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Objective

 Enable more precise assessment of ill conditioning in 

linear and integer programs

– Multiple metrics available to assess ill conditioning

 Discuss some techniques to treat the symptoms and 

causes of ill conditioning in LP and MIP models
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Outline
 Finite precision computing fundamentals

 Description of ill conditioning

 Assessment of ill conditioning

 Alternate metrics for ill conditioning

 Numerical stability of algorithms

 Identification and treatment of symptoms of ill conditioning

 Identification and treatment of sources of ill conditioning

 Examples that illustrate modeling pitfalls that can contribute to ill 
conditioning

– Formulation alternatives 

 Conclusions
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Finite Precision Computing Fundamentals

 64 bit double precision is most commonly used in scientific 
applications

– 32 bit single precision requires less memory, but is less accurate
• Memory savings not significant for LP and MIP solvers anymore

– 128 bit quad precision is more accurate, but requires more memory 
and computing time

 Many floating point numbers cannot be represented exactly

– Base of floating point representation determines those that can

– Base 2 typically used
• Numbers that are sums of (positive and negative) powers of 2 can be 

represented exactly, within the limits of the minimum and maximum 
possible exponents
 8.0625 = 2^3 + 2^(-4) can be represented exactly
 .333333….  cannot be represented exactly
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Example: 64 Bit IEEE Double Representation

sign
exponent mantissa

4 digits (11bits)

16 digits (53 bits, 

one bit implicit)

++ 0 33 3 … 3 3 300 3 3 …

+ + 0 0 4 3 3 … 3 3 33 3 3 …

+ - 0 3 3 … 3 3 30 34 3 3 …

Absolute round-off

error =( 10-20/ 3 )

Absolute round-off

error =( 10-12/ 3 )

Absolute round-off

error =( 10-16/ 3 )

1/30000

10000/3

1/3

…
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IEEE 64 Bit Double Addition

sign
exponent mantissa

1/3

+ + 0 0 0 0 0 3 …1/30000

4 digits (11bits)

16 digits (53 bits, 

one bit implicit)

++ 0 33 3 … 3 3 30 0

0 30

+ - 0 3 3 3 3 3 …0 341/30000

Shifted exponent 

3 …

3 …

Abs round-off

error = 10-21/ 3 

Abs round-off

error = 10-20/ 3 

Abs round-off

error = 10-17/ 3 

Abs round-off

error = 10-17/ 3 

3

…3

Abs round-off

error = 10-16/ 3 

……

+
Abs round-off

error = 10-17/ 3 

Abs round-off

error = 10-17/ 3 

Abs round-off

error = 10-16/ 3 
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IEEE 64 Bit Double Addition

sign
exponent mantissa

1/3

+ + 0 3 3 3 … 3 3

4 digits (11bits)

16 digits (53 bits, 

one bit implicit)

++ 0 30 0 0 0 3 ...0 4

0 3410000/3

1/3 ++ 0 33 3 3 3 3 ...0 0

3 …

…3

……

…3

+

Abs round-off

error = 10-12/ 3 

Abs round-off

error = 10-12/ 3 
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IEEE 64 Bit Division

  )10 ~(error                           )b  (b /a - a/b  )  a/(b ~ a/b

)10 ~(error                                         /a   b/a )/a  (b ~ b/a

)10   1/30000,   b3,  (a    and b/a a/b compare  b, aFor 

0

8-

-8













 Subtract exponents, divide mantissas

– Errors in representation in mantissa determine magnitude of round-

off error

 Don’t divide big numbers by small numbers in data calculations

  )10 ~(error                           )b  (b /a - a/b  )  a/(b ~ a/b

)10 ~(error                                         /a   b/a )/a  (b ~ b/a

)10  1/30000,   b3,  (a 

8-

16-

-16
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Implications of Finite Precision Representation

 Simply representing the model data can introduce round-

off errors

– Larger numbers have larger absolute round-off errors in their 

representations

 Arithmetic calculations can introduce additional round-off 

errors

 With 64 bit doubles, we have 16 accurate base 10 digits, 

or 53 accurate base 2 digits.

– Larger numbers have more digits to the left of the decimal 

point.

 Arithmetic calculations on numbers of the same order of 

magnitude are more accurate than calculations on 

numbers of different orders of magnitude
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Description

 Ill Conditioning

– Does the flap of a butterfly’s wings in Brazil set off a tornado in 

Texas?

Meteorological 

Model

Meteorological 

Model

Data to 3 

decimal places

(.506)

Data to 6 

decimal places

(.506127)
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Problem definition

 Ill Conditioning

– Small change in input leads to big change in output

– Can we quantitatively measure ill conditioning?

• For many mathematical systems or models, quantitative measures have 
yet to be discovered.   But, sometimes we can measure it.

• Specifically, we can measure ill conditioning when solving square linear 
systems of equations

x

xxfyy

xfyRyRx mn







 y :

bound compute ),(For 

)(,, Given
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Condition Number of a Square Matrix (Turing, 1948; 
Rice, 1966)

 CPLEX solves square linear systems of form:

 exact solution is:

 How will a change to the input vector b affect 

the computed solution x?

 Cauchy-Schwarz inequality:

 Cauchy-Schwarz for original system:

 Combine and rearrange:

bBx 
bBx 1

bBx   1

b

b
BB

x

x 
 1

)(1 bbBxx   

bBx  1

xBb 
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Condition Number of a Square Matrix (ctd.)

 CPLEX solves square linear systems of form:

 exact solution is:

 How will a change to the input matrix B affect 
the computed solution x?

 Cauchy-Schwarz inequality:

 Rearrange:

 Multiply by                :

bBx 

xxbBx   1

BB
xx

x









1

bxxBB  ))(( 
bxBxBBxBx  
)(1 xxBBx   

)( xxBxB  

B

B
BB

xx

x 








1

bBx 1

B

B
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Condition Number 

 Condition number of B is defined as

 As condition number increases, potential change in solution relative 
to (normwise) change in data also increases

 Even if the modeler doesn‘t change the data, finite precision 
computers can introduce small changes

– Machine precision for 64 bit double = 1e-16

– Just moving from a Windows machine to an AIX machine can change 
precision enough to significantly influence results on an ill conditioned 
linear system

bbBxx   )(

  1 BBB

BBB
xx

x








)(
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 What constitutes a large or small value?

– Depends on machine, data and algorithm precision (  ), algorithm 

tolerances (t)

– Ill conditioning can occur when round off error associated with 

machine precision is large enough to influence algorithm decisions

– Classify based on threshold defined by t /

• Four distinct categories

– Example: CPLEX has default algorithmic tolerances of 1e-6, runs 

double precision arithmetic on machines with precision of ~1e-16

• t / ɛ  = 1e-6/1e-16 = 1e+10 is a key threshold

Assessment of Ill Conditioning

bbBxx   )(

≥ t ?
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Assessment of Ill Conditioning

 Condition number is a bound for the increase of the error:

 Basic epsilons:

– Machine precision (double): 1e-16

– Default feasibility and optimality tolerance: 1e-6

 Classification of condition numbers for LP bases:

– Stable: 0         ≤ (B) < 1e+7

– Suspicious:  1e+7   ≤ (B) < 1e+10

– Unstable: 1e+10 ≤ (B) < 1e+14

– Ill-posed: 1e+14 ≤ (B)

bbBxx   )(
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Assessment of Ill Conditioning

 What about MIP?

– Optimality proof of MIP is based on pruning during tree 
search and thus not available with final solution

 How reliable is it?

– Need to monitor condition number of all optimal bases
used during Branch-and-Cut search

– Performance impact

– Can be mitigated by sampling
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 MIP Kappa feature, available starting with CPLEX 12.2

– Sample from the series of condition numbers

• New parameter CPX_PARAM_MIPKAPPA with settings:

 -1: off

 0: auto (defaults to off)

 1: sample

 2: use every optimal basis

– Classification thresholds provide percentages of each category

– Provide an assessment for users unfamiliar with ill conditioning

 If enabled, categorize condition numbers of optimal bases

• Stable

• Suspicious

• Unstable

• Ill-posed

Assessment of Ill Conditioning
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 MIP Kappa sample output :

Branch-and-cut subproblem optimization:

Max condition number:                    3.5490e+16

Percentage of stable bases:            0.0%

Percentage of suspicious bases:   86.9%

Percentage of unstable bases:      13.0%

Percentage of ill-posed bases:        0.1%

Attention level:                                 0.048893

CPLEX encountered numerical difficulties while solving this model.

 Attention level

– =0 if only stable bases encountered

– >0 if at least one basis encountered that is not stable

– Max value is 1 (all bases ill-posed)

– Not “linear”

Assessment of Ill Conditioning
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 Now that we can better assess the meaning of the 
basis condition numbers, what can we do about it?

– Ill conditioning can occur under perfect arithmetic.
• For some models, even perfect data, algorithm  and machine 

precision may not address the problem. 

 Consider adjustments to existing formulation, or alternate 
formulations that provide the solution to the ill conditioned model.

– But, in most cases, finite precision can perturb the exact system 
of equations we wish to solve, resulting in significant changes to 
the computed solution.

• Calculate data, formulate model and configure algorithm to keep such 
perturbations as small as possible

– Condition number provides a worst case bound on the effect

• CPLEX provides good quality solutions on majority of models 
containing some basis condition numbers in [1e+10, 1e+14]

Implications of Ill Conditioning
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 Sources of perturbations

– Finite precision representation of exact data

– Calculation of problem data in finite precision

– Truncation of calculated data

• Good idea if based on knowledge of the model and associated physical 
system (cleaning up the model data)

• Bad idea if done arbitrarily without considering the implications for the model 
and associated physical system (garbage in, garbage out).

– Errors in algorithmic calculations of data

• Statistical methods to predict demand for production planning or asset returns 
for consideration in a financial portfolio

– Errors in physical measurements of data values

– Any other differences between the conceptual perfect precision 
calculation and the practical finite precision calculation

• Example:  addition and multiplication no longer associative and distributive 
under finite precision

Implications of Ill Conditioning
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 Condition number of Simplex Solutions

– Simplex solution is intersection point of n hyperplanes

stable Solution

ill-conditioned Solution

Alternate interpretations of Ill Conditioned Basis
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Alternate interpretations of Ill Conditioned Basis

 Distance to singularity of a matrix is the reciprocal of its condition  

number (Gastinel, Kahan).

– Implies that linear combinations of rows or columns of B that are 

close to 0 imply ill conditioning:

– λ provides a certificate of ill conditioning; its support identifies rows to 

examine

)(/1)(dist

singular :
||||

min:)(dist
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 Can’t avoid perturbations due to machine precision

– But, increasing tolerances when condition number is high can 

prevent algorithmic decisions based on round off error associated 

with machine precision.

– More precise input values are better

• Always calculate and input model data in double precision

• Machine precision for 32 bit floats ~1e-8

 Condition numbers > 1e+2 could result in algorithmic decisions based on 

machine precision based round off error

 If you really need to use single precision in the model data, increase the 

algorithms tolerances above the default of 1e-6

Implications for the Practitioner (Data Input)

≥ t ?

bbBxx   )(
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 Minimize perturbations involving other factors

– Model data values 

• Don’t divide big numbers by small numbers in data calculations

 Increases round off error

• Make sure all procedures that calculate the data are implemented in a 

numerically stable manner

• Less round off error if all data values of similar order of magnitude

 Mix of large and small numbers results in more shifting of the exponents, loss 

of precision in the mantissa.

– Use CPLEX’s aggressive scaling, numerical emphasis parameters if 

unavoidable

Implications for the Practitioner (Data Calculation)

bbBxx   )(

≥ t ? 
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Implications for the Practitioner (Formulation)

 Avoid nearly linear dependent rows or columns

– Such linear combinations of rows and columns often arise from round 

off error in the data

dconditione ill hence and singular,  toclose is 

||,||||||     ,|||| , if

B

vvBT  
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 Imprecise model data values and near singular matrices (example)

– Avoid rounding if you can, or round as precisely as possible

– Matrices can be ill conditioned despite small spread of coefficients

– Exact formulation:

Maximize  x1 +       x2 

c1:      1/3 x1 + 2/3 x2 = 1 

c2:            x1 + 2    x2 = 3

– Imprecisely rounded, single [double] precision

Maximize         x1         +          x2 

c1: .33333333 x1 + .66666667 x2 = 1

[  c1: .3333333333333333 x1 + .666666666666667 x2 = 1]

c2:                   x1         +        2x2 = 3 

– Scale to integral value whenever possible:

Maximize x1 +    x2 

c1:           x1 + 2 x2 = 3 

c2:           x1 + 2 x2 = 3  

(results in near singular matrix)
(better)

(best)

Implications for the Practitioner (Formulation)

dconditione ill hence and singular,  toclose is 

||,||||||     ,|||| , if

B

vvBT  
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Numerical Stability of Algorithms
 Numerical instability and ill conditioning are not the same

– Ill conditioning can occur under perfect precision; numerical instability is 
specific to finite precision

– Informally, an algorithm is numerically unstable if it performs 
calculations that introduce unnecessarily large amounts of round-off 
error

– Formally, numerical stability (or lack thereof) involves error analysis

• Forward:  change in computed solution due to round-off errors

• Backward: change in model (under perfect precision) required to achieve 
finite precision result

• An algorithm is numerically stable when the bound on the backward error is 
small relative to the error in the input

))(()(:  :analysiserror  Backward

)())((  :analysiserror  Forward

)(,, Given

xfflxxfx

xfxffly

xfyRyRx mn
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Numerical Stability of Algorithms
 Sources of numerical instability in finite precision algorithms and 

calculations

– Performing arithmetic operations on numbers of dramatically different 
orders of magnitude

• Look for mathematically equivalent calculation on numbers of more similar 
magnitude

– Algorithms that rely on ill conditioned subproblems

• Example:  Gomory cuts become almost parallel in cutting plane algorithm as it 
nears convergence

– Ill-conditioned transformations of the problem*

• Example:  LU factorization calculated with numerically unstable pivot 
selections 

– Calculations involving large intermediate values compared to final 
solution values*

• Small relative error for large intermediate values are much larger relative to 
final value

* source: Higham, Accuracy and Stability of Numerical Algorithms
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Identification of symptoms of ill conditioning

 Tactics and tools for assessing presence of ill 
conditioning or excessive round-off error

– Examine problem statistics of model before starting the 
optimization

• Mixtures of large and small coefficients

• Indications of nearly linearly dependent rows
 Values with repeating decimal places 

– Examine node or iteration log during the optimization

• Loss of feasibility for LP/QP solves

• Large iteration counts for node relaxations

– Examine solution quality after the optimization

• Significant primal or dual solution residuals often indicate large 
basis condition numbers

– Run the MIP Kappa feature for MIPs 

– (CPLEX 12.7 and later)  Run CPLEX’s Modeling Assistance 
tool by setting the datacheck parameter to 2
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Identification of symptoms of ill conditioning: ns1687037 
(http://plato.asu.edu/ftp/lptestset/)

 Problem statistics:

Variables                   :   43749  [Nneg: 36001,  Box: 874,  Free: 6874]

Objective nonzeros   :   24000

Linear constraints     :   50622  [Greater: 38622,  Equal: 12000]

Nonzeros                : 1406739

RHS nonzeros        :   24000

Variables                   : Min LB: 0.000000         Max UB: 3.000000

Objective nonzeros   : Min      : 1.000000         Max     : 100.0000

Linear constraints     :

Nonzeros                : Min      : 1.987766e-08  Max     : 1364210.

RHS nonzeros        : Min      : 0.0005000000 Max      : 5.030775e+07

Wide range of coefficients; smallest 

below default feasibility, optimality 

tolerances
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Identification of symptoms of ill conditioning: ns1687037 
(http://plato.asu.edu/ftp/lptestset/)

 Iteration log #1:  Loss of feasibility after basis refactorization

Iteration: 674222   Dual objective     =           913.318204

Iteration: 674228   Dual objective     =           913.318204

…              <3 more refactorizations>

Iteration: 674256   Dual objective     =           913.318205

Iteration: 674258   Dual objective     =           913.318205

Removing perturbation.

Iteration: 674259   Scaled dual infeas =         12123.146176

Iteration: 674772   Scaled dual infeas =           595.276887

Elapsed time = 16959.32 sec. (6667412.82 ticks, 674876 iterations)

...

Elapsed time = 17138.76 sec. (6737439.02 ticks, 681930 iterations)

Iteration: 681949   Scaled dual infeas =             0.000002

...

Iteration: 682542   Scaled dual infeas =             0.000000

Iteration: 682624   Dual objective     =        -19559.930294

Iteration: 682896   Dual objective     =        -18109.597465

Elapsed time = 17160.88 sec. (6747443.75 ticks, 682941 iterations)

Should only 

refactor every 

100+ iters

Massive loss 

of feasibility

Massive loss 

of feasibility

Objective 

much worse
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Identification, of symptoms of ill conditioning: ns1687037 
(http://plato.asu.edu/ftp/lptestset/)
 Iteration log #2:  Increase in Markowitz tolerance after frequent 

refactorizations of the basis
Should only 

refactor every 

100+ iters
Iteration: 783543   Dual objective     =             3.635840

Iteration: 783548   Dual objective     =             3.635840

Iteration: 783550   Dual objective     =             3.635840

Iteration: 783553   Dual objective     =             3.635840

Iteration: 783556   Dual objective     =             3.635840

Removing shift (209).

Markowitz threshold set to 0.99999

Iteration: 783558   Dual objective     =             3.635695

CPLEX reacts to 

signs of trouble

Dual feasibility 

preserved
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 Solution quality (available in all CPLEX APIs)
Max. unscaled (scaled) bound infeas.            = 8.39528e-07 (8.39528e-07)

(Reduce feasibility tolerance, continue optimizing to decrease bound infeasibilities)

Max. unscaled (scaled) reduced-cost infeas. = 2.31959e-08 (2.31959e-08)

(Reduce optimality tolerance, continue optimizing to decrease reduced cost infeasibilities)

Max. unscaled (scaled) Ax-b resid.                = 3.51461e-07 (1.16886e-12)

(If exceeds feasibility tolerance, CPLEX feasibility decisions based on round off error)

Max. unscaled (scaled) c-B'pi resid.               = 1.18561e-13 (1.18561e-13)

(If exceeds optimality tolerance, CPLEX optimality decisions based on round off error)

Max. unscaled (scaled) |x|                              = 24139.1 (24139.1)

Max. unscaled (scaled) |slack|                        = 48278.2 (48278.2)

Max. unscaled (scaled) |pi|                             = 76.2637 (76.2637)

Max. unscaled (scaled) |red-cost|                   = 100 (100)

Condition number of scaled basis                   = 2.2e+12

(Use to assess sensitivity of solution to perturbations in the model data)

Identification, of symptoms of ill conditioning: ns1687037 
(http://plato.asu.edu/ftp/lptestset/)
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Treatment of symptoms of ill conditioning

 Distinguish the symptoms from the cause

 Treatment of symptoms often not as robust, but it may 
provide a quick resolution to a pressing problem

 CPLEX parameters to treat symptoms

– Set the scale parameter to 1
• Geometric mean based scaling works well on models with wide 

range of coefficients

– Increase the Markowitz tolerance from its default of 0.01 to 
.90 or larger (max of .9999)
• Tightens the pivot threshold in the row stability test of the LU 

factorization

• Equivalently, tightens the bound on the sub diagonal elements of 
L from 1/.01 to 1/.9

– Turn on the numerical emphasis parameter
• Causes CPLEX to invoke internal logic to perform more accurate 

calculations (including quad precision for the LU factorization)
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Treatment of symptoms of ill conditioning

 ns1687037

– Problem stats indicated wide range of coefficients in matrix

• Well suited for setting scale parameter to 1

• Removed all problems (loss of feasibility, overly frequent basis 
refactorizations) seen in iteration logs

• Results: Huge reductions in run times for dual simplex and barrier, modest 
reduction for primal simplex:

• Solution quality was better as well

Algorithm

Settings Primal Dual Barrier

Default 14214.6 21094.2 1258.23

Scaling=1 11164.64 907.5 83.52
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Treatment of causes of ill conditioning

 ns1687037

– Problem stats indicated wide range of coefficients in matrix

– Modeling assistances output (datacheck = 2) confirms:

– Are the small coefficients of 1e-8 meaningful or due to round-off error 

in the data calculations?

• Changing them to 0 results in an LP that solves to optimality within 1 

second, just with presolve

 Suggests these coefficients have meaning, but may cause trouble for CPLEX’s 

default feasibility or optimality tolerances of 1e-6

• Modeller or data owner needs to assess if these coefficients are meaningful

Linear constraints     :

Nonzeros : Min      : 1.987766e-08  Max     : 1364210.

RHS nonzeros : Min      : 0.0005000000 Max      : 5.030775e+07

CPLEX Warning  1045: Detected nonzero <= the maximum value of either 

CPX_PARAM_EPRHS or CPX_PARAM_EPOPT at constraint 'R0002627', variable 

'C0025750'.

CPLEX Warning  1045: Detected nonzero <= the maximum value of either 

CPX_PARAM_EPRHS or CPX_PARAM_EPOPT at constraint 'R0002635', variable 

'C0025753'.
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Treatment of causes of ill conditioning

 ns1687037

– Consider the constraints that contain the tiny coefficients

• Fortunately, they appear repeatedly in small subsets of constraints

• Reformulation of one subset will apply to other subsets

R0002624: 50150 C0024008 + 50150 C0024010 + 50150 C0024012 +

50150 C0024014 + 50150 C0024016 + 113600 C0024020 +  

50150 C0024024 + 113600 C0024026 + 113600 C0024038 +   

...  +

69070 C0025728 + 69070 C0025734 + 47585 C0025738 +

50150 C0025742 + 50150 C0025744 + 69070 C0025748 +     

C0025749  = 50307748

R0002625: - C0025749 + C0025750 >= 0

R0002626: C0025749 + C0025750 >= 0

R0002627: 1.9877659e-8 C0025750 - C0025751  = 0

R0002628: C0000001 - C0025751 >= 0

R0002629: C0000002 - C0025751 >= -0.0005

R0002630: C0000003 - C0025751 >= -0.0008

R0002631: C0000004 - C0025751 >= -0.0009

These variables 

only appear in 

constraints on this 

slide
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Treatment of causes of ill conditioning

 ns1687037

R0002624: 50150 C0024008 + 50150 C0024010 + 50150 C0024012 +

50150 C0024014 + 50150 C0024016 + 113600 C0024020 +  

50150 C0024024 + 113600 C0024026 + 113600 C0024038 +   

...  +

69070 C0025728 + 69070 C0025734 + 47585 C0025738 +

50150 C0025742 + 50150 C0025744 + 69070 C0025748 +     

C0025749  = 50307748      // C0025749 free; all others ≥ 0

R0002625: - C0025749 + C0025750 >= 0

R0002626: C0025749 + C0025750 >= 0

R0002627: 1.9877659e-8 C0025750 - C0025751  = 0

R0002628: C0000001 - C0025751 >= 0

R0002629: C0000002 - C0025751 >= -0.0005

R0002630: C0000003 - C0025751 >= -0.0008

R0002631: C0000004 - C0025751 >= -0.0009

These vars appear in other constraints

Penalty variables; appear 

here and in objective

C25750 = | C0025749|

Scale abs. value of 

violation for 

R0002624
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Treatment of causes of ill conditioning

 ns1687037

– Objective contains only variables like C0000001,…,C0000004

• Piecewise linear, higher cost for larger absolute violation of R0002624

• Move the scaling of absolute violation in the constraints to the objective

 Dramatically improves the coefficient spread in the constraint matrix, LU factors

• Better: use unscaled violation.  Objective value will be larger, but, if needed, 

recapture actual value after the optimization

R0002627: 1.9877659 C0025750 – 1e+8 C0025751  = 0

R0002628: 1e+8 C0000001 – 1e+8 C0025751 >= 0

R0002629: 1e+8 C0000002 – 1e+8 C0025751 >= -50000

R0002630: 1e+8 C0000003 – 1e+8 C0025751 >= -80000

R0002631: 1e+8 C0000004 – 1e+8 C0025751 >= -90000

R0002627: 1.9877659 C0025750 – C0025751ʹ  = 0

R0002628: C0000001ʹ – C0025751ʹ >= 0

R0002629: C0000002ʹ – C0025751ʹ >= -50000

R0002630: C0000003ʹ – C0025751ʹ >= -80000

R0002631: C0000004ʹ – C0025751ʹ >= -90000

(x ʹ = (1e+8) x)
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Treatment of causes of ill conditioning

 ns1687037

– Reformulation:

R0002624: 50150 C0024008 + 50150 C0024010 + 50150 C0024012 + 

50150 C0024014 + 50150 C0024016 + 113600 C0024020 +  

50150 C0024024 + 113600 C0024026 + 113600 C0024038 

... +

69070 C0025728 + 69070 C0025734 + 47585 C0025738 + 

50150 C0025742 + 50150 C0025744 + 69070 C0025748 + 

C0025749  = 50307748

R0002625: - C0025749 + C0025750 >= 0

R0002626: C0025749 + C0025750 >= 0

R0002627: 1.9877659 C0025750 - C0025751  = 0

R0002628: C0000001 - C0025751 >= 0

R0002629: C0000002 - C0025751 >= -50000

R0002630: C0000003 - C0025751 >= -80000

R0002631: C0000004 - C0025751 >= -90000
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Treatment of causes of ill conditioning

 ns1687037

– Run times for original formulation:

– Run times for modified formulation:

Algorithm

Settings Primal Dual Barrier

Default 14214.6 21094.2 1258.23

Scaling=1 11164.64 907.5 83.52

Algorithm

Settings Primal Dual Barrier

Default 2310.9 2926.5 41.4

Scaling=1 6890.8 1054.7 68.2
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Common sources of ill conditioning

 Ill conditioning can be caused by large or small subsets of 

constraints and variables in the model

 Such subsets can be difficult to isolate

 Build up a list of common sources, use that before more 

model specific analysis
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Common sources of ill conditioning

 Mixture of large and small coefficients in the model
– Does not guarantee large basis condition numbers

– Additional round-off in floating point representation, arithmetic 
calculations enables modest condition numbers to magnify error in 
computed solutions above optimizer tolerances

 Imprecise data resulting in near singular matrices
– Near singular matrices have large condition numbers

 Long sequences of transfer constraints
– Mixture of large and small coefficients is implicit rather than explicit

 This is not a comprehensive list
– Add items based on your own modelling experiences
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Common sources

 Imprecise model data values

– Avoid rounding if you can, or round as precisely as possible

– Matrices can be ill conditioned despite small spread of coefficients

– Exact formulation:

Maximize  x1 +       x2 

c1:      1/3 x1 + 2/3 x2 = 1 

c2:            x1 + 2    x2 = 3

– Imprecisely rounded, single [double] precision

Maximize         x1         +          x2 

c1: .33333333 x1 + .66666667 x2 = 1

[  c1: .3333333333333333 x1 + .666666666666667 x2 = 1]

c2:                   x1         +        2x2 = 3 

– Scale to integral value whenever possible:

Maximize x1 +    x2 

c1:           x1 + 2 x2 = 3 

c2:           x1 + 2 x2 = 3  

)(/1)(dist

singular :
||||

min:)(dist

pp

p

p

p }{

BB

BB
B

B
B

B









(results in near singular matrix)
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IBM Software Group

© 2014 IBM Corporation46

Common sources of ill conditioning

 Long sequences of transfer constraints

 All coefficients have same order of magnitude

 All coefficients can be represented exactly as IEEE doubles

 How bad can it be?
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Common sources of ill conditioning

 Long sequences of transfer constraints (ctd)

– If any one variable > 0, 

all the others are basic as well

– Κ=3*2n

– Bound from condition number is

fairly tight
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Common sources of ill conditioning

 Long sequences of transfer constraints (ctd)

– Substitute out variables:

– Small change in xn propagates into large change in x1
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Diagnostics for ill conditioning and numerical instability

 Consider the list of common sources first

 Look at solution values

– Extremely large primal or dual values can identify small subsets 

of constraints and variables involved in the ill-conditioning

 Then look at the basis and its inverse for large values

– C API programs available among IBM Technotes*

 For MIPs, consider MIP Kappa feature

– C API program available to export node LPs with conditions 

number above a user supplied threshold available as well*

• Look at solution values, basis values or inverse values after locating a 

node LP with ill conditioned optimal basis

 Run the modeling assistance tool

*http://www-01.ibm.com/support/docview.wss?uid=swg21662382
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Examples from publicly available test sets

 ns1687037 (previously discussed)

– Wide range of coefficients

– Setting scaling to 1 helped

– Recognize that smallest coefficients involved 
penalties on constraint violations that could be 
moved into the objective function, improving 
numerics of basis factorization

– Reformulating the model to improve the numerics 
yielded additional improvements, addressed the 
underlying cause of the problem



IBM Software Group

© 2014 IBM Corporation51

Examples from publicly available test sets

 cdma (unsolved MIP from unstable test set of MIPLIB 

2010)
       Nodes                                         Cuts/ 

   Node  Left     Objective  IInf  Best Integer      Best Bound       ItCnt     Gap 

 
*    0+   0                                   -1.97987e+14  -6.51749e+17    71155     --- 

      0     0  -6.33335e+16   704  -1.97987e+14  -6.33335e+16    71155     --- 

      0     0  -6.31118e+16   702  -1.97987e+14    Cuts: 1870     185865     --- 

      0     0  -6.26076e+16   631  -1.97987e+14    Cuts: 1870     292616     --- 

... 

  

      0      0 -5.87363e+16  1206  -3.21168e+15    Cuts: 1604    4545331   --- 

*    0+    0                                   -7.75173e+15  -5.87363e+16  4654552  657.72% 

... 

 

*     0+    0                                  -1.16804e+16  -5.81032e+16  5626309  397.44% 

      0     0  -5.80853e+16  1585  -1.16804e+16     Cuts: 566      5632163  397.29% 

Heuristic still looking.  

      0     2  -5.80853e+16  1583  -1.16804e+16  -5.80853e+16  5633601  397.29% 

Elapsed time = 52951.48 sec. (11682283.45 ticks, tree = 0.01 MB, solutions = 17) 

      1     3  -5.80295e+16  1444  -1.16804e+16  -5.80853e+16  5643488  397.29% 

... 

 

  12862 10763  -4.10127e+16  1032  -1.46845e+16  -4.29552e+16 29639775  192.52% 

Elapsed time = 71901.33 sec. (18469780.15 ticks, tree = 33.05 MB, solutions = 24) 

  12866 10767  -3.86482e+16   979  -1.46845e+16  -4.29552e+16 29661467   192.52% 
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Examples from publicly available test sets

 cdma (unsolved MIP from unstable test set of MIPLIB 

2010)

– Problem statistics:

Variables                   :    7891  [Fix: 1,  Box: 3655,  Binary: 4235]

Objective nonzeros   :    2383

Linear constraints      :    9095  [Less: 8390,  Greater: 645,  Equal: 60]

Nonzeros                 :  168227

RHS nonzeros         :    4145

Variables                   : Min LB: 0.000000         Max UB: 1.000000e+07

Objective nonzeros   : Min      : 1.000000         Max      : 1.724400e+11

Linear constraints      : 

Nonzeros                 : Min      : 1.000000        Max       : 5.000000e+07

RHS nonzeros         : Min      : 1.000000        Max       : 3000000.
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Examples from publicly available test sets

 cdma (unsolved MIP from unstable test set of MIPLIB 2010)

– Typical node LP* iteration log

Iteration log ...

Iteration: 1 Scaled dual infeas = 0.000130

Iteration: 8 Scaled dual infeas = 0.000069

Iteration: 12 Dual objective = -6614900586660791.000000

Iteration: 23 Scaled dual infeas = 0.000107

Iteration: 32 Dual objective = -6614900586660791.000000

Iteration: 46 Dual infeasibility = 0.000038

Iteration: 52 Dual objective = -6614900586660791.000000

Iteration: 58 Dual infeasibility = 0.000038

Iteration: 64 Dual objective = -6614900586660791.000000

Maximum unscaled reduced-cost infeasibility = 7.62939e-06.

Maximum scaled reduced-cost infeasibility = 7.62939e-06.

Dual simplex - Optimal: Objective = -6.6149005867e+15

...

* Node LP Program at 

http://www-01.ibm.com/support/docview.wss?uid=swg21400065

Wasted iterations slow 

node throughput
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Examples from publicly available test sets

 cdma (unsolved MIP from unstable test set of MIPLIB 2010)

– Solution quality for same node LP

Max. unscaled (scaled) bound infeas. = 1.81311e-07 (1.81311e-07)

Max. unscaled (scaled) reduced-cost infeas. = 7.62939e-06 (7.62939e-06)

Max. unscaled (scaled) Ax - b resid. = 9.99989e-10 (6.10345e-14)

Max. unscaled (scaled) c - B'pi resid. = 7.3125 (7.3125)

Max. unscaled (scaled) |x| = 5596 (55296)

Max. unscaled (scaled) |slack| = 6.12827e+06 (10.6908)

Max. unscaled (scaled) |pi| = 8.67329e+16 (4.02442e+17)

Max. unscaled (scaled) |red-cost| = 4.31401e+17 (4.31401e+17)

Condition number of scaled basis = 5.2e+08

Incoming variable choice 

based on round-off error

Reasonable optimal 

basis condition number
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Examples from publicly available test sets

 cdma (unsolved MIP from unstable test set of MIPLIB 2010)

– Large objective coefficients, not large basis condition numbers, 

cause slow node throughput

• Model is numerically unstable, not ill conditioned

• 16 base 10 digits of accuracy for IEEE doubles, objective coefficients on 

the order of 1e+11 

 Round-off error of 1e-5 just to represent

 Modest basis condition numbers of 1e+8 can magnify to 1e+8*1e-5 = 1e+3

 Default optimality tolerance: 1e-6

• Simplex method pivots heavily influenced by round-off error

– What can we do?

• Take a closer look at the objective function
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Examples from publicly available test sets

 cdma (unsolved MIP from unstable test set of MIPLIB 2010)

– Histogram of objective coefficients*

– Large objective coefficients problematic for dual feasibility of 
node LP, dual residuals in solution quality

OBJECTIVE

Range            Count

[10^0,10^1]:          31

[10^9,10^10]:    1236

[10^11,10^12]:  1116

*Using program from 

https://www-304.ibm.com/support/docview.wss?uid=swg21400100.

All binaries; relative 

contribution to objective is 

below CPLEX’s default 

relative MIP gap

Current objective poorly 

scaled; would be well 

scaled if we deleted the 

31 small objective coeffs.
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Examples from publicly available test sets

 cdma (unsolved MIP from unstable test set of MIPLIB 2010)

– 31 binaries with relatively small objective coefficients have 
negligible impact on objective coefficients

• Especially when current solutions have relative MIP gaps of over 150%

– Remove them from the objective

• Remaining objective coefficients are all on the order of [1e+9,1e+12]

• Rescale by 1e+9

– Much better results with adjusted model

• Much faster node throughput

• Much better intermediate results regarding MIP gap

• Moderately better final MIP gap after ~20 hours

– More to be done

• MIP gap remains challenging

• But at least now node throughput sufficiently fast to consider MIP 
parameter tuning, other changes to formulation
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Examples from publicly available test sets

 cdma

 Implications 

– Mixture of large and small coefficients can be problematic

• Consider solving sequence of problems with a hierarchical objective 

rather than solving a problem with a single, blended objective

– Examined node log to discover slow node throughput was a major 

performance bottleneck

– Examined node LP iteration log, solution quality, problem statistics  

to identify large dual residuals as the primary source of slow node 

LP solve times

– Adjusted formulation to obtain a well scaled objective
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Examples from publicly available test sets

 de063155 (LP from 

http://www.sztaki.hu/meszaros/public_ftp/lptestset/problematic/

– CPLEX solves it in less than 0.1 seconds

– Iterations logs indicate no sign of trouble

– Problem statistics and solution quality raise questions regarding the 

solution and the associated physical system

– Is the solution acceptable?

• Depends 

• Examine the problem statistics and solution quality to find out.

http://www.sztaki.hu/meszaros/public_ftp/lptestset/problematic/
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Examples from publicly available test sets

 de063155 (LP from 

http://www.sztaki.hu/meszaros/public_ftp/lptestset/problematic/

– Problem stats

Variables                   :    1488  [Nneg: 756,  Fix: 205,  Box: 215,  Free: 

228, Other: 84]

Objective nonzeros   :     852

Linear constraints      :     852  [Less: 360,  Equal: 492]

Nonzeros                 :    4553

RHS nonzeros         :     777

Variables                    : Min LB: -10000.00        Max UB: 30.90000       

Objective nonzeros    : Min   : 1.279580e-05     Max      : 1000.000       

Linear constraints       :

Nonzeros                  : Min   : 2.106480e-07     Max      :  8.354500e+11   

RHS nonzeros          : Min   : 0.0002187500    Max       : 4.227560e+17

http://www.sztaki.hu/meszaros/public_ftp/lptestset/problematic/
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Examples from publicly available test sets

 de063155 (LP from 

http://www.sztaki.hu/meszaros/public_ftp/lptestset/problematic/

– Solution quality:

– Using aggressive scaling or turning on numerical emphasis does not 

improve the solution quality.

There are no bound infeasibilities.

There are no reduced-cost infeasibilities.

Max. unscaled (scaled) Ax-b resid.   = 747.949 (5.12641e-08)

Max. unscaled (scaled) c-B'pi resid. = 7.74852e-10 (8.51025e-06)

Max. unscaled (scaled) |x|                = 3.10148e+13 (3.76112e+07)

Max. unscaled (scaled) |slack|         = 3.75814e+07 (3.75814e+07)

Max. unscaled (scaled) |pi|               = 62061.1 (5.106e+09)

Max. unscaled (scaled) |red-cost|     = 6.78639e+09 (8.5923e+09)

Condition number of scaled basis     = 1.7e+08

http://www.sztaki.hu/meszaros/public_ftp/lptestset/problematic/
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Examples from publicly available test sets

 de063155 

– Is the solution quality a problem?

– Unscaled primal residuals are large in an absolute sense, but not  relative to 
primal solution values

– Solution quality does not hinder performance

– Practitioner must assess acceptability in context of the physical system being 
modelled

• Look at the constraints with the large absolute residuals

• Need more computing precision if not acceptable

• Or need to reformulate model in order to eliminate large matrix and right hand side 
coefficients

Max. unscaled (scaled) Ax-b resid.   = 747.949 (5.12641e-08)

Max. unscaled (scaled) c-B'pi resid. = 7.74852e-10 (8.51025e-06)

Max. unscaled (scaled) |x|                = 3.10148e+13 (3.76112e+07)

Max. unscaled (scaled) |slack|         = 3.75814e+07 (3.75814e+07)

Max. unscaled (scaled) |pi|               = 62061.1 (5.106e+09)

Max. unscaled (scaled) |red-cost|     = 6.78639e+09 (8.5923e+09)

Condition number of scaled basis     = 1.7e+08
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Summary of examples from publicly available test sets
 ns1687037 (LP; previously discussed)

– Wide range of coefficients

– Setting scaling to 1 helped

– Reformulating the model to improve the numerics yielded additional 
improvements, addressed the underlying cause of the problem
• Moving the scaling issue from the matrix to the objective removed the 

numerical problems from the basis matrix

 cdma (MIP)

– Basis condition numbers OK

– Wide range of objective coefficients were the real problem

– Separate large objective coefficients, rescale

– Faster node throughput yields significantly better solutions faster, 
but solving MIP to optimality remains challenging
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Summary of publicly available examples (ctd). 
 de063155 (LP)

– No performance problem; solves within a second

– Problem statistics, solution quality are cause for concern

– Large data values, significant absolute residuals that are relatively small
• Need to assess whether residuals are acceptable in the context of the associated system 

being modelled
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Key takeaways

 Finite precision representation and operations can easily 

introduce round-off error

– Large basis condition numbers can magnify

 Monitor/assess conditioning of model with available tools

– Make sure algorithms don’t make decisions based on round-off error

– Solution quality for LPs

– MIP Kappa for MIPs

– Node and iterations logs for signs of trouble

– Modeling assistance tool

 Be careful about mixing large and small coefficients

 Compute data as accurately as possible
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References/Further Reading 

 More detailed discussion in INFORMS TutORials in Operations Research 2014

 Higham, Accuracy and Stability of Numeric Algorithms

 Duff, Erisman and Reid,  Direct Methods for Sparse Matrices

 Gill, Murray and Wright,  Practical Optimization

 Golub and Van Loan, Matrix Computations

 Floating point arithmetic:  
http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html

 MIP Performance tuning and formulation strengthening:

– Klotz, Newman. Practical Guidelines for Solving Difficult Mixed Integer Programs

http://www.sciencedirect.com/science/article/pii/S1876735413000020

 LP performance issues

– Klotz, Newman. Practical Guidelines for Solving Difficult Linear Programs
http://www.sciencedirect.com/science/article/pii/S1876735412000189

 Converting repeating decimals into rational fractions:

http://en.wikipedia.org/wiki/Repeating_decimal#Converting_repeating_decimals_to
_fractions



http://pages.cs.wisc.edu/~smoler/x86text/lect.notes/arith.flpt.html
http://www.sciencedirect.com/science/article/pii/S1876735413000020
http://www.sciencedirect.com/science/article/pii/S1876735412000189
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Other presentations of interest

 Today, 4-6:30 PM, Room 124A IBM Workshop, Latest 

news about IBM Decision Optimization

 Nov. 4, SB34, 11:45-12:30 PM. Solving Multiobjective

problems with CPLEX, Ed Klotz

 Nov. 7, WC05, 2:30-2:50 PM.  CPLEX Progress in 2018
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Backup Material

 Backup Material
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Problem Definition 

 Ill Conditioning

– Motivated by work of meteorologist & mathematician Edward Lorenz

– Lorenz focused on small changes in initial conditions, resulting 

trajectories in nonlinear meteorological models

• Lorenz subsequently became a pioneer in the field of Chaos Theory

– Ill conditioning extends beyond the nonlinear meteorological models 

on which Lorenz worked

– More generally, a mathematical model or system is ill conditioned 

when a small change in the input can result in a large change to the 

computed solution
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Alternate interpretations of Ill Conditioned Basis

 Skeel’s condition number:

– Invariant under row scaling

• Not invariant under column scaling

– If significantly smaller than regular condition number, some rows of 

the matrix have larger norms than others

|| |||| ||  1 BB 
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Alternate interpretations of Ill Conditioned Basis

 Skeel’s condition number:

– Example (http://www.hsl.rl.ac.uk/specs/mc75.pdf):

– Skeel condition number:  1.0061

– CPLEX exact condition number (no scaling):  100036

– CPLEX exact condition number (default scaling): 10.0091

 c1: 3300 x1 + 1e-11 x2  = 1

 c2: x1 + 3300 x2 + 1e-11 x3  = 1

 c3: x2 + 3300 x3 + 1e-11 x4  = 1

 c4: 10000 x2 + 10000 x3 + 330000000 x4  = 1            // much larger row norm

xj free, j=1,...,4

http://www.hsl.rl.ac.uk/specs/mc75.pdf
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Alternate interpretations of Ill Conditioned Basis

 Skeel’s condition number:

– Why does this metric measure sensitivity to perturbations?

• We saw how                                          measured potential 

magnification of error in the solution relative to perturbation in the input 

• What is the underlying theoretical justification for                                  ?

|| |||| ||  1 BB 

  1 BBB

|| |||| ||  1 BB 
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Alternate interpretations of Ill Conditioned Basis

 What is the underlying theoretical justification for                        ?

– Use absolute values on individual components instead of norms during 

derivation

– Use componentwise perturbation instead of norms:

|| |||| ||  1 BB 

)0(       BB

)(1 xxBBx   

bxxBB  ))(( bBx 

(original system) (perturbed system)

(Combine and rearrange)

)(1 xxBBx   
B

 )()( 11 xxBBxxBBx  

   BBxxx 1)(

(Componentwise abs value)
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Examples

integer           

10  ,0         

 ) with constraint(only                 0         

  subject to

)0 ,(                    Minimize

i

ii

iii

TT

z

zx

zMzx

bAx

fczfxc









“integer feasible” solution 

within integrality tolerance 

that violates intent of the 

model (trickle flow)

 Consider alternate formulations to improve numerics

– Fixed costs on continuous variables using big Ms:

7

810

1 unless branchingfor  eligiblenot  

1/1  ,100









eMz

eMxzeMx

i

iii

MxzzMxMzx iiiiii // 

• LP relaxation solution

• CPLEX default integrality tolerance: 1e-5

(Mixture of large and 

small numbers)
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Examples

 To get correct answers with big-M formulation
– Use smallest possible value of big-M that doesn’t violate intent of model

• Bound strengthening in CPLEX presolve often does this automatically

– Set integrality tolerance to 0

– Set simplex tolerances to minimum values, 1e-9

– Ask for more accuracy on a potentially ill-conditioned system
• Turn on numerical emphasis parameter

 Many users are unfamiliar with issues

– Frequent source of CPLEX customer calls

– One of most popular CPLEX FAQs

– But should they have to be?
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Examples

integer                     

10  ,0                   

                00                   

  subject to

)0 ,(                    Minimize

i

ii

ii

TT

z

zx

xz

bAx

fczfxc









(integer feasible solutions 

aligned with intent of the 

model)branching requires i constraintindicator 

0  ,100  ii zx

 Indicator constraint formulation for fixed costs on continuous 
variables

– LP relaxation solution

(CPLEX branches on 

these directly)
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Examples

 Which approach to use?

– Indicator formulation more precise representation of model

• Indicator and big-M formulation equivalent when M=∞

– If we can use modest values for big-M, indicator formulation 
tends to be weaker 

– Use indicator constraints, let CPLEX decide whether to 
replace with big-Ms if preprocessing can deduce big-M 
values of modest size

• Presolve tightens the indicator formulation (improved further in 
CPLEX 12.2.0)
 Presolve on indicators (improved)

 Node presolve on indicators

 Probing on by default

 Probing on indicator constraints

 Re-presolve by default


