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1 Introduction

This note describes two methods for predicting tags from the content of a
tiddler:

Baysian Inference The first method uses a two pass algorithm to predict
the tags. In the first pass we record the conditional probabilities for
the words in a tiddler given a specific manually assigned tag.

In the second pass, we throw away the tags and predict the tags based
on the contents of the tiddler

From the content alone tags are predicted with a roughly 80% accuracy.
By this I means that if a tag is predicted there is an 80% chance that
is the same as one of the manually assigned tags.

TF*IDF The second method totally ignore the manually assigned tags but
just performs a statistical analysis of the content of the tiddlers. Key-
words are words in the content that have a high probability of occur-
rence in the tiddler content and a low overall probability.

2 Step 1 - obtaining the training data

I used the data from https://tiddlywiki.com/
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I’ll assume you have fetched the tiddlywiki and saved this in a file called
tiddlyWiki.html.

To extract the individual tiddlers I used the node js implementation of
the tiddly wiki (available from http://github/.

The following script unpacks the individual tiddlers into a sub-directory
called tiddlers. This gives us a set of 994 tiddlers to work with.

#!/bin/sh

outdir=tiddlers

mkdir -p $outdir

in=tiddlywiki.html

tiddlywiki --load $in --output $outdir \

--render "[!is[system]]" \

"[encodeuricomponent[]addsuffix[.tid]]" \

"text/plain" "$:/core/templates/tid-tiddler"

The format of the tiddlers is not quite appropriate for this experiment, so
the first step is to parse all the tiddlers, extract the content, titles and tags
and dump this to a file for future analysis.

3 Bayesian Inference

Bayes theorem is usually written as:

P (A | B) =
P (B | A)P (A)

P (B)

The notation P (A | B) means the probability that B has occurred given
that A has happened. P (X) is the probability that X has happened.

Bayes theorem gives us a simple way to predict which tags a untagged
tiddler should have. Given a training pass we can compute P (word|tag)
which is probability that a particular word with a given tag exists.

To predict which tags an untagged tiddler should have we compute P (tag|word)
for all known tags and choose the value which maximizes this expression
summed over all words in the tiddler.

This might sound rather abstract, so I’ll start with a simple example.
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3.1 Training the classifier

Assume we have 5 training sentences - we call the classifier five times as
follows:

teach(<<"cars">>,<<"volvo makes many cats cars">>),

teach(<<"cars">>,<<"fantastic miles per gallon">>),

teach(<<"pets">>,<<"black cat called zorro">>),

teach(<<"pets">>,<<"another daft cat called daisy">>),

teach(<<"pets">>, <<"funny dog called sam">>),

The first argument to teach is a tag, the second is a nonsense text.
Now we can calculate some probabilities.
First we’ll calculate P (cat|pets) this is the probability that the word cat

occurs in a sentence with tag pets.
The word cat occurs 2 times in sentences with the tag pets and there are

a total of 13 words in sentences with the tag pets so:

P (cat|pets) = 2/13

What about P (cat)? the word cat occurs a total of 3 times and there is
a total of 22 words so,

P (cat) = 3/22

Finally P (pets) the tag pets occurs 3 times and there are 5 tags so

P (pets) = 3/5

Now we can evolve Bayes theorem namely

P(pets|cats) = P(cat|pets) * P(pets) / P(cat)

= (2/13) * (3/5) / (3/22)

3.2 Making a Prediction

To predict which tags a tiddler should have, we iterate over all tags and all
words in the tiddler of interest computing the probability that the tag should
occur in the tiddler. In pseudo code:
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for tag in allTags

P[tag] = 0

for word in thisTiddler.Content

p[tag] += P(word|tag)

end

end

sort the P array and choose the

first K elements

For each tiddler I have set K = 3 to choose the 3 most likely tags.

4 TF*IDF

TF stands for Term Frequency and IDF for inverse document frequncy.
The Inverse document frequency (IDF) of a word W is defined as log(D/N+1)

where D is the total number of tiddlers in the tiddlyWiki and N is the number
of tiddlers that contain the word W.

Example: Suppose we have a tiddlyWiki of 1000 with tiddlers. Assume
the word machine occurs in 50 tiddlers. The IDF of the word machine is thus
log(1000/51) (= 1.29). If the word machine occurs 10 times in a tiddler of
100 words then the TF of machine is 10/100 = (0.1) and the TF*IDF weight
of the word is 0.129.

The words in a tiddler with the highest TF*IDF scores are chosen as
keywords to represent the content.

As in the previous example we compute the 3 most likely tags for each
tiddler.

5 Results

The analysis program produces a listing file. Here are a few typical lines
from this file:

Title: ClearPasswordCommand

Manual Tags: [<<"Commands">>]

Predicted Tags: [<<"Commands">>,<<"TableOfContents">>,<<"Editions">>]

TF*IDF Keywords: [<<"clearpassword">>,<<"language">>,<<"help">>]

Title: Code Blocks in WikiText
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Manual Tags: [<<"WikiText">>]

Predicted Tags: [<<"WikiText">>,<<"Operator Examples">>,

<<"Filter Operators">>]

TF*IDF Keywords: [<<"pre">>,<<"monospaced">>,<<"backticks">>]

Title: CodeBlockWidget

Manual Tags: [<<"Widgets">>]

Predicted Tags: [<<"Commands">>,<<"Widgets">>,<<"Filter Operators">>]

TF*IDF Keywords: [<<"language">>,<<"codeblock">>,<<"code">>]

Title: CodeMirror Plugin

Manual Tags: [<<"OfficialPlugins">>,<<"Plugin Editions">>]

Predicted Tags: [<<"Plugin Editions">>,<<"OfficialPlugins">>,

<<"Resources">>]

TF*IDF Keywords: [<<"codemirror">>,<<"prerelease">>,<<"latest">>]

Title: is the the tiddler title. Manual Tags: are the manuualy as-
signed tags. Predicted Tgaas: are the tagsprediuced by Bytean infernce.
TF*IDF Keywords: are the TF*IDF prefdicted keywords.

Iterestingly there are several tiddlers with no predicted tags.
In our data set there were 994 tiddlers and 1437 tag assignments. The

total number of different tags was 233.
83% of all tiddlers were correctly tagged by the Bayesian tagger. By this

I mean that the tags in the tiddler were found in one of the three most likely
predicted tags.

The TF*IDF tags correspond to the manually assigned tags in about 20%
of the tiddlers. But this does not mean that the tags are useless.

The problem with the manual tags and the corresponding Bayesian infer-
ence has to do with the quality of the tags. Often the tags are assigned for
internal purposes, for example to enable high-level transclusion operations.
Large numbers of tiddlers (in this sample) have the same tag (for example,
Resources) this might be a good tag for book-keeping purposes, but is not
a good tag for describing the content of the tiddler in a meaningful way.

Often the TF*IDF tags look to me to be very well chosen - I imagine the
best approach would be interactive. The user could request a set of predicted
tags for a tiddler and then chose to accept or reject the suggestions in an
interactive manner.

6


