
Google Summer of Code ’23 SymPy

Improving Parsing Submodule

Tirthankar Mazumder

Table of Contents

● Personal Details

○ Programming Background

○ Technical Background

● Platform and Development Environment

● Programming Experience

● Experience with Python

● Favorite SymPy Feature

● Experience with Git

○ Motivation

○ Contributions to SymPy

● Overview of the Project

● Implementation Details

● Timeline and Milestones

○ Community Bonding Period

○ Coding Period

○ Stretch Goals

● Past Projects

1

Personal Details

● Name: Tirthankar Mazumder

● Github Profile: wermos

● Email: mztirthankar@gmail.com

● University: Indian Institute of Technology Bombay

● Country of Residence: India

● Contact No: 9123802761

● Timezone: Indian Standard Time (UTC + 5:30)

● Primary Language: English

Programming Background

My first experience with programming was when I was in eighth grade: My

father brought home a Programming in Python book from the library for me to

read. Even though, at that age, I was unable to grasp the intricacies of core

concepts like classes and strings, I got the hang of numerical programs, and

made a calculator and a prime number generator.

I will never forget the joy I felt after I managed to make the program calculate

how many primes there are between 1 and 1 000 000. The program ran for 113

seconds on the laptop we had at the time:

2

https://github.com/wermos
mailto:mztirthankar@gmail.com

Ever since, I have slowly been learning about more performant languages. In

high school (11th and 12th grade), we learned Java, which is much faster than

Python but still runs on a Virtual Machine. Afterwards, in college, I learned C++

through our introductory programming course, CS 101. C++ is even faster than

Java and Python, and is compiled down to machine code.

After learning about C++ features, I did a project where we created a Physics

Engine called Physicc. By doing the project, I got to learn many things about

how projects are planned and executed, and also got to familiarize myself with

Git and GitHub.

After this, I started watching CppCon videos, where I started learning about

some of the more advanced C++ features like templates and compile-time

code execution. During this time, I also learned about data-oriented design,

which is a set of programming guidelines aimed towards getting the best

performance out of the hardware that one has.

3

https://github.com/Physicc/Light
https://www.dataorienteddesign.com/dodbook/

Technical Background

Platform and Development Environment

My OS of choice is Windows 11. However, I don’t use Windows to develop in

Python. I use WSL (Windows Subsystem for Linux), which is functionally

equivalent to dual-booting. In particular, WSL2 uses a real Linux kernel under

the hood. My editor of choice is usually Vim or Visual Studio Code. It highly

depends on the exact task at hand. I usually use Vim for a more low-level look

(at specific files), but use Visual Studio Code for a more bird’s eye view of how

multiple files and classes interact with one another. I find the “find definition”

and “find declaration” features very useful because it allows me to see the

definition/declaration without changing files.

Programming Experience

I have lots of previous experience with programming and contributing to open

source projects in general. I have successfully completed GSoC once with the

CERN-HSF organization. In that project, I had to do a survey of existing C++

math libraries and then integrate the fastest one into the algebra-plugins

repository, which provides the math functionalities to a couple of their research

repositories, detray and traccc. During that GSoC project, I made the following

PRs:

● #69 (Merged) — Added Google Benchmark to the project.

● #77 (Merged) — Added Fastor to the project.

● #78 (Merged) — Fully integrated Fastor into the repository as a

first-class backend ready to be used, and added tests.

● #84 (Merged) — Fixed an inconsistency in the CMake logic.

● #93 (Merged) — Improved const-correctness in the repository.

● #94 (Merged) — Modernized the tests by replacing casts to void with

the [[maybe_unused]] attribute.

4

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/compare-versions#full-linux-kernel
https://summerofcode.withgoogle.com/myprojects/details/H0ek5yGF
https://summerofcode.withgoogle.com/myprojects/details/H0ek5yGF
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/detray
https://github.com/acts-project/traccc
https://github.com/acts-project/algebra-plugins/pull/69
https://github.com/google/benchmark
https://github.com/acts-project/algebra-plugins/pull/77
https://github.com/romeric/Fastor
https://github.com/acts-project/algebra-plugins/pull/78
https://github.com/acts-project/algebra-plugins/pull/84
https://github.com/acts-project/algebra-plugins/pull/93
https://github.com/acts-project/algebra-plugins/pull/94

I also had to write blog posts about my work and my GSoC experience

working with CERN-HSF. My CERN-HSF blog post on their website can be

found here. The blog posts I made on my own personal blog are here, here,

here, and here.

A comprehensive list of my other programming projects and experience can

be found in the Past Projects section at the end.

Experience with Python

I have an extensive amount of experience with Python. Like I mentioned in the

Programming Background section, my very first programming language was

Python. Apart from that, I have used Python for many scripting tasks (like

copying music from a hard drive onto my laptop in a specific order), Project

Euler problems, and more. Moreover, I used it in my previous GSoC project to

plot the results I got in my survey of math C++ libraries.

Overall, I would say that I’m quite familiar with Python, both in terms of syntax

and its extensive standard library.

Favorite SymPy Feature

My favorite SymPy feature would have to be its printing feature. While it is a

very popular feature to mention as one’s favorite, the reason why it is my

favorite is slightly different.

One of the first serious bugs I solved in SymPy was a curious case where the

printing of a SymPy vector object was incorrect. It took me a lot of time and

debugging to find the root cause of the issue. Part of the problem was that I

was unfamiliar with how SymPy works under the hood.

While solving the bug, I was forced to learn how the printing code works under

the hood. Once I got over the frustration of spending so long on one small bug,

5

https://hepsoftwarefoundation.org/gsoc/blogs/2022/blog_Acts_TirthankarMazumder.html
https://wermos.github.io/blog/
https://wermos.github.io/blog/gsoc/gsoc-first-blog-post/
https://wermos.github.io/blog/gsoc/gsoc-the-details-of-my-project/
https://wermos.github.io/blog/gsoc/gsoc-the-work-so-far/
https://wermos.github.io/blog/gsoc/gsoc-the-final-status-report/

I was able to appreciate the cleverness of the method using for printing string

representations of SymPy objects: the code essentially does a lot of

configuration and then dispatches to a function specific to that object, which

then does the actual printing. For example, if I want to print a sympy.vector

object, the _print_BasisDependent function is ultimately called which

deals with all the printing logic for sympy.vector objects, and

sympy.vector objects only. Similarly, calling print on a sympy.float

object invokes the _print_Float function under the hood.

Experience with Git

I am very familiar with Git. All of my projects (listed in the Past Projects section),

along with my GSoC project, used Git, so I am quite familiar with its

functionality, including things like force pushes, rebases, and merges, which

tend to trip up beginners.

Motivation

As a math student who is also interested in Computer Science, symbolic math

libraries were always amazing to me because they represented a perfect

combination of both subjects.

There are many open source symbolic math libraries, such as Maxima, Fricas,

and more. However, these CASes are in languages like Lisp, which make them

less accessible to contributors such as myself.

SymPy is in a unique position because there are submodules where I can

contribute and make the library more powerful, but that does not mean that the

library itself is not powerful.

Contributing to the parsing submodule allows me to fulfill two objectives:

exercise my programming muscles, but also help other people achieve their

research and other goals faster. Since the LaTeX parser is the most used parser

6

https://maxima.sourceforge.io/
https://fricas.github.io/

in SymPy, improving it would mean improving the user experience for a lot of

people, which brings me satisfaction.

Contributions to SymPy

Here is a list of all my contributions to SymPy so far:

● #23096 (Merged) and #23122 (Merged) — Updated the SymPy

AST parser to remove the use of a deprecated CPython class.

● #23191 (Merged) — Fixed a bug in the terminal pretty printing code.

● #23194 (Merged) — Improved the parenthesis code in the LaTeX

printer.

● #23200 (Merged) — Modernized the symbol choice for the Laplacian

in SymPy.

● #24954 (Merged) — Added the C parser code to the CI and made it

pass some tests.

Overview of the Project

The parsing submodule in SymPy exists for the purpose of converting code in

other languages (such as C, Fortran, LaTeX, etc.) into SymPy code. By far, the

most popular parser in SymPy currently is the LaTeX parser.

However, the current implementation is written in Antlr, which is a pretty heavy

dependency for a project like SymPy. Moreover, having a parser depend on

something like Antlr prevents end users from modifying the parser at runtime,

something which we can allow with an alternative implementation.

Additionally, there are a number of issues with the existing LaTeX parser. At the

time of writing, there are 26 open issues under the parsing.latex in the

SymPy issues list.

7

https://github.com/sympy/sympy/pull/23096
https://github.com/sympy/sympy/pull/23122
https://github.com/sympy/sympy/pull/23191
https://github.com/sympy/sympy/pull/23194
https://github.com/sympy/sympy/pull/23200
https://github.com/sympy/sympy/pull/24954
https://www.antlr.org/
https://github.com/sympy/sympy/issues?q=is%3Aopen+is%3Aissue+label%3Aparsing.latex
https://github.com/sympy/sympy/issues?q=is%3Aopen+is%3Aissue+label%3Aparsing.latex

There has already been talk about moving away from Antlr in previous SymPy

issues as early as #14004, and some work has already been done in that

direction in #19825, which means that there is community interest in seeing

this change through.

Implementation Details

The LaTeX parser will be rewritten in Lark, which is a parsing toolkit written

entirely in Python. Many SymPy users face difficulty with installing Antlr and

using it to work on the existing LaTeX parser and how it badly interacts with

other popular Python libraries like matplotlib and scipy.

Since there is already an existing PR for this, much of my work will be in

breaking down the PR into smaller chunks for easier code review, and also

ironing out incompatibilities so that the new parser can be a drop-in

replacement.

As a first approximation, the existing PR (#19825) can be broken into a base

PR (which has a bare bones Lark LaTeX parser), then the next few PRs can

have more and more features, and at the very end, we can remove the Antlr

parser entirely and leave a SymPyDeprecationWarning for users who try to

use it.

Timeline And Milestones

My summer vacation starts on May 1, 2022. Apart from GSoC, I am also taking

part in the XROS Fellowship, whose coding period is from April to the end of

June. Other than this, I have no other commitments, so I can easily put 20-30

hours per week during June, and up it to 40 hours per week once the XROS

Fellowship period is over.

8

https://github.com/sympy/sympy/pull/14004
https://github.com/sympy/sympy/pull/19825
https://github.com/lark-parser/lark
https://github.com/sympy/sympy/issues/14004#issuecomment-1072591073
https://github.com/sympy/sympy/issues/14004#issuecomment-1072591073
https://github.com/sympy/sympy/pull/19825
https://xrosfellowship.ficci.in/

My third academic year starts from the first week of August, so to make sure

that I can devote enough time to academics during the semester, I will try to

finish as much of the project during summer break as I can. Hence, I intend to

do the GSoC project during the period 29th May to 4thSeptember, which is the

standard 12-week coding period.

I also plan to write a blog post every week to track my GSoC progress ,
containing links to my contributions, a brief overview, and the plan for next

week. This will ensure that these are not lost in the future. During my previous

GSoC project, I put a lot of effort into making my own blog, so I already have a

blog up, and adding content to it will be trivial.

● May 4 - May 28 (Community Bonding Period)

○ Get familiar with Lark

○ Discuss the LaTeX grammar and figure out exactly what subset we

wish to parse

■ The grammar is not context-free, so we will need to figure

out which set of words we accept and which ones we reject

● May 29 - June 11: Work on #19825

○ Understand the existing work done in that PR

○ Get familiar with the parsing submodule and the existing LaTeX parser

code

○ Break down the PR into smaller, more review-friendly chunks (ideally 3

to 5 separate PRs)

● June 12 - June 26: Finish the work in #19825

○ Finish the PR and rewrite the parser in Lark

9

https://wermos.github.io/blog/
https://tex.stackexchange.com/a/4205/203821
https://github.com/sympy/sympy/pull/19825
https://github.com/sympy/sympy/pull/19825

● June 27 - July 11: Get the Lark parser to pass all tests

○ Merge the new Lark parser and get it to pass all the existing tests

in the sympy/parsing/tests directory

● July 4 - July 26: Solving existing issues about the lack of

features in the LaTeX parser in the new parser

○ Solve issue #22305 and prevent the parsing from evaluating

expressions

○ Ensure the fraction parsing logic is as simple as possible and fix

#22392

○ Add tests for #22494 and ensure that the parenthesis parsing code is

correct

○ Add support for both the text and mathrm forms of the differential

operator, as #23551 suggests

○ Teach the parser about the dot notation for differentiation and fix

#23617

● July 22 - August 7: Documentation of the new parser

○ Document the new parser fully, including all the design decisions

that went into it

○ Also document quirks of the existing Antlr parser which were kept

and/or fixed (example)

● August 8 - August 20: Removing the Antlr parser

○ Ensure that the Antlr parser throws a SymPyDeprecationWarning

upon usage

10

https://github.com/sympy/sympy/tree/40dc98151118ad3deb7d718c57d8854253f884b6/sympy/parsing/tests
https://github.com/sympy/sympy/issues/22305
https://github.com/sympy/sympy/issues/22392
https://github.com/sympy/sympy/issues/22494
https://github.com/sympy/sympy/issues/23551
https://en.wikipedia.org/wiki/Notation_for_differentiation#Newton's_notation
https://github.com/sympy/sympy/issues/23617
https://github.com/sympy/sympy/pull/19825#issuecomment-662761873

○ Set up everything so that the Antlr parser can eventually be

removed.

● August 21 - September 4: Buffer week

○ This time will be kept as a buffer to allow for unexpected setbacks

● Stretch Goals (If Time Permits)

○ Solve as many issues in the parsing.latex category as

possible (example 1, example 2)

○ Solve some other parsing submodule bugs, like addressing the

underlying issues in #24813 (the C parser)

Past Projects
The following are a few of the things I did while working on a C++

game/physics engine called Physicc:

● I was put in charge of handling all the CI, which I did using GitHub

Actions

● I wrote the bounding volume code, for which I used template

metaprogramming to ensure a low runtime overhead

● I co-wrote the BVH and broadphase portions with one other person

● Helped write the narrowphase code with another person

● In addition to this, I also successfully used Doxygen and GitHub Actions

to extract the documentation from our project and host it online using

GitHub Pages

Apart from all this, I have also done a couple of self projects:

11

https://github.com/sympy/sympy/issues/19127
https://github.com/sympy/sympy/issues/19465
https://github.com/sympy/sympy/issues/24813
https://github.com/Physicc/Light
https://github.com/Physicc/Light/tree/6ad65157e200c302bbc228b57e0116500f0179c2/.github/workflows
https://github.com/Physicc/Light/blob/development/Physicc/include/boundingvolume.hpp
https://github.com/Physicc/Light/blob/development/Physicc/include/bvh.hpp
https://github.com/Physicc/Light/blob/feature/broadphase/Physicc/include/broadphase.hpp
https://github.com/R-Bread/Light/blob/e074704ddf3ba7d753a2a9ed2a8c64e7f1eecc6f/Physicc/src/narrowphase.cpp
https://physicc.github.io/Light/annotated.html

● I have written a ray tracer in C++20

○ I learned how to properly benchmark code using the chrono

header

○ I learned how to profile code using the built-in profiler in Visual

Studio 2022 and pinpoint the sections/functions where most of the

running time is spent.

○ I learned how to use the Intel VTune Profiler to determine how well

my multithreading is working, and how close to the theoretical

peak performance I am.

○ I learned how to use the C++20 header syncstream to output

progress to the terminal while the program runs.

Additionally, I also was a mentor for a ray-tracing engine called Rendera, in

which I led and managed a group of 4 people of varying skill sets to create a

C++17 CPU-side ray-tracer.

Contributions to Open Source

Here is a list of all my non-SymPy open source contributions so far:

● ACTS: Experiment-independent toolkit for (charged) particle track

reconstruction in (high energy) physics experiments implemented in

modern C++.

○ #1384 (Merged) — Cleaned up the CI workflow files.

● xsimd: C++ wrappers for SIMD intrinsics and parallelized, optimized

mathematical functions (SSE, AVX, AVX512, NEON, SVE)).

○ #755 (Merged) — Fixed a rendering error in the docs.

○ #760 (Merged) — Fixed a bug in the preprocessor check for

Clang.

12

https://github.com/wermos/Celerity
https://github.com/wermos/Rendera
https://github.com/acts-project/acts/pull/1384
https://github.com/xtensor-stack/xsimd/pull/755
https://github.com/xtensor-stack/xsimd/pull/760

○ #761 (Merged) — Incorporated the [[nodiscard]] attribute

into the codebase.

○ #762 (Merged) — Fixed a spelling mistake.

○ #767 (Merged) — Modernized the codebase with

<type_traits> functions.

○ #787 (Merged) — Changed many if clauses to if constexpr.

● Fastor: A lightweight high performance tensor algebra framework for

modern C++.

○ #167 (Merged) — Fixed a bug in the determinant function.

● SageMath: A free open-source mathematics software system licensed

under the GPL.

○ #35142 (Merged) — Fixed the SageMath logo in the README.

● Due to the extensive number of bug fixes and the work I have done on

open source repositories, I am quite experienced in navigating and

working with large codebases.

13

https://github.com/xtensor-stack/xsimd/pull/761
https://github.com/xtensor-stack/xsimd/pull/762
https://github.com/xtensor-stack/xsimd/pull/767
https://github.com/xtensor-stack/xsimd/pull/787
https://github.com/romeric/Fastor/pull/167
https://github.com/sagemath/sage/pull/35142

