INVERSE LAPLACE TRANSFORM OF $e^{-2 s}$

The inverse Laplace transform of a function $F(s)$ is given by the integral

$$
f(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} e^{s t} F(s) d s
$$

where c is a real number chosen greater than the real parts of all singularities of F. The argument t is assumed real. It is assumed that $F(s)$ is integrable on the vertical line. This is the case when it is the Laplace transform of reasonably smooth and bounded (or slowly growing) function $f(t)$.

If $F(s)$ is not integrable but does not grow too fast (technically, if it defines a tempered distribution), it is still possible to find its inverse transform as a tempered distribution. If the integral is divided into two parts

$$
I_{1}(t)=\int_{c}^{c+i \infty} e^{s t} F(s) d s
$$

and

$$
I_{2}(t)=\int_{c}^{c-i \infty} e^{s t} F(s) d s
$$

then the exponential factor $e^{s t}$ makes $I_{1}(t)$ and $I_{2}(t)$ convergent and analytic for t in the upper half and lower half plane, respectively. These functions have singularities on the real boundary, but they can be interpreted as distributions. Hence the difference of the integrals yields a well defined distribution which can be called the inverse Laplace transform of $F(s)$.

In the case $F(s)=e^{-2 s}$ we may take $c=0$, and the integrals are readily computed as

$$
\begin{aligned}
& I_{1}(t)=\frac{-1}{t-2} \quad(\operatorname{Im}(t)>0) \\
& I_{2}(t)=\frac{-1}{t-2} \quad(\operatorname{Im}(t)<0)
\end{aligned}
$$

To find the boundary values one has to consider the integration of these functions along the lines $\mathbf{R}+i \varepsilon$ and $\mathbf{R}-i \varepsilon$. The upper line may be deformed to a contour that consists of the interval from $-\infty$ to $2-\varepsilon$, a half-circle in the upper half plane of center 2 and radius ε, and the interval from $2+\varepsilon$ to ∞.

In the limit $\varepsilon \rightarrow 0$ the distribution defined by the two intervals is the principal part of $-1 /(t-2)$ while the half-circle in the negative direction gives $-\pi i$ times the residue. Hence the boundary value of $I_{1}(t)$ becomes

$$
\mathrm{pp} \frac{-1}{t-2}+\pi i \delta(t-2)
$$

Similarly, the boundary value of $I_{2}(t)$ is

$$
\mathrm{pp} \frac{-1}{t-2}-\pi i \delta(t-2) .
$$

Taking the difference, the principal parts cancel and we are left with the inverse Laplace transform $f(t)=\delta(t-2)$.

