Formal Docs

Documentation Practices Across
Theorem Provers and Model Checkers

Scope of the Survey

e Review documentation of software for model checking/theorem proving

e I|dentify what kinds of documentation there is
o User guide, API reference, Tutorials/Resources/Cookbook, Contributing/Developer guide

e Identify whether documentation is official, unofficial or mixed
e Identify tools used to generate, edit and/or host documentation

Alloy - https://alloy.readthedocs.io/en/latest/

e Runs on Sphinx
o Some customization

e Unofficial
e Meant to be a reference, not a tutorial

https://alloy.readthedocs.io/en/latest/

c O 8 https://alloy.readthedocs.io/en

Alloy Documentation : '
Docs » Language » Signatures €) Edit on GitHub

Search docs

Signatures

Introduction A signature expresses a new type in your spec. It can be anything you want. Here are some example

O Language signatures:

S At e Time
Relations e State
Signature Multiplicity * File

7 Subtypes Person
Msg

Pair

Enums
Sets and Relations
Expressions and Constraints Alloy can generate models that have elements of each signature, called atoms. Take the following
Predicates and Functions spec:
Commands
Modules sig A {}
Tooling

Modules The following would be an example generated model:

Techniques

SPIN - https://spinroot.com/spin/whatispin.html

Basic HTML

Not clear how to add content, dated

Course materials - https://spinroot.com/course/
Large number of books, course materials
Github not very active

https://spinroot.com/spin/whatispin.html
https://spinroot.com/course/

O 8t spinroot.com,

= -. i

Verifying

Multi-threaded

Seftware- :

with Spin
Spin is a widely used open-source software verification tool. The tool can be used for the formal verification of multi-threaded software
applications. The tool was developed at Bell Labs in the Unix group of the Computing Sciences Research Center, starting in 1980, and has been
available freely since 1991. Spin continues to evolve to keep pace with new developments in the field. In April 2002 the tool was awarded the
ACM System Software Award. [read morel]

discover learn use community

what is spin? o tutorials « installation forum

examples * papers « options » support
roots « model extraction « releases « projects
* exercises

.

» success stories » books * man pages » symposia
.

.

Open Source: Starting with Version 6.4.5 from January 2016, the Spin sources are available under the standard BSD 3-Clause open source license. Spin
is now also part of the latest stable release of Debian Linux, and has made it into the 16.10+ distributions of Ubuntu. The current Spin version is 6.5.1 (July

2020).

Symposia: The 29th International Spin Symposium will be held in April 26-27 2023 in Paris, co-located with ETAPS-2023. The Symposium is organized by
Georgiana Caltais and Christian Schilling.

Courses: A short online course in software verification and logic model checking is available (password required). There are a total 15 short lectures
covering the automata-theoretic verification method, the basic use of Spin, model extraction from C source code, abstraction methods, and swarm
verification techniques. You can see an overview via this link. An excellent introduction to the basics of model checking.

In-Depth: A full one semester college-level course is also available, complete with transcripts of every lecture, quizzes, assignments, and exercises to test
your understanding and practice new skills. Details can be found in this syllabus.

Coq - https://coaq.inria.fr/refman/index.html

e Sphinx for Reference Manual

e Just uses markdown for Contributing
o “Our official resources, such as the reference manual are not suited for learning Coq, but
serve as reference documentation to which you can link from your tutorials.”
e WIiki - Installation, Development, Additional Resources

o “Coq's wiki is an informal source of additional documentation which anyone with a GitHub
account can edit directly.”

https://coq.inria.fr/refman/index.html#
https://coq.inria.fr/refman/index.html
https://github.com/coq/coq/blob/master/CONTRIBUTING.md
https://github.com/coq/coq/wiki

@ O 8 nttp

4 Coq
8.17.0

Search docs

Introduction and Contents

Core language

Language extensions

Basic proof writing

Automatic solvers and programmable
tactics

Creating new tactics

Libraries and plugins

Command-line and graphical tools

History and recent changes
Indexes

Bibliography

s://cog.inria.fr/refman/index.htr

Docs » Introduction and Contents O Edit on GitHub

Introduction and Contents

This is the reference manual of Cog. Coq is an interactive theorem prover. It lets you formalize
mathematical concepts and then helps you interactively generate machine-checked proofs of
theorems. Machine checking gives users much more confidence that the proofs are correct
compared to human-generated and -checked proofs. Coq has been used in a number of flagship
verification projects, including the CompCert verified C compiler, and has served to verify the proof
of the four color theorem (among many other mathematical formalizations).

Users generate proofs by entering a series of tactics that constitute steps in the proof. There are
many built-in tactics, some of which are elementary, while others implement complex decision
procedures (such as lia, a decision procedure for linear integer arithmetic). Ltac and its planned
replacement, Ltac2, provide languages to define new tactics by combining existing tactics with
looping and conditional constructs. These permit automation of large parts of proofs and
sometimes entire proofs. Furthermore, users can add novel tactics or functionality by creating Coq
plugins using OCaml.

The Coq kernel, a small part of Coq, does the final verification that the tactic-generated proof is
valid. Usually the tactic-generated proof is indeed correct, but delegating proof verification to the
kernel means that even if a tactic is buggy, it won't be able to introduce an incorrect proof into the
system.

Finally, Coq also supports extraction of verified programs to programming languages such as OCaml
and Haskell. This provides a way of executing Coq code efficiently and can be used to create
verified software libraries.

Lean - https://leanprover-community.qgithub.io/

e Custom doc-gen
o https://github.com/leanprover-community/doc-gen

e \ery clear “Getting Started” section
e Thorough guidelines on contributing
e Clean looking

https://leanprover-community.github.io/
https://github.com/leanprover-community/doc-gen

Lean Community

Learning Lean

Community There are many ways to start learning Lean, depending on your background and taste. They are all fun and rewarding, but
Zulip chat also difficult and occasionally frustrating. Proof assistants are still difficult to use, and you cannot expect to become
GitHub proficient after one afternoon of learning.

Blog
Community information

o Hands-on approaches

Papers about Lean « Whatever your background, if you want to dive right away, you can play the Natural Number Game by Kevin Buzzard
Projects using Lean and Mohammad Pedramfar. This is a online interactive tutorial to Lean focused on proving properties of the
Events elementary operations on natural numbers.

Installation « For a faster paced and broader dive, you can get the tutorials project. (You already have it if you installed an
Get started autonomous bundle or followed the instructions on this page.) This tutorial is specifically geared towards mathematics
Debian/Ubuntu installation rather than computer science. The last files of this project are easier if you have already encountered the definition of

Genetie Linuxinstaliation limits of sequences of real numbers.

MacOS installation

Windows installation

Online version (no installation)

Using leanproject * A brand new resource that is still under construction is Mathematics in Lean. It can be read online, or downloaded as a

The Lean toolchain pdf, but it is really meant to be used in VSCode, doing exercises on the fly (see the instructions). It currently covers
roughly the same ground as the tutorials project.

¢ The Ifctm2020 exercises, developed for the July 2020 virtual meeting Lean for the Curious Mathematician, are another
good resource. There are corresponding tutorial videos from the meeting.

Documentation

: * Once you know the basics, you can also learn by solving Lean puzzles on Codewars.
Learning resources (start here)

API documentation Whatever resource you choose to use from the above list, it could be useful to have a copy of our tactic cheat sheet at hand,

Changelog for reference.
Calc mode

Isabelle - https://isabelle.in.tum.de/documentation.html

e Home

o HTML links to PDFs

o Official

o Unclear how to contribute
e https://isabelle.systems/

o Github Pages

o Links to Home, Cookbook
e Community Cookbook

o Github Pages

https://isabelle.in.tum.de/documentation.html
https://isabelle.systems/
https://github.com/isabelle-prover/cookbook

elle.in.tum.de/documentation.html

ELE UNIVERSITY OF

Documentation €¥ CAMBRIDGE

Computer Laboratory

Tutorials and manuals for Isabelle2022

Isabelle Tutorials
Overview
prog-prove: Programming_and Proving_in Isabelle/HOL
Installation locales: Tutorial on Locales
- classes: Tutorial on Type Classes

I Documentation

functions: Tutorial on Function Definitions

Site Mirrors: corec: Tutorial on Nonprimitively Co_recursive Definitions
ST . codegen: Tutorial on Codg Qeneratlon

Munich (de) nitpick: User's Guide to Nitpick

sledgehammer: User's Guide to Sledgehammer
eisbach: The Eisbach User Manual

sugar: LaTeX Sugar for Isabelle documents

Potsdam, NY (.us)

Isabelle Reference Manuals

main: What's in Main
isar-ref: The Isabelle/Isar Reference Manual
implementation: The Isabelle/lsar Implementation Manual
system: The Isabelle System Manual

« jedit: Isabelle/jEdit

Old Isabelle Manuals

tutorial: Tutorial on Isabelle/HOL

intro: Old Introduction to Isabelle

logics: Isabelle's Logics: HOL and misc logics
logics-ZF: Isabelle's Logics: FOL and ZF

Z3 - https://z3prover.github.io/api/html/

e APl reference docs
o Madoko
o Auto-generated
e Guide
o Docusaurus
o Free-form editor (but it has a bug!)

https://z3prover.github.io/api/html/
https://z3prover.github.io/api/html/
https://microsoft.github.io/z3guide/

O B https://z3prover.github.io/api/html/

/3

An Efficient Theorem Prover

Z3 is a high-performance theorem prover being developed at Microsoft Research.
The Z3 website is at hitp:/github.com/z3prover.

This website hosts the automatically generated documentation for the Z3 APlIs.

e CAPI
e C++ API
.NET API
Java API
Python API (also available in pydoc format)
ML/OCaml API

AGREE - https://loonwerks.com/tools/agree.html

e PanDocs
o Uses ANT for its build process

e https://qithub.com/loonwerks/AGREE

o “The documentation source code is maintained in Markdown from which HTML, PDF, and
DOCX output is generated.”

e Docs not available online

https://loonwerks.com/tools/agree.html
https://github.com/loonwerks/AGREE

Takeaways

e No general consensus among documentation tools
o Sphinx has a plurality, but almost all are different

e Combination of approaches is common
o “Official” homepage supported by “unofficial” ecosystem

e It's not a beauty contest
o General focus on content, not styling

Thank you!

