# Identification，Assessment and Correction of III－Conditioning and Numerical Instability in Linear and Integer Programs 

Ed Klotz（klotz＠us．ibm．com），Math Programming Specialist，IBM

## Objective

- Enable more precise assessment of ill conditioning in linear and integer programs
- Multiple metrics available to assess ill conditioning
- Discuss some techniques to treat the symptoms and causes of ill conditioning in LP and MIP models


## Outline

- Finite precision computing fundamentals
- Description of ill conditioning
- Assessment of ill conditioning
- Alternate metrics for ill conditioning
- Numerical stability of algorithms
- Identification and treatment of symptoms of ill conditioning
- Identification and treatment of sources of ill conditioning
- Examples that illustrate modeling pitfalls that can contribute to ill conditioning
- Formulation alternatives
- Conclusions


## Finite Precision Computing Fundamentals

－ 64 bit double precision is most commonly used in scientific applications
－ 32 bit single precision requires less memory，but is less accurate
－Memory savings not significant for LP and MIP solvers anymore
－ 128 bit quad precision is more accurate，but requires more memory and computing time
－Many floating point numbers cannot be represented exactly
－Base of floating point representation determines those that can
－Base 2 typically used
－Numbers that are sums of（positive and negative）powers of 2 can be represented exactly，within the limits of the minimum and maximum possible exponents
－ $8.0625=2^{\wedge} 3+2^{\wedge}(-4)$ can be represented exactly
－． $333333 \ldots$ ．．．cannot be represented exactly

## Example: 64 Bit IEEE Double Representation



## IEEE 64 Bit Double Addition



## IEEE 64 Bit Double Addition



## IEEE 64 Bit Division

- Subtract exponents, divide mantissas
- Errors in representation in mantissa determine magnitude of roundoff error
- Don't divide big numbers by small numbers in data calculations

For $\mathrm{a} \gg \mathrm{b}$, compare $\mathrm{a} / \mathrm{b}$ and $\mathrm{b} / \mathrm{a} \quad\left(\mathrm{a}=3, \mathrm{~b}=1 / 30000, \varepsilon=10^{-8}\right)$

$$
\begin{array}{lr}
\mathrm{b} / \mathrm{a} \sim(\mathrm{~b}+\varepsilon) / \mathrm{a}=\mathrm{b} / \mathrm{a}+\varepsilon / \mathrm{a} & \left(\text { error } \sim 10^{-8}\right) \\
\mathrm{a} / \mathrm{b} \sim \mathrm{a} /(\mathrm{b}+\varepsilon)=\mathrm{a} / \mathrm{b}-\mathrm{a} \varepsilon /((\mathrm{b}+\varepsilon) \mathrm{b}) & \left(\text { error } \sim 10^{0}\right) \\
\hline
\end{array}
$$

$$
\begin{array}{|ll|}
\hline\left(\mathrm{a}=3, \mathrm{~b}=1 / 30000, \varepsilon=10^{-16}\right) & \\
\mathrm{b} / \mathrm{a} \sim(\mathrm{~b}+\varepsilon) / \mathrm{a}=\mathrm{b} / \mathrm{a}+\varepsilon / \mathrm{a} & \left(\text { error } \sim 10^{-16}\right) \\
\mathrm{a} / \mathrm{b} \sim \mathrm{a} /(\mathrm{b}+\varepsilon)=\mathrm{a} / \mathrm{b}-\mathrm{a} \varepsilon /(\mathrm{b}+\varepsilon) \mathrm{b}) & \left(\text { error } \sim 10^{-8}\right) \\
\hline
\end{array}
$$

## Implications of Finite Precision Representation

- Simply representing the model data can introduce roundoff errors
- Larger numbers have larger absolute round-off errors in their representations
- Arithmetic calculations can introduce additional round-off errors
- With 64 bit doubles, we have 16 accurate base 10 digits, or 53 accurate base 2 digits.
- Larger numbers have more digits to the left of the decimal point.
- Arithmetic calculations on numbers of the same order of magnitude are more accurate than calculations on numbers of different orders of magnitude


## Description

## - III Conditioning

- Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?

Data to 3 decimal places (.506)


Meteorological Model

Data to 6 decimal places

 (.506127)


## Problem definition

- III Conditioning
- Small change in input leads to big change in output

```
Given }x\in\mp@subsup{R}{}{n},y\in\mp@subsup{R}{}{m},y=f(x
```

For $y+\Delta y=f(x+\Delta x)$, compute bound $\kappa:\|\Delta y\| \leq \kappa\|\Delta x\|$

- Can we quantitatively measure ill conditioning?
- For many mathematical systems or models, quantitative measures have yet to be discovered. But, sometimes we can measure it.
- Specifically, we can measure ill conditioning when solving square linear systems of equations


## Condition Number of a Square Matrix（Turing，1948； Rice，1966）

－CPLEX solves square linear systems of form：$\quad B x=b$
－exact solution is：
－How will a change to the input vector b affect the computed solution $x$ ？

$$
x+\delta x=B^{-1}(b+\delta b)
$$

$$
\Rightarrow \delta x=B^{-1} \delta b
$$

－Cauchy－Schwarz inequality：

$$
\|\delta x\| \leq\left\|B^{-1}\right\| \cdot\|\delta b\|
$$

－Cauchy－Schwarz for original system：

$$
\|b\| \leq\|B\| \cdot\|x\|
$$

－Combine and rearrange：

$$
\frac{\|\delta x\|}{\|x\|} \leq\|B\| \cdot\left\|B^{-1}\right\| \cdot \frac{\|\delta b\|}{\|b\|}
$$

## Condition Number of a Square Matrix（ctd．）

－CPLEX solves square linear systems of form：$\quad B x=b$
－exact solution is：

$$
x=B^{-1} b
$$

－How will a change to the input matrix B affect the computed solution $x$ ？
$(B+\delta B)(x+\delta x)=b$ $B x+\delta B x+B \delta x+\delta B \delta x=\npreceq$

$$
\Rightarrow B \delta x=-\delta B(x+\delta x)
$$

$$
\Rightarrow-\delta x=B^{-1} \delta B(x+\delta x)
$$

－Cauchy－Schwarz inequality：

$$
\|\delta x\| \leq\left\|B^{-1}\right\| \cdot\|\delta b\| \cdot\|x+\delta x\|
$$

－Rearrange：
－Multiply by $\quad\|B\| /\|B\|$ ：

$$
\begin{gathered}
\frac{\|\delta x\|}{\|x+\delta \delta\|} \leq\left\|B^{-1}\right\| \cdot\|\delta B\| \\
\frac{\|\delta x\|}{\|x+\delta x\|} \leq\left\|B^{-1}\right\| \cdot\|B\| \cdot \frac{\|\delta B\|}{\|B\|}
\end{gathered}
$$

## Condition Number

- Condition number of B is defined as $\kappa(B)=\|B\| \cdot\left\|B^{-1}\right\|$

- As condition number increases, potential change in solution relative to (normwise) change in data also increases
- Even if the modeler doesn't change the data, finite precision computers can introduce small changes
- Machine precision for 64 bit double $=1 \mathrm{e}-16$
- Just moving from a Windows machine to an AIX machine can change precision enough to significantly influence results on an ill conditioned linear system


## Assessment of III Conditioning

- What constitutes a large or small value?
- Depends on machine, data and algorithm precision ( $\mathcal{E}$ ), algorithm tolerances (t)
- III conditioning can occur when round off error associated with machine precision is large enough to influence algorithm decisions

- Classify based on threshold defined by $\mathrm{t} / \mathcal{E}$
- Four distinct categories
- Example: CPLEX has default algorithmic tolerances of 1e-6, runs double precision arithmetic on machines with precision of $\sim 1 \mathrm{e}-16$
$\cdot \mathrm{t} / \varepsilon=1 \mathrm{e}-6 / 1 \mathrm{e}-16=1 \mathrm{e}+10$ is a key threshold


## Assessment of III Conditioning

- Condition number is a bound for the increase of the error:

$$
\|\delta x\| /\|x\| \leq \kappa(B) \cdot\|\delta b\| /\|b\|
$$

- Basic epsilons:
- Machine precision (double): 1e-16
- Default feasibility and optimality tolerance:
- Classification of condition numbers for LP bases:
- Stable:
$0 \leq \kappa(B)<1 \mathrm{e}+7$
- Suspicious:
$1 e+7 \leq \kappa(B)<1 e+10$
- Unstable:
$1 \mathrm{e}+10 \leq \kappa(\mathrm{B})<1 \mathrm{e}+14$
- III-posed:
$1 \mathrm{e}+14 \leq \kappa(\mathrm{B})$


## Assessment of III Conditioning

- What about MIP?
- Optimality proof of MIP is based on pruning during tree search and thus not available with final solution
- How reliable is it?
- Need to monitor condition number of all optimal bases used during Branch-and-Cut search
- Performance impact
- Can be mitigated by sampling


## Assessment of III Conditioning

－MIP Kappa feature，available starting with CPLEX 12.2
－Sample from the series of condition numbers
－New parameter CPX＿PARAM＿MIPKAPPA with settings：
－-1 ：off
－0：auto（defaults to off）
－1：sample
－2：use every optimal basis
－Classification thresholds provide percentages of each category
－Provide an assessment for users unfamiliar with ill conditioning
－If enabled，categorize condition numbers of optimal bases
－Stable
－Suspicious
－Unstable
－III－posed

## Assessment of III Conditioning

- MIP Kappa sample output :

Branch-and-cut subproblem optimization:
Max condition number: $\quad 3.5490 \mathrm{e}+16$
Percentage of stable bases: $0.0 \%$
Percentage of suspicious bases: 86.9\%
Percentage of unstable bases: $13.0 \%$
Percentage of ill-posed bases: $0.1 \%$
Attention level:
0.048893

CPLEX encountered numerical difficulties while solving this model.

- Attention level
- =0 if only stable bases encountered
$->0$ if at least one basis encountered that is not stable
- Max value is 1 (all bases ill-posed)
- Not "linear"


## Implications of III Conditioning

- Now that we can better assess the meaning of the basis condition numbers, what can we do about it?
- III conditioning can occur under perfect arithmetic.
- For some models, even perfect data, algorithm and machine precision may not address the problem.
$\square$ Consider adjustments to existing formulation, or alternate formulations that provide the solution to the ill conditioned model.
- But, in most cases, finite precision can perturb the exact system of equations we wish to solve, resulting in significant changes to the computed solution.
- Calculate data, formulate model and configure algorithm to keep such perturbations as small as possible
- Condition number provides a worst case bound on the effect
- CPLEX provides good quality solutions on majority of models containing some basis condition numbers in [1e+10, 1e+14]


## Implications of III Conditioning <br> - Sources of perturbations

- Finite precision representation of exact data
- Calculation of problem data in finite precision
- Truncation of calculated data
- Good idea if based on knowledge of the model and associated physical system (cleaning up the model data)
- Bad idea if done arbitrarily without considering the implications for the model and associated physical system (garbage in, garbage out).
- Errors in algorithmic calculations of data
- Statistical methods to predict demand for production planning or asset returns for consideration in a financial portfolio
- Errors in physical measurements of data values
- Any other differences between the conceptual perfect precision calculation and the practical finite precision calculation
- Example: addition and multiplication no longer associative and distributive under finite precision


## Alternate interpretations of III Conditioned Basis

- Condition number of Simplex Solutions
- Simplex solution is intersection point of $n$ hyperplanes



## Alternate interpretations of III Conditioned Basis

- Distance to singularity of a matrix is the reciprocal of its condition number (Gastinel, Kahan).
$\operatorname{dist}_{\mathrm{p}}(B):=\min _{\Delta B}\left\{\frac{\|\Delta B\|_{\mathrm{p}}}{\|B\|_{\mathrm{p}}}: B+\Delta B\right.$ singular $\}$ $\operatorname{dist}(B)=1 / K_{p}(B)$
- Implies that linear combinations of rows or columns of B that are close to 0 imply ill conditioning:

$$
\text { if } B^{T} \lambda=v,\|v\|<\varepsilon, \quad\|\lambda\| \gg\|\varepsilon\|
$$

$B$ is close to singular, and hence ill conditioned

- $\lambda$ provides a certificate of ill conditioning; its support identifies rows to examine


## Implications for the Practitioner (Data Input)

- Can't avoid perturbations due to machine precision

- But, increasing tolerances when condition number is high can prevent algorithmic decisions based on round off error associated with machine precision.
- More precise input values are better
- Always calculate and input model data in double precision
- Machine precision for 32 bit floats $\sim 1 e-8$
$\square$ Condition numbers $>1 \mathrm{e}+2$ could result in algorithmic decisions based on machine precision based round off error
$\square$ If you really need to use single precision in the model data, increase the algorithms tolerances above the default of $1 \mathrm{e}-6$


## Implications for the Practitioner (Data Calculation)

- Minimize perturbations involving other factors

- Model data values
- Don't divide big numbers by small numbers in data calculations $\square$ Increases round off error
- Make sure all procedures that calculate the data are implemented in a numerically stable manner
- Less round off error if all data values of similar order of magnitude
$\square$ Mix of large and small numbers results in more shifting of the exponents, loss of precision in the mantissa.
- Use CPLEX's aggressive scaling, numerical emphasis parameters if unavoidable


## Implications for the Practitioner（Formulation）

－Avoid nearly linear dependent rows or columns
if $B^{T} \lambda=v,\|v\|<\varepsilon, \quad\|\lambda\| \gg\|\varepsilon\|$,
$B$ is close to singular，and hence ill conditioned
－Such linear combinations of rows and columns often arise from round off error in the data

## Implications for the Practitioner (Formulation)

- Imprecise model data values and near singular matrices (example)
- Avoid rounding if you can, or round as precisely as possible
- Matrices can be ill conditioned despite small spread of coefficients
- Exact formulation: Maximize $\mathrm{x} 1+\mathrm{x} 2$ c1: $\quad 1 / 3 \times 1+2 / 3 \times 2=1$
c2: $\quad \mathrm{x} 1+2 \quad \mathrm{x} 2=3$
if $B^{T} \lambda=v,\|v\|<\varepsilon, \quad\|\lambda\| \gg\|\varepsilon\|$,
$B$ is close to singular, and hence ill conditioned
- Imprecisely rounded, single [double] precision

Maximize $\mathrm{x} 1 \quad+\quad \mathrm{x} 2$
c1: $.33333333 \times 1+.66666667 \times 2=1 \quad$ (results in near singular matrix)
[ c1: . $3333333333333333 \times 1+.66666666666667 \times 2=1] \quad$ (better)
c2: $\quad \mathrm{x} 1 \quad+\quad 2 \times 2=3$

- Scale to integral value whenever possible:

Maximize x1 + x2
c1:
$x 1+2 x^{2}=3$
(best)
c2: $\quad x 1+2 x 2=3$

## Numerical Stability of Algorithms

- Numerical instability and ill conditioning are not the same
- III conditioning can occur under perfect precision; numerical instability is specific to finite precision
- Informally, an algorithm is numerically unstable if it performs calculations that introduce unnecessarily large amounts of round-off error
- Formally, numerical stability (or lack thereof) involves error analysis

Given $x \in R^{n}, y \in R^{m}, y=f(x)$
Forward error analy sis: $\Delta y=|f l(f(x))-f(x)|$
Backward error analysis : $\Delta x: f(x+\Delta x)=f l(f(x))$

- Forward: change in computed solution due to round-off errors
- Backward: change in model (under perfect precision) required to achieve finite precision result
- An algorithm is numerically stable when the bound on the backward error is small relative to the error in the input


## Numerical Stability of Algorithms

－Sources of numerical instability in finite precision algorithms and calculations
－Performing arithmetic operations on numbers of dramatically different orders of magnitude
－Look for mathematically equivalent calculation on numbers of more similar magnitude
－Algorithms that rely on ill conditioned subproblems
－Example：Gomory cuts become almost parallel in cutting plane algorithm as it nears convergence
－III－conditioned transformations of the problem＊
－Example：LU factorization calculated with numerically unstable pivot selections
－Calculations involving large intermediate values compared to final solution values＊
－Small relative error for large intermediate values are much larger relative to final value
＊source：Higham，Accuracy and Stability of Numerical Algorithms

## Identification of symptoms of ill conditioning

－Tactics and tools for assessing presence of ill conditioning or excessive round－off error
－Examine problem statistics of model before starting the optimization
－Mixtures of large and small coefficients
－Indications of nearly linearly dependent rows
$\square$ Values with repeating decimal places
－Examine node or iteration log during the optimization
－Loss of feasibility for LP／QP solves
－Large iteration counts for node relaxations
－Examine solution quality after the optimization
－Significant primal or dual solution residuals often indicate large basis condition numbers
－Run the MIP Kappa feature for MIPs
－（CPLEX 12.7 and later）Run CPLEX＇s Modeling Assistance tool by setting the datacheck parameter to 2

## Identification of symptoms of ill conditioning：ns1687037 （http：／／plato．asu．edu／ftp／／ptestset／）

－Problem statistics：

| Variables | ： 43749 ［Nneg：36001，Box：874，Free：6874］ |  |
| :---: | :---: | :---: |
| Objective nonzeros | 24000 |  |
| Linear constraints | ： 50622 ［Greater：38622，Equal：12000］ |  |
| Nonzeros | ： 1406739 |  |
| RHS nonzeros | 24000 |  |
| Variables | ：Min LB： 0.000000 | Max UB： 3.000000 |
| Objective nonzeros | ：Min ： 1.000000 | Max ： 100.0000 |
| Linear constraints |  |  |
| Nonzeros | ：Min ： $1.987766 \mathrm{e}-08 \mathrm{Max}: 1364210$. |  |
| RHS nonzeros |  |  |
|  |  | Wide range of coefficients；smalles below default feasibility，optimality olerances |

## Identification of symptoms of ill conditioning: ns1687037 (http://plato.asu.edu/ftp//ptestset/)

- Iteration log \#1: Loss of feasibility after basis refactorization
Iteration: 674222
Dual objective $=$
Iteration: 674228
Dual objective $=$
$<3$ more refactorizations $>$

Elapsed time $=17138.76 \mathrm{sec}$. ( 6737439.02 ticks, 681930 iterations)
Iteration: 681949 Scaled dual infeas =
0.000002
...

| Iteration: 682542 Scaled dual infeas $=\quad 0.000000$ |
| :--- |
| Iteration: 682624 Dual objective $=-19559.930294$ |
| Iteration: 682896 Dual objective $=\quad-18109.5974650$ |

Iteration: 682896 Dual objective $=-18109.597465$
Elapsed time $=17160.88 \mathrm{sec}$. $(6747443.75$ ticks, 682941 iterations $)$

## Identification, of symptoms of ill conditioning: ns1687037 (http://plato.asu.edu/ftp/lptestset/)

- Iteration log \#2: Increase in Markowitz tolerance after frequent refactorizations of the basis



## Identification，of symptoms of ill conditioning：ns1687037 （http：／／plato．asu．edu／ftp／／ptestset／）

－Solution quality（available in all CPLEX APIs）
Max．unscaled（scaled）bound infeas．$=8.39528 \mathrm{e}-07$（8．39528e－07）
（Reduce feasibility tolerance，continue optimizing to decrease bound infeasibilities）
Max．unscaled（scaled）reduced－cost infeas．$=2.31959 \mathrm{e}-08$（2．31959e－08）
（Reduce optimality tolerance，continue optimizing to decrease reduced cost infeasibilities）


## Treatment of symptoms of ill conditioning

－Distinguish the symptoms from the cause
－Treatment of symptoms often not as robust，but it may provide a quick resolution to a pressing problem
－CPLEX parameters to treat symptoms
－Set the scale parameter to 1
－Geometric mean based scaling works well on models with wide range of coefficients
－Increase the Markowitz tolerance from its default of 0.01 to .90 or larger（max of ．9999）
－Tightens the pivot threshold in the row stability test of the LU factorization
－Equivalently，tightens the bound on the sub diagonal elements of L from $1 / .01$ to $1 / .9$
－Turn on the numerical emphasis parameter
－Causes CPLEX to invoke internal logic to perform more accurate calculations（including quad precision for the LU factorization）

## Treatment of symptoms of ill conditioning

- ns1687037
- Problem stats indicated wide range of coefficients in matrix
- Well suited for setting scale parameter to 1
- Removed all problems (loss of feasibility, overly frequent basis refactorizations) seen in iteration logs
- Results: Huge reductions in run times for dual simplex and barrier, modest reduction for primal simplex:

|  | Algorithm |  |  |
| :--- | :--- | :---: | :---: |
| Settings | Primal | Dual | Barrier |
| Default | 14214.6 | 21094.2 | 1258.23 |
| Scaling=1 | 11164.64 | 907.5 | 83.52 |

- Solution quality was better as well


## Treatment of causes of ill conditioning

- ns1687037
- Problem stats indicated wide range of coefficients in matrix Linear constraints Nonzeros

| Min | 987766e-08 Max | 4210. |
| :---: | :---: | :---: |
| Min | 0.0005000000 Max |  |

- Modeling assistances output (datacheck = 2) confirms:

CPLEX Warning 1045: Detected nonzero <= the maximum value of either CPX_PARAM_EPRHS or CPX_PARAM_EPOPT at constraint 'R0002627', variable 'C0025750'.
CPLEX Warning 1045: Detected nonzero <= the maximum value of either CPX_PARAM_EPRHS or CPX_PARAM_EPOPT at constraint 'R0002635', variable 'C0025753'.

- Are the small coefficients of $1 \mathrm{e}-8$ meaningful or due to round-off error in the data calculations?
- Changing them to 0 results in an LP that solves to optimality within 1 second, just with presolve
- Suggests these coefficients have meaning, but may cause trouble for CPLEX's default feasibility or optimality tolerances of 1e-6
- Modeller or data owner needs to assess if these coefficients are meaningful


## Treatment of causes of ill conditioning

－ns1687037
－Consider the constraints that contain the tiny coefficients
－Fortunately，they appear repeatedly in small subsets of constraints
－Reformulation of one subset will apply to other subsets
R0002624： 50150 C0024008＋ 50150 C0024010＋ 50150 C0024012＋ 50150 C0024014＋ 50150 C0024016＋ 113600 C0024020＋ 50150 C0024024＋ 113600 C0024026＋ 113600 C0024038＋
．．＋
69070 C0025728＋ 69070 C0025734＋ 47585 C0025738＋ 50150 C0025742＋ 50150 C0025744＋ 69070 C0025748＋ C0025749＝ 50307748
R0002625：－C0025749＋C0025750＞＝ 0 R0002626：C0025749＋C0025750＞＝ 0 R0002627：1．9877659e－8 C0025750－C0025751＝ 0
R0002628：C0000001－C0025751＞＝ 0
These variables only appear in

R0002629：C0000002－C0025751＞＝-0.0005
R0002630：C0000003－C0025751＞＝－0．0008
R0002631：C0000004－C0025751＞＝-0.0009
constraints on this slide


## Treatment of causes of ill conditioning

- ns1687037

> These vars appear in other constraints


## Treatment of causes of ill conditioning

－ns1687037
－Objective contains only variables like C0000001，．．．，C0000004
－Piecewise linear，higher cost for larger absolute violation of R0002624
－Move the scaling of absolute violation in the constraints to the objective
－Dramatically improves the coefficient spread in the constraint matrix，LU factors
－Better：use unscaled violation．Objective value will be larger，but，if needed， recapture actual value after the optimization


## Treatment of causes of ill conditioning

- ns1687037
- Reformulation:

```
R0002624: 50150 C0024008 + 50150 C0024010 + 50150 C0024012 +
    50150 C0024014 + 50150 C0024016 + 113600 C0024020 +
    50150 C0024024 + 113600 C0024026 + 113600 C0024038
    ... +
    69070 C0025728 + 69070 C0025734 + 47585 C0025738 +
    50150 C0025742 + 50150 C0025744 + 69070 C0025748 +
    C0025749 = 50307748
R0002625: - C0025749 + C0025750 >= 0
R0002626: C0025749 + C0025750 >= 0
R0002627: 1.9877659C0025750-C0025751 = 0
R0002628: C0000001-C0025751 >= 0
R0002629: C0000002-C0025751 >=-50000
R0002630: C0000003-C0025751 >=-80000
R0002631: C0000004-C0025751 >=-90000
```


## Treatment of causes of ill conditioning

- ns1687037
- Run times for original formulation:

|  | Algorithm |  |  |
| :--- | :--- | :---: | :---: |
| Settings | Primal | Dual | Barrier |
| Default | 14214.6 | 21094.2 | 1258.23 |
| Scaling=1 | 11164.64 | 907.5 | 83.52 |

- Run times for modified formulation:

|  | Algorithm |  |  |
| :--- | :--- | :--- | :---: |
| Settings | Primal | Dual | Barrier |
| Default | 2310.9 | 2926.5 | 41.4 |
| Scaling=1 | 6890.8 | 1054.7 | 68.2 |

## Common sources of ill conditioning

- III conditioning can be caused by large or small subsets of constraints and variables in the model
- Such subsets can be difficult to isolate
- Build up a list of common sources, use that before more model specific analysis


## Common sources of ill conditioning

- Mixture of large and small coefficients in the model
- Does not guarantee large basis condition numbers
- Additional round-off in floating point representation, arithmetic calculations enables modest condition numbers to magnify error in computed solutions above optimizer tolerances
- Imprecise data resulting in near singular matrices
- Near singular matrices have large condition numbers
- Long sequences of transfer constraints
- Mixture of large and small coefficients is implicit rather than explicit
- This is not a comprehensive list
- Add items based on your own modelling experiences


## Common sources

- Imprecise model data values

$$
\operatorname{dist}_{\mathrm{p}}(B):=\min _{\Delta B}\left\{\frac{\|\Delta B\|_{\mathrm{p}}}{\|B\|_{\mathrm{p}}}: B+\Delta B \text { singular }\right\}
$$

$\operatorname{dist}_{\mathrm{p}}(B)=1 / \mathrm{K}_{\mathrm{p}}(B)$

- Avoid rounding if you can, or round as precisely as possible
- Matrices can be ill conditioned despite small spread of coefficients
- Exact formulation:

Maximize $\mathrm{x} 1+\mathrm{x} 2$
c1: $\quad 1 / 3 \times 1+2 / 3 \times 2=1$
c2: $\quad \mathrm{x} 1+2 \quad \mathrm{x} 2=3$

- Imprecisely rounded, single [double] precision Maximize $\mathrm{x} 1 \quad+\quad \mathrm{x} 2$
c1: . $33333333 \times 1+.66666667 \times 2=1 \quad$ (results in near singular matrix)
[ c1: . $3333333333333333 \times 1+.666666666666667 \times 2=1] \quad$ (better)
c2: $\quad \mathrm{x} 1 \quad+\quad 2 \times 2=3$
- Scale to integral value whenever possible:

Maximize x1 + x2
c1:
$\mathrm{x} 1+2 \mathrm{x} 2=3$
(best)
c2: $\quad \mathrm{x} 1+2 \mathrm{x} 2=3$

## Common sources of ill conditioning

- Long sequences of transfer constraints

$$
\begin{aligned}
& x_{1}=2 x_{2} \\
& x_{2}=2 x_{3} \\
& x_{3}=2 x_{4} \\
& \quad \vdots \\
& x_{n-1}=2 x_{n} \\
& x_{n}=1 \\
& x_{j} \geq 0 \text { for } j=1, \ldots, n
\end{aligned}
$$

- All coefficients have same order of magnitude
- All coefficients can be represented exactly as IEEE doubles
- How bad can it be?


## Common sources of ill conditioning

－Long sequences of transfer constraints（ctd）
－If any one variable＞0， all the others are basic as well
$-K=3^{*} 2^{n}$
－Bound from condition number is fairly tight

$$
\widetilde{\mathrm{B}}=\left(\begin{array}{rrrrrr}
1 & -2 & & & & \\
& 1 & -2 & & & \\
& & 1 & -2 & & \\
& & & & & \\
& & & & & \\
& & & & \ddots & \\
& & & & & \\
& & & & & -2 \\
& & & & & \\
& &
\end{array}\right)
$$

$\widetilde{\mathrm{B}}^{-1}=\left(\begin{array}{cccccc}1 & 2 & 4 & 8 & & \\ & 1 & 2 & 4 & & \\ 2^{\mathrm{n}-1} \\ & & 1 & 2 & & 2^{\mathrm{n}-2} \\ & & & 1 & & \\ \mathrm{n}^{\mathrm{n}-3} \\ & & & & \ddots & \\ & & & & & 1 \\ & & & & & 2 \\ & & & & & 1\end{array}\right)$

## Common sources of ill conditioning

- Long sequences of transfer constraints (ctd)
- Substitute out variables:

$$
\begin{array}{ll}
x_{1}=2 x_{2} & \\
x_{2}=2 x_{3} & \left(x_{1}=4 x_{3}\right) \\
x_{3}=2 x_{4} & \left(x_{1}=8 x_{4}\right) \\
\quad \vdots & \\
x_{n-1}=2 x_{n} & \left(x_{1}=2^{n-1} x_{n}\right) \\
x_{n}=1 & \\
x_{j} \geq 0 \text { for } j=1, \ldots, n &
\end{array}
$$

- Small change in $x_{n}$ propagates into large change in $x_{1}$


## Diagnostics for ill conditioning and numerical instability

- Consider the list of common sources first
- Look at solution values
- Extremely large primal or dual values can identify small subsets of constraints and variables involved in the ill-conditioning
- Then look at the basis and its inverse for large values
- C API programs available among IBM Technotes*
- For MIPs, consider MIP Kappa feature
- C API program available to export node LPs with conditions number above a user supplied threshold available as well*
- Look at solution values, basis values or inverse values after locating a node LP with ill conditioned optimal basis
- Run the modeling assistance tool
*http://www-01.ibm.com/support/docview.wss?uid=swg21662382

Examples from publicly available test sets
－ns1687037（previously discussed）
－Wide range of coefficients
－Setting scaling to 1 helped
－Recognize that smallest coefficients involved penalties on constraint violations that could be moved into the objective function，improving numerics of basis factorization
－Reformulating the model to improve the numerics yielded additional improvements，addressed the underlying cause of the problem

## Examples from publicly available test sets

- cdma (unsolved MIP from unstable test set of MIPLIB 2010)

$1286210763-4.10127 \mathrm{e}+16 \quad 1032-1.46845 \mathrm{e}+16-4.29552 \mathrm{e}+1629639775 \quad 192.52 \%$
Elapsed time $=\underline{71901.33 \mathrm{sec} .}(18469780.15$ ticks, tree $=33.05 \mathrm{MB}$, solutions $=24)$
$1286610767-3.86482 \mathrm{e}+16 \quad 979-1.46845 \mathrm{e}+16-4.29552 \mathrm{e}+1629661467 \quad 192.52 \%$


## Examples from publicly available test sets

－cdma（unsolved MIP from unstable test set of MIPLIB 2010）
－Problem statistics：


## Examples from publicly available test sets

- cdma (unsolved MIP from unstable test set of MIPLIB 2010)
- Typical node LP* iteration log

Iteration log ...
Iteration: 1 Scaled dual infeas $=0.000130$
Iteration: 8 Scaled dual infeas $=0.000069$
Iteration: 12 Dual objective $=-6614900586660791.000000$
Iteration: 23 Scaled dual infeas $=0.000107$
Iteration: 32 Dual objective $=-6614900586660791.000000$
Iteration: 46 Dual infeasibility $=0.000038$
Iteration: 52 Dual objective $=-6614900586660791.000000$
Iteration: 58 Dual infeasibility $=0.000038$
Iteration: 64 Dual objective $=-6614900586660791.000000$
Maximum unscaled reduced-cost infeasibility $=7.62939 \mathrm{e}-06$.
Maximum scaled reduced-cost infeasibility $=7.62939 \mathrm{e}-06$.
Dual simplex - Optimal: Objective $=-6.6149005867 \mathrm{e}+15$

* Node LP Program at
http://www-01.ibm.com/support/docview.wss?uid=swg21400065


## Examples from publicly available test sets

－cdma（unsolved MIP from unstable test set of MIPLIB 2010）
－Solution quality for same node LP
Max．unscaled（scaled）bound infeas．$=1.81311 \mathrm{e}-07$（1．81311e－07） Max．unscaled（scaled）reduced－cost infeas．$=7.62939 \mathrm{e}-06(7.62939 \mathrm{e}-06)$ Max．unscaled（scaled）Ax－b resid．$=9.99989 \mathrm{e}-10$（6．10345e－14） Max．unscaled（scaled）c－B＇pi resid．$=7.3125$（7．3125） Max．unscaled（scaled）$|x|=5596$（55296） Max．unscaled（scaled）｜slack｜＝6．12827e＋06（10．6908） Max．unscaled（scaled） ｜pil $=8.67329 \mathrm{e}+16(4.02442 \mathrm{e}+17)$ Max．unscaled（scaled） $\mid$ red－cost $\mid=4.31401 \mathrm{e}+17(4.31401 \mathrm{e}+17)$ Condition number of scaled basis $=5.2 \mathrm{e}+08$

Reasonable optimal basis condition number

Incoming variable choice based on round－off error

## Examples from publicly available test sets

－cdma（unsolved MIP from unstable test set of MIPLIB 2010）
－Large objective coefficients，not large basis condition numbers， cause slow node throughput
－Model is numerically unstable，not ill conditioned
－ 16 base 10 digits of accuracy for IEEE doubles，objective coefficients on the order of $1 \mathrm{e}+11$
－Round－off error of 1e－5 just to represent
－Modest basis condition numbers of $1 \mathrm{e}+8$ can magnify to $1 \mathrm{e}+8^{*} 1 \mathrm{e}-5=1 \mathrm{e}+3$
－Default optimality tolerance：1e－6
－Simplex method pivots heavily influenced by round－off error
－What can we do？
－Take a closer look at the objective function

## Examples from publicly available test sets

- cdma (unsolved MIP from unstable test set of MIPLIB 2010)
- Histogram of objective coefficients*

- Large objective coefficients problematic for dual feasibility of node LP, dual residuals in solution quality
*Using program from
https://www-304.ibm.com/support/docview.wss?uid=swg21400100.


## Examples from publicly available test sets

- cdma (unsolved MIP from unstable test set of MIPLIB 2010)
- 31 binaries with relatively small objective coefficients have negligible impact on objective coefficients
- Especially when current solutions have relative MIP gaps of over $150 \%$
- Remove them from the objective
- Remaining objective coefficients are all on the order of [1e+9,1e+12]
- Rescale by 1e+9
- Much better results with adjusted model
- Much faster node throughput
- Much better intermediate results regarding MIP gap
- Moderately better final MIP gap after ~20 hours
- More to be done
- MIP gap remains challenging
- But at least now node throughput sufficiently fast to consider MIP parameter tuning, other changes to formulation


## Examples from publicly available test sets

- cdma
- Implications
- Mixture of large and small coefficients can be problematic
- Consider solving sequence of problems with a hierarchical objective rather than solving a problem with a single, blended objective
- Examined node log to discover slow node throughput was a major performance bottleneck
- Examined node LP iteration log, solution quality, problem statistics to identify large dual residuals as the primary source of slow node LP solve times
- Adjusted formulation to obtain a well scaled objective


## Examples from publicly available test sets

- de063155 (LP from http://www.sztaki.hu/meszaros/public ftp/lptestset/problematic/
- CPLEX solves it in less than 0.1 seconds
- Iterations logs indicate no sign of trouble
- Problem statistics and solution quality raise questions regarding the solution and the associated physical system
- Is the solution acceptable?
- Depends
- Examine the problem statistics and solution quality to find out.


## Examples from publicly available test sets

- de063155 (LP from http://www.sztaki.hu/meszaros/public ftp/lptestset/problematic/
- Problem stats

| Variables | 1488 [Nneg: 756, Fix: 205, Box: 215, Free: |  |  |
| :---: | :---: | :---: | :---: |
| 228, Other: 84] |  |  |  |
| Objective nonzeros | 852 |  |  |
| Linear constraints | 852 [Less: 360, Equal: 492] |  |  |
| Nonzeros | 4553 |  |  |
| RHS nonzeros | 777 |  |  |
| Variables | : Min LB: -10000.00 | Max | : 30.90000 |
| Objective nonzeros | : Min : $1.279580 \mathrm{e}-05$ | Max | : 1000.000 |
| Linear constraints | : |  |  |
| Nonzeros | : Min : $2.106480 \mathrm{e}-07$ | Max | : $8.354500 \mathrm{e}+11$ |
| RHS nonzeros | : Min : 0.0002187500 | Max | $: 4.227560 \mathrm{e}+17$ |

## Examples from publicly available test sets

- de063155 (LP from http://www.sztaki.hu/meszaros/public ftp/lptestset/problematic/
- Solution quality:

There are no bound infeasibilities.
There are no reduced-cost infeasibilities.
Max. unscaled (scaled) Ax-b resid. $=747.949$ (5.12641e-08)
Max. unscaled (scaled) c-B'pi resid. $=7.74852 \mathrm{e}-10$ (8.51025e-06)
Max. unscaled (scaled) $|\mathrm{x}| \quad=\underline{3.10148 \mathrm{e}+13(3.76112 \mathrm{e}+07)}$
Max. unscaled (scaled) |slack| $=3.75814 \mathrm{e}+07(3.75814 \mathrm{e}+07)$
Max. unscaled (scaled) |pi| $=62061.1(5.106 \mathrm{e}+09)$
Max. unscaled (scaled) |red-cost| $=6.78639 \mathrm{e}+09(8.5923 \mathrm{e}+09)$
Condition number of scaled basis $=1.7 \mathrm{e}+08$

- Using aggressive scaling or turning on numerical emphasis does not improve the solution quality.


## Examples from publicly available test sets

－de063155
－Is the solution quality a problem？

```
Max. unscaled (scaled) Ax-b resid. = 747.949 (5.12641e-08)
Max. unscaled (scaled) c-B'pi resid. = 7.74852e-10 (8.51025e-06)
Max. unscaled (scaled) |x| = 3.10148e+13 (3.76112e+07)
Max. unscaled (scaled) |slack| = 3.75814e+07 (3.75814e+07)
Max. unscaled (scaled) |pi| =62061.1 (5.106e+09)
Max. unscaled (scaled) |red-cost| = 6.78639e+09 (8.5923e+09)
Condition number of scaled basis =1.7e+08
```

－Unscaled primal residuals are large in an absolute sense，but not relative to primal solution values
－Solution quality does not hinder performance
－Practitioner must assess acceptability in context of the physical system being modelled
－Look at the constraints with the large absolute residuals
－Need more computing precision if not acceptable
－Or need to reformulate model in order to eliminate large matrix and right hand side coefficients

## Summary of examples from publicly available test sets

" ns1687037 (LP; previously discussed)

- Wide range of coefficients
- Setting scaling to 1 helped
- Reformulating the model to improve the numerics yielded additional improvements, addressed the underlying cause of the problem
- Moving the scaling issue from the matrix to the objective removed the numerical problems from the basis matrix
- cdma (MIP)
- Basis condition numbers OK
- Wide range of objective coefficients were the real problem
- Separate large objective coefficients, rescale
- Faster node throughput yields significantly better solutions faster, but solving MIP to optimality remains challenging


## Summary of publicly available examples (ctd).

- de063155 (LP)
- No performance problem; solves within a second
- Problem statistics, solution quality are cause for concern
- Large data values, significant absolute residuals that are relatively small
- Need to assess whether residuals are acceptable in the context of the associated system being modelled


## Key takeaways

- Finite precision representation and operations can easily introduce round-off error
- Large basis condition numbers can magnify
- Monitor/assess conditioning of model with available tools
- Make sure algorithms don't make decisions based on round-off error
- Solution quality for LPs
- MIP Kappa for MIPs
- Node and iterations logs for signs of trouble
- Modeling assistance tool
- Be careful about mixing large and small coefficients
- Compute data as accurately as possible


## References／Further Reading

－More detailed discussion in INFORMS TutORials in Operations Research 2014
－Higham，Accuracy and Stability of Numeric Algorithms
－Duff，Erisman and Reid，Direct Methods for Sparse Matrices
－Gill，Murray and Wright，Practical Optimization
－Golub and Van Loan，Matrix Computations
－Floating point arithmetic： http：／／pages．cs．wisc．edu／～smoler／x86text／lect．notes／arith．flpt．html
－MIP Performance tuning and formulation strengthening：$\alpha^{\alpha}$
－Klotz，Newman．Practical Guidelines for Solving Difficult Mixed Integer Programs http：／／www．sciencedirect．com／science／article／pii／S1876735413000020
－LP performance issues
－Klotz，Newman．Practical Guidelines for Solving Difficult Linear Programs http：／／www．sciencedirect．com／science／article／pii／S1876735412000189
－Converting repeating decimals into rational fractions：
http：／／en．wikipedia．org／wiki／Repeating＿decimal\＃Converting＿repeating＿decimals＿to ＿fractions

## Other presentations of interest

－Today，4－6：30 PM，Room 124A IBM Workshop，Latest news about IBM Decision Optimization
－Nov．4，SB34，11：45－12：30 PM．Solving Multiobjective problems with CPLEX，Ed Klotz
－Nov．7，WC05，2：30－2：50 PM．CPLEX Progress in 2018

## Backup Material

- Backup Material


## Problem Definition

- III Conditioning
- Motivated by work of meteorologist \& mathematician Edward Lorenz
- Lorenz focused on small changes in initial conditions, resulting trajectories in nonlinear meteorological models
- Lorenz subsequently became a pioneer in the field of Chaos Theory
- III conditioning extends beyond the nonlinear meteorological models on which Lorenz worked
- More generally, a mathematical model or system is ill conditioned when a small change in the input can result in a large change to the computed solution


## Alternate interpretations of III Conditioned Basis

－Skeel＇s condition number：$\|\left|B^{-1}\right| \cdot|B|| |$
－Invariant under row scaling
－Not invariant under column scaling
－If significantly smaller than regular condition number，some rows of the matrix have larger norms than others

## Alternate interpretations of III Conditioned Basis

- Skeel's condition number:
- Example (http://www.hsl.rl.ac.uk/specs/mc75.pdf):

$$
\mathrm{c} 1: 3300 \times 1+1 \mathrm{e}-11 \times 2=1
$$

$$
c 2: x 1+3300 \times 2+1 e-11 \times 3=1
$$

$$
c 3: x 2+3300 \times 3+1 e-11 x 4=1
$$

$$
\text { c4: } 10000 \times 2+10000 \times 3+330000000 \times 4=1 \quad / / \text { much larger row norm }
$$

xj free, $j=1, \ldots, 4$

- Skeel condition number: 1.0061
- CPLEX exact condition number (no scaling): 100036
- CPLEX exact condition number (default scaling): 10.0091


## Alternate interpretations of III Conditioned Basis

- Skeel's condition number: $\|\left|B^{-1}\right| \cdot|B|| |$
- Why does this metric measure sensitivity to perturbations?
- We saw how $\kappa(B)=\|B\| \cdot\left\|B^{-1}\right\|$ measured potential magnification of error in the solution relative to perturbation in the input
- What is the underlying theoretical justification for $\left\|\left|B^{-1}\right| \cdot|B|\right\|$ ?


## Alternate interpretations of III Conditioned Basis

- What is the underlying theoretical justification for $\left\|\left|B^{-1}\right| \cdot|B|\right\|$ ?
- Use absolute values on individual components instead of norms during derivation

$$
|\delta B| \leq|\varepsilon B| \quad(\varepsilon>0)
$$

- Use componentwise perturbation instead of norms: (perturbed system)

$$
B x=b \quad(B+\delta B)(x+\delta x)=b
$$

(Combine and rearrange)

$$
\Rightarrow-\delta x=B^{-1} \delta B(x+\delta x)
$$

$$
\Rightarrow|\delta x|=\mid B^{-1} \stackrel{|\varepsilon B|}{\delta B(x+\delta x) \mid}
$$

$$
\begin{aligned}
\Rightarrow|\delta x|= & \left|B^{-1} \delta B(x+\delta x)\right| \leq\left|B^{-1}\right| \cdot|B| \cdot|(x+\delta x)| \varepsilon \\
& \Rightarrow|\delta x| /|(x+\delta x)| \leq\left|B^{-1}\right| \cdot|B| \cdot \varepsilon
\end{aligned}
$$

## Examples

- Consider alternate formulations to improve numerics
- Fixed costs on continuous variables using big Ms:

$$
\begin{array}{lc}
\operatorname{Minimize} c^{T} x+f^{T} z & (c, f \geq 0) \\
\text { subject to } A x=b & \\
x_{i}-M z_{i} \leq 0 & \text { (only constraint with } z_{i} \text { ) } \\
x_{i} \geq 0,0 \leq z_{i} \leq 1 & \\
z_{i} \text { integer } &
\end{array}
$$

(Mixture of large and small numbers)

- LP relaxation solution

$$
x_{i} \leq M z_{i} \Rightarrow x_{i} / M \leq z_{i} \Rightarrow z_{i}=x_{i} / M
$$

- CPLEX default integrality tolerance: 1e-5
$x_{i}=100, M=1 e^{+10} \Rightarrow z_{i}=x_{i} / M=1 e^{-8}$
$z_{i}$ not eligible for branching unless $M \leq 1 e^{+7}$
"integer feasible" solution within integrality tolerance that violates intent of the model (trickle flow)


## Examples

- To get correct answers with big-M formulation
- Use smallest possible value of big-M that doesn't violate intent of model
- Bound strengthening in CPLEX presolve often does this automatically
- Set integrality tolerance to 0
- Set simplex tolerances to minimum values, 1e-9
- Ask for more accuracy on a potentially ill-conditioned system
- Turn on numerical emphasis parameter
- Many users are unfamiliar with issues
- Frequent source of CPLEX customer calls
- One of most popular CPLEX FAQs
- But should they have to be?


## Examples

－Indicator constraint formulation for fixed costs on continuous variables
$\operatorname{Minimize} c^{T} x+f^{T} z \quad(c, f \geq 0)$
subject to $A x=b$

$$
\begin{aligned}
& z_{i}=0 \rightarrow x_{i} \leq 0 \\
& x_{i} \geq 0,0 \leq z_{i} \leq 1 \\
& z_{i} \text { integer }
\end{aligned}
$$

－LP relaxation solution

$$
x_{i}=100, z_{i}=0
$$

indicator constraint i requires branching
（integer feasible solutions aligned with intent of the model）

## Examples

- Which approach to use?
- Indicator formulation more precise representation of model
- Indicator and big-M formulation equivalent when $\mathrm{M}=\infty$
- If we can use modest values for big-M, indicator formulation tends to be weaker
- Use indicator constraints, let CPLEX decide whether to replace with big-Ms if preprocessing can deduce big-M values of modest size
- Presolve tightens the indicator formulation (improved further in CPLEX 12.2.0)
$\square$ Presolve on indicators (improved)
$\square$ Node presolve on indicators
- Probing on by default
- Probing on indicator constraints
$\square$ Re-presolve by default

