GSoC Application

Anurag Sharma

17.4.2014

1 Abstract

In symbolic integration one seeks a finite expression for the integral. The
Risch algorithm is an algorithm for symbolic integration of any elementary
function. Given an elementary function, it will either produce an antideriva-
tive, or prove that none exists. The proposed project aims to continue the
work of Aaron Meurer and Chetna Gupta done in 2010 and 2013 GSoC
projects respectively, i.e implementing the algorithm from Manuel Bron-
steins book, Symbolic Integration I: Transcendental Functions. A successful
implementation of this would not only provide concrete algorithms for tran-
scendental functions but would also form the basis for very similar Karr
Algorithm, decision procedure for symbolic summation, yet to be imple-
mented in sympy. Since much of the work from the book aforementioned
has already been done, the proposal aims at completing the implementation
of the sub-algorithms mentioned in the book and go towards implementing
Risch Algorithm for algebraic functions which prove to be tougher than the
algorithm for transcedental functions.

2 Personal Details
e Name : Anurag Sharma
e Email Id : anurags92@gmail.com

Alternate Email Id : sharmaan@iitk.ac.in

e [RC : anurags92 on freenode

Github : anurags92

3 About Me

I am a sophomore Mathematics student at Indian Institute of Technology,
Kanpur, India. I have keen interests in Algebra, Field theory and Galois
theory. I was first introduced to Differential Algebra while studying for this
project and since then I have made major gains in my understanding of
Differential Galois theory.

I wish to pursue further studies in Commutative Algebra and Category
Theory. In my two years of undergraduate study at my institute I have been
exposed to varied topics in math which include Real and Complex Analysis,
Abstract Algebra, Universal Algebra, Linear Algebra, Ordinary and Partial
Differential Equations etc.

4 Programming Experience

I am proficient in C, C++ have a decent knowledge of Python. All my pre-
vious programming experience has been for related to various hackathons
organised in our college and course projects. Here is a link to a Gesture
recognition applet that was designed by me and my friends for a summer
project in our first year.

Link : http://www.youtube.com/watch?v=q-55tBvrD2g Apart from the
hackathons and development related prject I am also a member of a three
member team - MemoryOverflow, which represented IIT Kanpur in ACM
ICPC regionals held at IIT Kharagput. My SPOJ handle is anurags92. I
have solved 150+ problems on SPOJ and am quite good at writing code in
timed contests. If I get selected in GSoC, it would be my first big contribu-
tion to an open source software. I had used git earlier for my projects but
that was restricted only to basic commands. During my 2 3 months asso-
ciation with the community I have become quite familiar with this version
control.

5 Contributions to Sympy

My Contribution to sympy are as follows:

e Implemented a new class of Beta function which was earlier imple-
mented as a subformula of Gamma function
https://github.com/sympy/sympy /pull /2782

http://www.youtube.com/watch?v=q-55tBvrD2g

e Improved the efficiency of order_at function from n to log(n) where n
is the power of prime in the
https://github.com/sympy/sympy/pull /7237

6 Timeline

I have started work on Chetna’s pull request :https://github.com/sympy/sympy/pull /2380
I plan to continue this work in community bonding period and first two week
of the summers.

1. Week 1-2

(a) Make a common function for converting the denominator to spe-
cial denominator for the Parametric Risch Differential Equation
and Risch Differential Equation.

Pull Request 1. (This branch will get merged after this)
2. Week 3-4

(a) Get Chetna’s Cds & is_derive branch merged.

(b) Implementing Structure theorems for is_derive and is_log_derive
in prde.py.

3. Week 5-6

(a) Solution for Hyper-tangent Case using Cancellation algorithm.

(b) Writing test cases for the functions written in Week 3-4 and Week
5-6.

Pull Request 2. (On a different branch)
4. Week 7

(a) Implementation of Liouvillian Case for Parametric Risch Differ-
ential Equation.

(b) Implementation of Non Linear Case for Parametric Risch Differ-
ential Equation.

Mid-Term Evaluation.

5. Week 8-9

(a) After the tasks mentioned above are finished, I would be able to
complete Parametric Logarithmic derivative

(b) Implementation of Non Linear Case for Parametric Risch Differ-
ential Equation Heuristic Solver.

6. Week 10

(a) Implementation of Complete Parametric Logarithmic Complete
Solver. Completing this would be a big success for the project
and this would probably finish the work in prde.py and hopefully
it could then get merged in the master.

Pull Request 3. (On the same branch as PR 2)
7. Week 11-12
(a) After finishing prde.py I would like to hook that code with its
uses in rde.py and risch.py.
(b) Functions in rde.py like cancel exp and cancel_primitive would
make use of the work done in Week 1-2 and Week 10.
8. Week 13
(a) Would review all the pull requests and would add more tests cases

for each PR.

(b) Would like to clean the code in rde.py and remove as many
NotImplemented exceptions as possible. Hopefully after Week
10’s work this would be routine exercise and would get completed
easily.

(c) Add tests cases for rde.py and check if everything is in good
shape.

Pull Request 4.

7 Theory Relevant to all implementations

A differential field is a field F with a differentiation operator D such that
for any f,g € F' D(f +g) = Df + Dg and D(fg) = (Df)g + f(Dg).

A t is a monomial over (F,D) if t is transcendental over F and D(t)
is a polynomial in t with coefficients from F.

Extension of a differential field: We can adjoin new elements t1, ..., t, to
a differential field (F, D) to get a field F'(t1, ..., t,). The result is a differential
field extension of (F, D) if:

° D(tl) S F(tl,...,tn)

e D can be extended consistently to F'(t1,...,t,).

8 Implementation Detail

Week 1-4
My first target would be to get this PR https://github.com/sympy/sympy/pull /2380
merged.
There are few issues with the PR as of now. Most important of them
is a routine similar to is_log_derive_k[t] in prde.py.
"is_log_derive _k[t]” recognises which algebraic field extension can be
written in terms of lower field extension.
Example: Q(z,e”,e'9(*)/2) has transcedence degree 2 and not 3 be-
cause €/°9(*)/2 can be written in terms of 2. So we need an algorithm
which creates the tower of field extensions which are ”irreducible” in
a sense. This is effectively done by ”is_log_derive k[t]” for exponen-
tial and logarithmic functions. We have to extend the function for
hypertangent case.

8.1 Theory

First we build a finite tower T' = F(x, 6, 6s,...,6,) of monomial ex-
tensions over (). Each of the 6; are elementary over F. Now to check
whether T is a transcedental extension of () we have to determine the
algebraic structure of each of f; = F(z, 01,0, ...,0;_1) over () and then
apply it recursively for k;;1 till we know it for all k£, and then we can
check the nature of F' over Q.If it is transcedental then only we pro-
ceed with integration otherwise raise exception NotImplemented.
Reference [2].

Week 5-7
Cancellation algorithms although proposed last year were not imple-
mented for :

e Liouvillian Case

e Nonlinear Case

e Hypertangent Case

For Liouvillian case [1] describes the algorithm to solve Parametric
Risch Differential equation which reduces the problem to a similar in
non cancellation cases. I'll follow the text to implement this routine.
There is no general algorithm for solving the equation in Nonlinear
Case. The algorithm described in [1] works only in a special case
where S”" # ¢. This can also be implemented as shown in the text.
For the last Hypertangent Case, the algorithm differs from that of
Risch Differential Equation only for one case as discussed below.

8.2 Theory

We reduce the problem of solving Parametric Risch Differential Equa-
tion to one of solving the following equation:

Dq + bg = 3 cigi —(1).

For hypertangent case gg =n.

Now for b = by - nnt is the case that is not handled by PolyRischDE-
CancelTan given in [1]. For this case the algorithm is similar to Non-

linear Cases.

Week 8-10

The task for week 8 onwards is to integrate the different snippets
written till now. I plan to first start with completing Parametric
Logarithmic Derivative Heuristics Solver and Paramteric Logarithmic
Derivative complete solver. Code for heuristic solver is already there
in Chetna’s branch I will have to make it work with ”is_log_derivative”
created in Week 2-4. Psuedocode given in [1] will come in handy for
this function. If heuristic fails then we move on to solve the equation
using structure theorems described in Chapter-9 of [1]. I have not
gone over the theory of that particular portion so I can not explain
the details of that part right now, but I have a brief idea on how to go
about it which I try to explain below.

8.3 Theory

Parametric Logarithimic Derivative Problem aims to solve differential
quation of the form:

Given a differential field K of characteristic 0, an hyperexponential
monomial over K and f € K, we need to find whether there exist
integers n,m € Z with n #0 such that nf = % + m%e has a solution v
€ K and also to find the solution if that exists. Now this equation can
be solved in two ways. One is employed by heuristic method and the
other is based on structure theorems. f will always has an elementary
integral over K for Parametric Logarithmic problems. Now let F' be
the elementary extension over K () and g € F such that f = Dg.
Since (1) has a solution we can write it in the form nf = g?é?%m.
This proves that f = Dg is logarithmic over F'. Now using a lemma in
Chapter 9 of [1] we show that this is true iff there exist r; € @ such that
YDt + > 1 thl = f. I do not completely understand the proof of
icL icE

fciis lemma.z%ut we can safely assume that this holds. Now our F and
L are the set of exponential and logarithmic extensions respectively
which can be extracted with our already present functions. Now we
are only left to find the rational solutions of the new equation. This
can be done by obtaining a coefficient matrix in C' (F is expressed as
extension of C).

