L as x approaches a, and we write

lim f(x)=1L,
X—a
if the following condition is satisfied:
for every number ¢ > 0 there exists a number § > 0, possibly depending on ¢,

such that if 0 < |Jx — a| < §, then x belongs to the domain of f and

|[f(x) - Ll <e.

The formal definition of limit does not tell you how to find the limit of a function, but
it does enable you to verify that a suspected limit is correct. The following examples
show how it can be used to verify limit statements for specific functions. The first of
these gives a formal verification of the two limits found in Example 3 of Section 1.2.

EXAMPLE 2 (Two important limits) Verify: (a) gn_lgx =a and
(b) lim k = k (k = constant).

X—a

Solution
(a) Lete > 0 be given. We must find § > 0 so that

O<|x—a|l<é implies lx —al| < e.

Clearly, we can take § = ¢ and the implication above will be true. This proves
that lim, ,, x = a.

(b) Let € > 0 be given. We must find § > 0 so that
O<|x—a|<$é implies [k — k| < e.

Since k — k = 0, we can use any positive number for § and the implication above
will be true. This proves that lim,_, , k = k.

EXAMPLE 3 Verify that lim,_,2 x% = 4,

Solution Here a = 2 and L = 4. Let € be a given positive number. We want to find
§ > 0sothatif 0 < |x — 2| < §,then | f(x) — 4| < €. Now

[f(x)—4] = X2 =4 =|(x +2(x —2)| = |x +2||x — 2|

We want the expression above to be less than e. We can make the factor |x — 2| as
small as we wish by choosing § properly, but we need to control the factor |x + 2| so
that it does not become too large. If we first assume § < 1 and require that |x — 2| < §,
then we have

[x =2 <1 = l<x<3 = 3<x+2<5
= [x +2| <5.
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Hence,
| f(x) =4 <S|x =2 if [x—2l<8<1.

But5|x —2| < €if |[x —2| < €/5. Therefore, if we take § = min{1, €¢/5}, the minimum
(the smaller) of the two numbers 1 and €/5, then

|_f(x)—4|<5|x—2|<5><-§-=6 it x—-2| <.

This proves that lim,_, 7 f(x) = 4.
@

Using the Definition of Limit to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such
as those in the two examples above. Rather, we appeal to general theorems about
limits, in particular Theorems 2—4 of Section 1.2. The definition is used to prove these
theorems. As an example, we prove part 1 of Theorem 2, the Sum Rule.

EXAMPLE 4 (Proving the rule for the limit of a sum) If Xll_rpa f(x)y=L and
lim g(x) = M, prove that }m(_f(x) +g(x)) =L+ M.

Solution Let ¢ > 0 be given. We want to find a positive number § such that
O<lx—al<s = |[(f&)+g@)—(L+M)<e.
Observe that

|(f(x)+g(x)) — (L + M)| Regroup terms.
= [(f(x) = L)+ (g(x) — M) (Use the triangle inequality:
la +b| < |al + |b]).
S| fx) - LI+ 1) — M.

Since lim,_,, f(x) = L and €/2 is a positive number, there exists a number §; > 0
such that

O<|x—al<é = |f(x)-L|l<e/2
Similarly, since lim,_,, g(x) = M, there exists a number §» > 0 such that
O<lx—al<d = |g)y—-M| <e/2

Let § = min{§;, 62}, the smaller of §; and §;. If 0 < |x — a| < 4, then |x — a| < §,
so|f(x)— L| <€/2,and |x — a| < §2, 50 |g(x) — M| < €/2. Therefore,

€
2

|(f(x) + g(x)) — (L + M)| < §+ =e.

This shows that lim, o (f (x) + g(x)) = L + M.

o
Other Kinds of Limits

The formal definition of limit can be modified to give precise definitions of one-sided
limits, limits at infinity, and infinite limits. We give some of the definitions here and
leave you to supply the others.



