Systems Engineering - A Macro Process

Systems Engineering - Notional Format

The Nature of a Systems Approach: Multi-Phased, Hierarchical, Multi-Dimensional

Where in Systems Approach Morphology Does SE Get Applied?

Phases / Time Dimension

- ✓ Sequenced from birth to death of system
- ✓ Segmented by major decision milestones
- Populated intervals between milestones called phases and define a coarse structure in life cycle [program & project planning, systems development, production, distribution, operations, retire]*

• Hierarchical / Logic Dimension

- ✓ Defines generalized human group problem solving procedure
- Logic elements [problem definition, value system design, systems synthesis, systems analysis, optimization of each alternative, decision-making, planning for action]*: (1) may be performed in many time orders, (2) each of which usually must be performed for a phase to be complete, and (3) repeated for subsystems, modules and components at lower levels within a phase
- ✓ Controlled by a multilevel logic

Knowledge / Content Dimension

✓ Bodies of facts, models, and techniques necessary to plan, design, produce and to use a system within a total life cycle: (1) conventional fields [engineering, medicine, law, architecture, (2) a unique mix of conventional disciplines and some not found among them at all

• Cultural / Political / Behavioral (Human) Dimension

- ✓ Designers and users of systems play characteristic roles and are bound within a culture
- ✓ Culture impacts preferences, attitudes toward risk, management styles, data and models used...
- * A.D. Hall, Metasystems Methodology, 1989.

In Framework Consistent with Application Domain

2nd European Systems Engineering Conference

Major Program Justification: U.S. Military

Integrated Program Summary (IPS)

IPS - PRIMARY DECISION DOCUMENT

- Summarizes where the program is, versus where it should be
- Describes where the program is going, and how it will get there
- Identifies program risk areas and plans for closing risks
- Provides the basis for establishing explicit program cost, schedule and performance objectives and thresholds in the program baseline, and exit criteria for the next phase

A history of all decisions **including value judgments** is kept as part of the IPS record.

2nd European Systems Engineering Conference

Integrated Program Summary Appendices

- Process and Schedule Describes Program phases and event timelines
- *Life Cycle Cost Estimate Summary Provides current estimates of total program lifecycle costs including: Quantities needed; Development; Production; Operations / Support Requirements; and Cost profile for each alternative including managing, training, modifications
- *Acquisition Strategy Report Recommends program strategy, and <u>why</u>: Defines program structure; Defines program approach (*Critical technologies, Non-development items, Internal versus external responsibility, Contract types*); Identifies tradeoffs
- Risk Assessment Describes the problem, and the known or potential technological, design / engineering, manufacturing, cost and schedule risks; Includes the same for all critical subsystems; Establishes plans to reduce and/or mitigate the risks
- Environmental Analysis Describes the methodology & procedures for analyzing the systems' environmental impacts; Integrates that information with other considerations in the program management and acquisition process
- Affordability Assessment Develops program cost data and compares it to other long term budget requirements; Recommends the best way to provide the needed system capability within the stated budget constraints
- Cooperative Opportunities Document Describes the current and future opportunities available to reduce cost and increase system effectiveness by cooperating with other programs that are doing similar things

*These are started to provide an initial basis to validate 'Mission' Need

 2nd European Systems Engineering Conference

Overall Acquisition Process

Where in Systems Approach Morphology Does SE Get Applied?

Phases / Time Dimension

- \checkmark Sequenced from birth to death of system
- ✓ Segmented by major decision milestones
- Populated intervals between milestones called phases and define a coarse structure in life cycle [program & project planning, systems development, production, distribution, operations, retire]*

• Hierarchical / Logic Dimension

- ✓ Defines generalized human group problem solving procedure
- Logic elements [problem definition, value system design, systems synthesis, systems analysis, optimization of each alternative, decision-making, planning for action]*: (1) may be performed in many time orders, (2) each of which usually must be performed for a phase to be complete, and (3) repeated for subsystems, modules and components at lower levels within a phase
- ✓ Controlled by a multilevel logic

Knowledge / Content Dimension

✓ Bodies of facts, models, and techniques necessary to plan, design, produce and to use a system within a total life cycle: (1) conventional fields [engineering, medicine, law, architecture, (2) a unique mix of conventional disciplines and some not found among them at all

Cultural / Political / Behavioral (Human) Dimension

- ✓ Designers and users of systems play characteristic roles and are bound within a culture
- ✓ Culture impacts preferences, attitudes toward risk, management styles, data and models used...
- * A.D. Hall, Metasystems Methodology, 1989.

In Framework Consistent with Application Domain

2nd European Systems Engineering Conference

Military Framework - U.S. Dept of Defense Domain

• Systems engineering:

- ✓ Is subordinate to overall project management & control process
- ✓ Does not normally impact selection of Program Structure and Schedule
- ✓ Does not normally impact Program Affordability Assessment
- Does not normally impact Program Acquisition Strategy
- Elements of existing U.S. DoD infrastructure that have been historically transparent to systems engineers (and other specialty engineers) include:
 - ✓ Stated high-level policies / values that impact existing system(s)
 - ✓ Articulated high-level objectives for new mission
 - Defined operational environment in which system will reside
 - Application of well-defined program/project management
 - ✓ Clear command and control structure for management & decision-making
 - ✓ Established acquisition process for new/revised system(s)

Consider Context of Infrastructure & System Environment [1992, U.S. Dept of Energy, Morais, Grygiel]

Considerations	Observations & Conclusions		
System Boundaries	"A change in mission resulted in a change from a production system to that of a remediation system."		
High-level values, objectives	" To change from supporting the nuclear weapons production program to one that would eliminate the threats to the environment and hazards to the public that have resulted from this production."		
Decision-making structures, processes	"Set up conditions so that the participants have a common understanding of how decisions are made and what is going to be considered."		
Acquisition/funding processes,	[Although not documented in this paper, a concurrent effort to evaluate and select appropriate acquisition/funding processes involved in DOE cleanup has been ongoing for the last decade.]		
Project and/or program management processes, controls	"Ensure change has been communicated down through all levels. Establish milestones to assess progress, risks & problems that will occur while implementing the change."		
Operational environment	"The mission change resulted in direction to stop production, to close waste storage facilities, & to remediate contamination that had occurred."		
Existing technical (or other) logic	"This legally binding agreement [TPA] forms a plan that was developed prior to the application of a well thought out systems approach to developing a solution for site remediation."		
Additional critical factors (major impacts?)	"Take a systems view of the objectives that require the Culture change. Periodically assess risk."		

Consider Context of Infrastructure & System Environment [1999, Eastman Kodak, Mason, et. al.]

Considerations	Observations & Conclusions		
System Boundaries	" necessary for Kodak to participate effectively in both the design and introduction of the Advanced Photo System"		
High-level values, objectives	"Every aspect of the photographic system would change. To manage this change required Kodak to actively implement system engineering principles."		
Decision-making structures, processes	Established "a framework for managing system level negotiations with our joint development partners and internal organizations."		
Acquisition/funding processes,	Not Addressed		
Project and/or program management processes, controls	 "1) Providing overall process for development, 2) integrating existing development mgmt processes, 3) integrating widely scattered technology, 4) providing framework for managing negotiations with joint partners" 		
Operational environment	"This project required the cooperative effort of five different companies"		
Existing technical (or other) logic	Existing Kodak photographic system and relationship with other four companies - (old way of doing business) required extensive change.		
Additional critical factors (major impacts?)	"integration of existing development management processes by emphasizing the system environment that these processes exist within. underlying vulnerability was an extreme narrowness of scope designed for development of products in which environment (or system) would remain relatively constant."		

Consider Context of Infrastructure & System Environment [1999, Extended Enterprise in Aerospace Sector, Clegg, et. al.]

Considerations	Observations & Conclusions		
System Boundaries	EE primarily "internally focused, therefore it neglects the effort necessary to communicate with external supply bases" and other industrial partners."		
High-level values, objectives	"Hopefully produce a process for product introduction that has joint ownership by the extended enterprise companies."		
Decision-making structures, processes	"each companies perceptions of the PIP is different (e.g. when is it unofficially or officially initiated,include new capability acquisition activities,when complete,include derivations generated from in-		
Acquisition/funding processes,	"[Some] are in a privileged position have 'risk and revenue sharing contracts' other suppliers still have to work within confines of traditional contractual arrangements"		
Project and/or program management processes, controls	"stage and review gates are defined differently in each company"		
Operational environment	"staggered effect is apparent within the supply chain, which makes it very difficult to practice concurrent engineering principles"		
Existing technical (or other) logic	"Proliferation of late customer engr/design changes -> suppliers should be involved as soon as there is a possibility of change soadjust their own manufacturing & risk mitigation plans"		
Additional critical factors (major impacts?)	"the difficulty in finding links (either in a 'liaison' or 'collaborative' capacity) between the companies"		

Consider Context of Infrastructure & System Environment [In Framework Consistent with Your Application Domain!]

	1992, U.S. DOE (Morais, Grygiel)	1999, Kodak (Mason, et. al.)	1999, in Aerospace (Clegg, et. al.)
System Boundaries			
High-level values, objectives			
Decision-making structures, processes		\checkmark	
Acquisition/funding processes,			
Project and/or program management processes, controls		\checkmark	
Operational environment		\checkmark	
Existing technical (or other) logic		\checkmark	
Additional critical factors (major impacts?)			

2nd European Systems Engineering Conference