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Personal   Details  

Contact   Information  
Name:-     Milan   Jitendra   Jolly  
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Github   Profile:-      https://github.com/mijo2  
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Personal   Background  
I   am   Milan   Jolly,   an   undergraduate   student   at   the   Indian   Institute   of   Technology,   Patna   pursuing  

Bachelor   of   Technology   in   Computer   Science.   

 

I   have   successfully   completed   two   internships   till   this   point   and   both   of   them   involved   Machine  

Learning   and   Deep   Learning.   Python   is   one   of   the   prime   choices   for   Machine   Learning  

practitioners.   Thus,   I   have   worked   on   lots   of   projects   where   the   primary   language   used   was  

Python.   Other   than   that,   I   have   a   keen   interest   in   theoretical   Machine   Learning   and  

reinforcement   learning   where   Mathematics   is   heavily   involved   in   finding   logical   solutions   to  

highly   dynamic   problems.   

 

Along   with   working   on   Machine   Learning   projects,   I   have   experience   in   creating   web  

applications   by   building   both   the   frontend   and   backend   of   the   websites   using   HTML,   CSS,  

Bootstrap,   MySQL   and   PHP.   I   can   work   with   C   and   C++   to   solve   programming   challenges.   I   am  

able   to   adapt   quickly   and   if   need   arises,   I   can   learn   a   new   language   as   well.   I   have   been   using  

Linux   terminal   and   Git   for   a   while   now   and   I   am   fairly   competent   with   the   same.   Moreover,  

contributing   to   SymPy   for   the   past   couple   of   months   have   honed   these   skills   even   further.   

 

Relevant   courses   that   I   have   taken:   

● Linear   Algebra  

● Probability   and   Statistics  

● Algorithms  

● Introduction   to   Data   Structures  

● Abstract   Algebra  

● Discrete   Mathematics  
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● Optimization   techniques.  

 

Platform   Details  
1. OS:-    Ubuntu   18.04  

2. Hardware   Details:-     Asus   K401u;   i7-6500U;   8   GB   RAM  

3. Preferred   Code   Editor:-     Visual   Studio   Code  

4. IDE:-     Python   -    PyCharm  

 

Contributions   to   SymPy  

● Merged   PRs  
● Addition   of   a   test   to   verify   if   replace   works   with   Equality/Relational   or  

not  
● function:   Added   new   proportional   tolerance   in   test_comb_factorial.py  

● Added   min_fixed   and   max_fixed   options   for   Float   in   printers  

● Integrals   of   summations(nested)  

● Added   new   test   cases   for   limits  

● Added   PyPI   installation   procedure   in   README  

● atoms()   method   return   value   updated  

● Updated   the   docstring   of   some   functions   in   util.py  

● Documentation   update   in   stats/joint_rv_types.py  

● Docstring   update   in   polysys  

● Fix   for   numpy   arrays   when   the   size   1   arrays   were   treated   as   scalars  

   

 

● Open   PRs  
● implementation   of   chinese   remainder   theorem   over   cartesian   product   of   vectors  

● Added   the   argmax   and   argmin   in   sympy.calculus  

● Added   floor   implementation   in   solvers  

● Addition   of   schur   number   in   combinatorics  

● Using   matrix   exp   for   solving   linear   differential   equations  

 

After   some   initial   experience   with   easy   to   fix   and   good   first   issues,   I   have   mainly   focused   my   efforts   on  

adding   new   features   to   SymPy   after   discussing   the   relevant   design   details   with   the   maintainers.   
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Project  

Abstract  

There   are   many   Ordinary   differential   equation   solvers   in   SymPy.   But,   it   is   possible   to   eliminate   many   of  
these   solvers   by   introducing   some   new   solvers   that   handle   more   of   the   general   cases   of   ODEs.   The  
current   solvers   handle   special   cases   more   than   the   general   ones,   and   many   of   them   can   be   replaced.  
 
Along   with   that,   solving   a   system   of   equations   can   be   greatly   enhanced   by   dividing   the   system   of  
equations   based   on   weakly   connected   components   and   strongly   connected   components.   The   general  
purpose   solvers   that   will   be   introduced   use   matrices    to   solve   the   system   and   it   is   very   efficient   if   we  
can   divide   the   system   of   equations   and   solve   these   divided   sub-systems   separately.   Also,   a   function  
that   will   reduce   higher   order   ODEs   to   first   order   ODEs   will   help   greatly   extend   the   ODE   module.  
 
  The   solvers   that   will   be   introduced   are   given   as   follows:-  

1. n   equations   linear   first   order   constant   coefficient   homogeneous   and   non-homogeneous   solvers.  
2. n   equations   linear   first   order   symmetric   coefficient   homogeneous   and   non-homogeneous  

solvers.  
3. Special   case   nonlinear   solvers.  

 
Along   with   that   the   following   are   the   functionalities   that   will   be   added   for   enhancement   of   the   module:  

1. Component   division   that   divides   the   system   of   equations   into   weakly   connected   components  
and   their   corresponding   strongly   connected   components   which   can   help   reduce   the  
computational   complexity   of   solving   large   equations.  

2. nth   order   to   1st   order   functionality   that   reduces   any   nth   order   ODE   to   first   ODE   by   introducing  
new   dependent   variables.  
 

In   this   project,   apart   from   adding   new   solvers   and   methods   of   enhancements,   one   crucial   aspect   is  
always   replacing   the   unwanted   solvers   carefully   and   ensuring   that   removing   a   solver   doesn’t   lead   to   a  
failure   in   a   case   where   the   original   solver   could   have   succeeded.   Along   with   that,   adding   new   test   cases,  
updating   and   migrating   old   test   cases,   keeping   track   of   which   issues   and/or   PRs   have   been   taken   care   of  
by   introducing   the   current   set   of   solvers   and   updating   the   documentation   is   another   important   part   of  
this   project   which   will   consume   time   and   should   be   done   along   with   every   new   addition   of  
solvers/techniques.   That   is   the   reason   why   in   every   phase,   this   task   is   added   so   that   it   doesn’t   become  
overwhelming   in   the   future.  
 
 

Motivation  

Several   solvers   which   handle   systems   of   ODEs   in   the   ODE   module     are   special   case   solvers   and   there   is  
only   one   general   case   solver   which   also   works   when   a   special   condition   is   met.   This   makes   it   hard   to  
understand,   develop   and   work   with   the   ODE   module.   The   module   can   be   greatly   enhanced   by  
introducing   general   case   solvers.  
 



Most   of   the   special   case   solvers   handle   2   or   3   equations   at   a   time   which   greatly   increases   the   size   of   the  
module   when   it   can   be   made   more   compact   with   a   lot   more   capability.   The   only    n   equations   general  
solver   is    _linear_neq_order1_type1     which   handles   only   the   case   where   the   coefficient   matrix   is   not  
defective.   But,   it   is   possible   to   implement   a   general   purpose   solver   that   solves   a   system   of   linear   first  
order   constant   coefficient   ODEs   without   the   constraint   that   the   coefficient   matrix    be   non-defective.  
This   can   be   achieved   by   using   the   Jordan   Normal   form   of   a   matrix   to   get   the   exponential   of   both   the  
defective   and   the   non-defective   matrices.   
 
We   can   also   extend   the   module   by   adding   a   Python   function   that   reduces   a   system   of   higher   order  
ODEs   to   first   order   ODEs   so   that   it   is   possible   to   solve   higher   order   ODEs   using   the   solvers  
implemented   for   first   order   ODEs.  
 
Also,   since   we   are   using   matrices   to   solve   the   general   cases   of   ODEs,   it   will   be   useful   and   efficient   to  
reduce   the   size   of   the   matrices   since   matrix   operations   can   be   computationally   heavy   for   large  
matrices,   even   if   there   are   more   number   of   matrices   to   compute   solutions   for.   This   can   be   achieved   by  
dividing   the   system   of   equations   into   subsystems   by   using   the   concept   of   weakly   connected   and  
strongly   connected   components   of   a   graph.  
 
Many   of   the   techniques   and   solvers   that   will   be   implemented   are   very   new   to   the   library   and   this   will  
allow   the   users   to   solve   many   systems   of   ODEs,   some   that   are   relatively   new.   Instead   of   one  
incomplete   general   solver,   when   this   project   will   be   at   its   completion,   there   will   be   4   more   new   general  
solvers.  
 
By   adding   all   of   the   n   equation   solvers,   the   capabilities   of   SymPy   for   solving   systems   of   ODEs   will   be  
expanded   significantly.   An   end   user,   who   is   using   SymPy   for   solving   systems   of   ODEs   will   be   able   to  
easily   identify   if   the   system   of   ODEs   that   he/she   is   trying   to   solve   can   be   solved   by   the   library   or   not,  
since   few   general   solvers   will   replace   many   special   case   solvers   and   this   will   make   it   easier   for   someone  
to   identify   which   systems   of   ODEs   are   solvable   using   SymPy.   The   users   will   now   be   able   to   solve   all   the  
systems   of   ODEs   which   are   n   equations   linear   constant   coefficient   ODEs   of   any   order.   Along   with   that  
since   the   module   will   be   greatly   extended   with   new   solvers   like   n   equations   linear   non   constant  
coefficient   solver.  
 
Also,   the   systems   of   ODEs   which   can   be   divided   and   solved   separately   can't   be   solved   with   the   current  
ode   solvers   and   this   will   be   addressed   by   dividing   the   systems   into   independent  
subsystems(component   division).   Thus,   in   principle,   an   end   user   may   also   use   this   to   their   advantage  
by   passing   a   list   of   ODEs   that   is   required   to   be   solved   where   all   the   ODEs   don't   particularly   form   a  
system   but   rather   are   independent   to   each   other.   This   will   also   allow   the   module   to   give   partial  
solutions   if   it   is   possible   to   divide   the   system   into   subsystems   where   some   of   the   subsystems   can   be  
solved   using   techniques   available.   By   adding   these   general   solvers   and   component   division   technique,  
not   only   the   capabilities   but   the   ease   of   solving   systems   of   ODEs   is   also   greatly   enhanced.   
 
 



Theory  

Jordan   Normal   Form   

All   the   matrices   mentioned   below   are   defined   over   a   field     where     and     are   additive   and  
multiplicative   inverses   respectively.   But   the   examples   mentioned   after   the   definitions   and  
explanations   are   of   matrices   over   Real   numbers.  
 

Matrices   that   can   be   represented   as:-  

 

Are   known   as   Diagonalizable   matrices   [ 1 ]   where     is   a   diagonal   matrix   and   is   an   invertible D P  
matrix.  
 
But,   not   every   matrix   is   diagonalizable.   A     matrix   is   diagonalizable    when   the   matrix   has   n
linearly   independent   eigenvectors   [ 2 ].   Still,   it   is   possible   to   represent   any   matrix   in   the   form  
mentioned   in   the   above   equation.  
 

 
 

Where     is   known   as   the   Jordan   normal   form   of   the   matrix   A   [ 3 ].   A   Jordan   form   of   a   matrix   is   a  
square   matrix   in   which   only   non-zero   elements   are   in   the   diagonal   elements   and   super-diagonal  
of   the   matrix     and   everywhere   else   the   elements   are   zero.   Here,   instead   of   all   the   diagonal  
elements   being   non-zero,   we   have   Jordan   blocks,   which   are   of   a   particular   form,   as   the   diagonals  
of   a   matrix.  
 
A   Jordan   block   is   a   square   matrix   with   diagonals   having   a   value     and   all   the   elements   in   the  
super-diagonal   having   value     and   everywhere   else,   the   elements   have   value     [ 4 ].   Infact,   a  
diagonal   matrix   is   a   special   case   of   Jordan   matrix   where   all   the   Jordan   blocks   are   of   size   .  
 
Notation   for   a   Jordan   block   is   given   as     where     is   the   element   found   in   the   diagonals   and    
stands   for   the   size   of   the   block.  
 
A   Jordan   normal   form   has   Jordan   blocks   on   its   diagonals   which   is   represented   as:  
 

 
 
where     is   the   Jordan   normal   form   and     are   the   Jordan   blocks.  
 
Now,   we   will   look   into   some   examples   to   grasp   the   concept   of   Diagonal   matrix   and   Jordan  
normal   form.  
 
Consider   the   matrix   below:  
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Here,   the   matrix   has   eigenvalues:   ,   ,   .   Also,   all   the   eigenvectors   are  
independent,   and   hence   the   matrix   given   above   is   diagonalizable   with   the   diagonal   elements   as  
the   eigenvalues.  
 
But   consider   the   matrix   given   below:  
 

 
 
This   matrix   has   two   unique   eigenvalues     where     has   an   algebraic   multiplicity   as   ,   hence  
there   are   only     independent   eigenvectors   of   the   above   matrix   thus   the   above   matrix   is   not  
diagonalizable.   But   the   Jordan   normal   form   using   the   eigenvalues   found   above   is:  
 

 
 
Here   the   Jordan   blocks   are     and     and   .  

 
It   can   be   solved   and   proved   that   there   exists   an   invertible   matrix   namely     given   below   such  
that     where     and     are   the   matrices   mentioned   above.  
 

 
 
Matrix   Exponentials  

Here,   we   are   assuming   that   the   elements   of   the   matrices   used   in   definitions   and   explanations   belong   to  
an   algebraically   closed   field     where     and     are   additive   and   multiplicative   inverses   respectively.   In  
the   examples,   the   elements   of   the   matrices   belong   to   the   field   of   Real   numbers.  
 
Matrix   exponentials   [ 5 ]   are   functions   over   square   matrices   analogous   to   the   ordinary   exponential  
functions.   The   function   is   defined   as   follows:  

 

 
Now,   computing   a   matrix   exponential   naively   means   that   we   will   have   to   infinitely   compute   the  
sum   mentioned   above.   Naturally   we   have   better   techniques   to   compute   the   matrix   exponential.   
 
We   can   compute   the   Jordan   normal   form   of   the   matrix   to   compute   the   matrix   exponential.   This  
can   be   easily   proved.   Let   us   assume   that   we   have   a   matrix     for   which   we   have   to   compute   the  
matrix   exponential.   We   will   find   the   Jordan   normal   form   of   the   matrix     along   with   the   invertible  
matrix     and   then   substitute     as   .   Now,   the   below   expression   can   be   easily   proved  
by   just   substituting   the   value   of     in   terms   of     and   .  
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Let   us   consider   a   variable   .   Now,   it   is   evident   that   .   Note   that     is   an  
element   of   field   .   
 
Exponential   of   a   matrix   of   Jordan   form   is   easy   to   compute.   This   can   be   demonstrated   by   looking  
at   the   cases   mentioned   below   [ 6 ].  
 

 
The   exponential     is:  

   
 
For  

  ,   
  is  

   
 
For   

 
  is  

   
 
It   can   be   seen   and   proved   that   exponential   of   a   Jordan   block   is   simpler   than   computing   the  
exponential   as   a   sum.  
 
It   is   also   true   that   if     where     are   the   Jordan   blocks,  
then:  
 

 
 
Computing   an   exponential   of   a   Jordan   matrix   is   simpler   than   computing   an   exponential   of   a  
normal   matrix.   The   complexity   of   computing   the   exponential   of   a   Jordan   matrix   is   O( )   where   n  
is   the   size   of   the   matrix   which   is   better   as   compared   to   the   naive   method   of   evaluating   the   sum.  
 
Now,   we   will   consider   an   example,   namely   of   the   matrix   that   we   used   to   compute   the   Jordan  
normal   form.  
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If   ,   then     and   since   for   the   matrix   above,   
 

  ,     
 
Then,   using   the   cases   and   properties   discussed   above,   
 

 
 
and   thus     is   given   as   follows:  
 

 
 
 
n   equations   linear   first   order   constant   coefficient   homogeneous   ODEs  

For   solving   the   homogeneous   case   represented   as:   

 

Where   is   a   vector   of   dependent   variables,   is   the   constant   coefficient   matrix   and   is   its   derivative X A X ′  
with   respect   to   .     is   the   independent   variable.  
 
Solution   for   such   a   system   is   given   by:  

 
 

 
Where     is   a   vector   of   arbitrary   constants.   If   the   initial   conditions   are   given   as     then,   
 

 
 
Exponential   of     can   be   calculated   using   the   technique   discussed   above.  
 
Let   us   consider   the   system   of   differential   equations:  
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Here,     are   functions   of   the   independent   variable   .   So,   using   the   solution   discussed   above   and  
the   exponential   of   the   matrix     discussed   in   the   previous   section,   the   solution   of   the   system   above   is:  
 

 
 

 
where     and     are   arbitrary   constants.  
 
 
n   equations   linear   first   order   constant   coefficient   non-homogeneous   ODEs  

For   solving   the   non-homogeneous   case   as   represented   below:  

 

Where     is   a   constant   coefficient   matrix,     is   a   vector   of   independent   variables,     is   the   independent  
variable   and     is   the   non-homogeneous   component   of   the   system   of   ODEs.  
 
Now,   let   us   try   to   solve   this   equation:  
 
Bringing     term   from   right   hand   side   to   left   hand   side   of   the   equation,   we   get:  
 

 
 

Now,   we   multiply   both   the   sides   by     and   since:  
 

 
 
we   get:  
 

 
 

 
 
Integrating   on   both   the   sides   and   then   rearranging,   we   get     as:  
 

 
 

 
 
Where,     is   a   vector   of   arbitrary   constants.  
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Now,   let   us   consider   an   example   of   a   non-homogeneous   system   that   can   be   solved   using   the   solution  
discussed   above.   The   system   of   differential   equations   is   given   as   follows:  
 

 
 

 
 
So,   our     is   
 

 
and     is  

 
 
So,     is  
 

 
 
And     is  
 

 
 
Now,   substituting   values   into   the   solution,   we   get:  
 

 
 
The   example   discussed   above   is   from   the   ODE   systems   roadmap   [ 7 ].  
 
 
n   equations   linear   first   order   non-constant   coefficient   homogeneous   ODEs  

For   a   system   of   ordinary   differential   equations   given   below   in   matrix   format:  

 

Now,   if     is   the   antiderivative   and   it   commutes   with   ,   then   it   can   be   proved   that:  

 

Now,   it   is   clear   by   looking   at   both   the   equations   that     is   the   general   solution   of   .   

 
Let   us   consider   a   system   of   differential   equations   of   this   case   and   get   the   solution:  
 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bdx%7D%7Bdt%7D%20%3D%20y#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20t%20%2B%20x#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=%5Cleft%5B%5Cbegin%7Bmatrix%7D0%20%26%201%5C%5C1%20%26%200%5Cend%7Bmatrix%7D%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=f(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cleft%5B%5Cbegin%7Bmatrix%7D0%5C%5C1%5Cend%7Bmatrix%7D%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=e%5E%7BAt%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cleft%5B%5Cbegin%7Bmatrix%7D%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%20%26%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20-%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5C%5C%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20-%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%20%26%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cend%7Bmatrix%7D%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=e%5E%7B-At%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cleft%5B%5Cbegin%7Bmatrix%7D%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%20%26%20-%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5C%5C-%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%20%26%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cend%7Bmatrix%7D%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=X%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%5Cleft(%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20-%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cright)%20%5Cleft(C_%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20-%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cright)%20%2B%20%5Cleft(%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cright)%20%5Cleft(C_%7B1%7D%20-%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20-%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cright)%5C%5C%5Cleft(%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20-%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cright)%20%5Cleft(C_%7B1%7D%20-%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20-%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cright)%20%2B%20%5Cleft(%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cright)%20%5Cleft(C_%7B2%7D%20%2B%20%5Cfrac%7Be%5E%7Bt%7D%7D%7B2%7D%20-%20%5Cfrac%7Be%5E%7B-%20t%7D%7D%7B2%7D%5Cright)%5Cend%7Bmatrix%7D%5Cright%5D#0
https://github.com/sympy/sympy/wiki/ODE-Systems-roadmap
https://www.codecogs.com/eqnedit.php?latex=X%27%20%3D%20A(t)%20*%20X#0
https://www.codecogs.com/eqnedit.php?latex=B(t)#0
https://www.codecogs.com/eqnedit.php?latex=A(t)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bd%7D%7Bdt%7D%20(e%5E%7BB(t)%7D)%20%3D%20A(t)%20e%5E%7BB(t)%7D#0
https://www.codecogs.com/eqnedit.php?latex=e%5E%7BB(t)%7D%20C#0
https://www.codecogs.com/eqnedit.php?latex=X#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bdx%7D%7Bdt%7D%20%3D%20t%20*%20y#0


 

 
 

Here,   
 

 
 
Since,     is   symmetric,   then   we   can   use   the   solution   discussed   above.   Now   antiderivative     is:  
 

 
 
Now,   exponential   of   this   matrix   is:  
 

 
 
Thus,   our   solution   is:  
 

 
 

 
 
 
n   equations   linear   first   order   non-constant   coefficient   non-homogeneous   ODEs  

For   the   system   of   ODE   given   below:  

 

where     is   a   coefficient   matrix   dependent   only   on   the   variable     and     is   the   non-homogeneous  
term   of   the   system   of   ODE.  
 
Now,   we   bring     term   in   the   left   hand   side   of   the   equation   and   then   multiplying   both   the   sides  
with     where     is   the   antiderivative   of   ,   we   get:  
 

 
 

Now,   from   the   section   above,   we   know   that   if     and     commute,   then:  
 

 
 
And   from   this,   we   can   infer   using   simple   derivative   calculation   that:  
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Substituting   this   value   into   the   left   hand   side   of   the   equation   discussed   above,   we   get:  
 

 
 
Integrating   on   both   the   sides,   we   get:  
 

 
 
where     is   a   vector   of   arbitrary   constants.   Multiplying   both   the   sides   by     we   get     as:  
 

 
 
The   above   is   the   solution   for   the   system   defined   in   this   section.  
 
Now,   we   will   look   at   an   example   of   this   system:  
 

 
 

 
 
Here,     and   its   antiderivative     is   the   same   as   the   example   discussed   in   the   section   above,   so   we  
don’t   need   to   compute   the   exponentials   again.   The   only   difference   between   the   two   examples   is   that  
this   example   system   of   ODEs   has   a   non-homogeneous   term     as:  
 

 
 
Now,   using   the   solution   discussed   above,   we   can   get   the   solution.   First,   lets   compute   the   integral   part  
of   the   solution:  
 

 
 
Thus,   substituting   this   value   in   the   solution   along   with   the   value   of     computed   in   the   above  
section,   we   can   get   the   solution:  
 

 
 
 
Higher   order   ODEs   to   first   order   ODEs  

In   the   above   sections,   the   solutions   that   were   discussed   were   of   first   order   ODEs   and   they   don’t   directly  
work   on   higher   order   ODEs.   But,   there   is   a   way   to   convert   the   higher   order   ODEs   to   first   order   ODEs.  
This   will   allow   us   to   use   the   methods   defined   for   obtaining   the   solutions   of   first   order   ODEs   to   solve  
higher   order   ODEs.  
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This   technique   will   be   explained   by   considering   an   example:  
 

 
 

 
 
Here,   we   can   see   that   the   system   of   ODEs   is   that   of   mixed   2nd   order.   So,   now,   we   will   introduce  
another   dependent   term     along   with     and     such   that   .   Hence,   the   system   of   ODEs   of  
two   dependent   variables   and   two   equations   becomes   that   of   three   dependent   variables   and   3  
equations:  
 

 
 

 
 

 
 

 
Now,   it   is   clear   that   this   system   of   ODE   is   linear   first   order   constant   coefficient   ODE   of   3   equations.   
 
The   coefficient   matrix   is:  
 

 
 
where     is:  
 

 
 
So,   the   solution   of   this   ODE   is:  
 

 
 

Now,   when   we   get   the   solution,   we   will   see   that   we   don’t   need   the   value   of     and   we   can   just   filter   out  
the   solutions   for   the   dependent   variables   that   we   originally   wanted   the   solution   for.  
 
 
Non-linear   solvers  

A   general   system   of   ODEs   with   two   independent   variables   can   be   given   as:  
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Now,   we   can   take   a   look   at   a   case   when   we   can   separate   out   the   term   of   independent   variable:  

 

 

So,   we   can   divide   both   of   these   equations   and   get   two   equations:  

 

 

We   can   solve   both   of   these   equations   to   get     in   terms   of     and   vice-versa.   Finally,   we   can   substitute    
or     in   the   respective   differential   equation   and   get   the   solution   for   one   of   the   variables   and   using   that  
we   can   get   the   values   for   both   of   the   dependent   variables   in   terms   of   .  
 
Let   us   consider   an   example   to   demonstrate   this   technique:  
 

 
 

 
 
Dividing   both   of   these   equations,   we   will   get:   
 

 
 
By   integrating   on   both   the   sides   with   respect   to   ,   we   get   the   relation:  
 

 
 
where     is   the   integration   constant.   Now,   substituting   value   of     in   the   second   ODE:  
 

 
 
which   gives   us   the   solution:  
 

 
 
and   finally   using   the   value   of   ,   we   can   easily   get   the   value   of     using   the   relation   found:  

 

 
 
 
Weakly   connected   components  

There   might   be   some   ODEs   for   which   we   don’t   have   any   direct   solution.   And   for   which   we   do   have,  

solving   them   using   big   matrices   can   be   computationally   heavy   as   the   matrix   operations   that   we   are  

doing   are   not   O( )   but   at   least   an   order   more   than   that(since     has   complexity   O( )).   So,   to   solve  
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both   of   these   issues,   we   can   divide   a   system   of   equations   into   subsystems   such   that   there   are   methods  

to   deal   with   subsystems   and   along   with   that,   we   have   an   added   advantage   of   expending   less  

computational   resources   for   solving   the   system   of   ODEs.  

 

Now,   we   will   use   the   concept   of   weakly   connected   components   to   divide   the   system   into   logical  

subsystems.   To   explain   this   technique,   let   us   consider   a   system   of   ODEs   defined   below:  

 

 

 

 

 

Here,   if   we   club   the   system   of   equations   and   try   to   solve   them   together,   we   won’t   be   able   to   solve  

them   as   we   have   only   some   of   the   general   linear   ODE   solvers(where   we   can’t   solve   all   the   non  

constant   coefficient   linear   ODEs)   and   this   system   mentioned   above   is   clearly   non-linear.   

 

So,   let   us   construct   a   graph   where   nodes   are   the   dependent   variables     and     and   there   is   a   directed  

edge   between   the   nodes   if   the   derivative   of   the   highest   order   of   a   dependent   variable   is   in   the   left  

hand   side,   and   there   is   a   term   of   another   dependent   variable   in   the   right   hand   side.   So,   here   there   is   an  

edge   from   the   dependent   variable   which   is   on   the   left   hand   side   to   the   dependent   variable   which   is  

found   in   the   right   hand   side.  

 

 

 

The   above   is   the   graph   that   is   constructed   based   on   the   rule   defined   in   the   above   paragraph.   Note   that  

there   is   no   edge   between   the   nodes.  

 

So,   for   a   directed   graph,   a   weakly   connected   component   is   defined   as:   weakly   connected   component     is  

a   subgraph   of   the   original   graph   where   all   vertices   are   connected   to   each   other   by   some   path,   ignoring  

the   direction   of   edges   [ 8 ].  

 

Now,   given   the   graph   generated,   it   is   clear   that   the   weakly   connected   components   are     and   .   This  

means,   we   have   found   our   two   subsystems,   namely   they   are   just   the   equations   where   in   the   left   hand  

side,   we   have   order   2   terms   for     and   .   This   means   we   will   solve   both   the   equations   separately   and  

independently.   This   will   give   us   the   values   for     and     in   terms   of   .  
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So,   the   final   solution   will   be:  

 

 

 

 

 

So,   we   are   dividing   the   system   of   equations   considering   the   assumption   that   the   system   is   in   the  

format   where   the   left   hand   side   has   the   highest   order   of   a   dependent   variable   and   it   is   in   this   format:  

,     and   so   on.  

 

Now,   let   us   look   at   another   example   to   see   how   dividing   the   system   of   equations   helps:  

 

 

 

 

 

 

 

 

 

Constructing   the   graph   based   on   the   rules   defined   above,   we   get:  

 

 

 

We   can   see   that   there   are   two   weakly   connected   components,   namely     and   .   Hence,   we   will  

solve   both   of   these   subsystems   separately   and   we   will   get   the   solutions   in   terms   of   .  

 

 

Strongly   connected   components  

Now,   we   have   come   up   with   a   procedure   of   dividing   a   system   of   ODEs   into   subsystems   by   defining   a  

graph   and   using   weakly   connected   components.   But   consider   the   system   of   ODEs   defined   below:  
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The   graph   for   this   ODE   will   be:  

  

 

Here,   we   can   see   that   the   weakly   connected   component   is   the   system   itself   but   it’s   trivial   to   notice   that  

we   can   first   solve   for     and   then   for     to   get   solutions   for   both.   

 

So,   we   will   use   strongly   connected   components   to   solve   both   of   these   equations   by   dividing   the  

weakly   connected   components   further.   

 

A   strongly   connected   component   is   a   subgraph   such   that   every   vertex   in   that   subgraph   is   reachable  

from   every   other   vertex   in   that   subgraph   [ 8 ].  

 

We   need   to   find   the   strongly   connected   components   in   reverse   topological   order.   Then   we   will   use   this  

order   to   solve   the   components.   But,   unlike   solving   the   weakly   connected   components   separately   and  

independently,   we   will   have   to   solve   the   strongly   connected   components   in   the   following   manner:  

 

Suppose   we   have   strongly   connected   components   named   as   ,     and     and   the   reverse   topological  

order   is:   .   Now,   these   components   ,     and     are   systems   of   ODEs   themselves.   So,   first   we   solve  

,   then   we   get   the   solutions   for   dependent   variables   in     and   substitute   the   values   in   the   system   .  

Then,   we   get   the   solutions   for   dependent   variables   in     and   substitute   the   values   of   dependent  

variables   found   by   solving   systems     and     in   the   equations   of   system   .   In   this   way,   we   can   solve  

many   strongly   connected   components.  

 

Now,   let   us   solve   the   system   of   ODEs   introduced   above:  

 

First   step   would   be   to   divide   the   system   of   ODEs   into   its   weakly   connected   components.     is   the  

weakly   connected   component.  

Second   step   would   be   to   divide   each   weakly   connected   component   into   its   strongly   connected  

components.   Since,   the   weakly   connected   component   for   the   example   is   ,   the   strongly   connected  

components   of   this   subsystem   in   the   reverse   topological   order   is:   ,   .  

Third   step   would   be   to   solve   the   first   element   in   the   strongly   connected   component.   This   gives     as:  
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Finally,   we   will   continue   the   chain   of   substituting   the   values   of   the   dependent   variables   when   solving  

the   strongly   connected   components.   

 

Now,   we   will   get   the   differential   equation   by   substituting   the   value   of   :  

 

 

 

 

 

Solving   this   equation   gives:   

 

 

 

 

Implementation  

Helper   Functions  

1. _match_ode:  

This   helper   function   is   an   important   component   of   the   overall   solver.   It   takes   the   equations   and   the  

order   of   each   dependent   variable   in   the   equations   and   determines   important   information   about   the  

system   of   ODEs   which   will   be   helpful   later   on   to   determine   which   type   of   system   it   is,   get   the  

important   parts   of   the   equation   so   that   the   solvers   just   need   to   access   the   information   required   to  

solve   the   system.  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   List   of   equations   that   make   up   the   system   of   ODEs   that   are   needed   to   be  

solved.  

● order  

1. Type:   Dict  

2. Explanation:   Dictionary   where   keys   are   the   dependent   variables   and   values   are   the  

maximum   order   of   that   dependent   variable   found   in   the   system   of   ODEs.  

● t  

1. Type:   Symbol  
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2. Explanation:   The   independent   variable   in   the   system   of   ODEs  

 

Returns:  

● match  

1. Type:   Dict  

2. Explanation:   Dictionary   where   keys   are   the   strings   representing   important   information   of  

the   system   of   ODEs   and   values   are   the   information   needed.   

 

  The   keys   and   the   nature   of   the   values   are   given   as   follows:   

a. eqs:   A   list.   Equations   of   the   system   of   ODEs.  

b. t:   A   symbol.   The   independent   variable   in   the   system   of   ODEs.  

c. funcs:   A   list.   List   of   dependent   variables.  

d. order:   A   dictionary.   Keys   are   the   dependent   variables   and   values   is   the  

maximum   order.  

e. is_linear:   A   boolean.   True   if   the   system   is   linear,   else   False.  

f. is_constant.   Boolean   or   None.   True   if   the   system   is   constant   coefficient,   False   if  

it   isn’t   and   None   the   system   is   not   linear   or   not   first   order.  

g. is_homogeneous:   Boolean   or   None.   True   if   the   system   is   homogeneous,   False   if  

it   isn’t   and   None   the   system   is   not   linear   or   not   first   order.  

h. is_first_order:   Boolean   or   None.   True   if   the   system   is   first   order,   False   if   it   isn’t  

and   None   the   system   is   not   linear.  

i. f(t):   Matrix   or   None.   Matrix   f(t)   from   the   equation     if   the  

system   is   linear   and   first   order.   None   if   it   isn’t.  

j. func_coeff:   Matrix   or   None.   Matrix   A   from   the   equation     if   the  

system   is   linear   and   first   order.   None   if   it   isn’t.  

 

2. _commutative_anti_derivative:  

This   helper   function   checks   if   the   coefficient   matrix     and   its   antiderivative     commute   or   not.  

 

Parameters:  

● A  

1. Type:   Matrix  

2. Explanation:   This   is   the   coefficient   matrix   for   which   the   check   has   to   be   made.  

● t  

3. Type:   Symbol  

4. Explanation:   The   independent   variable   in   the   system   of   ODEs  

Returns:  

● is_commutative  

3. Type:   Boolean  
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4. Explanation:   True   if   A   and   B   commute,   else   False.  

 

3. _independent_rhs:  

This   helper   function   checks   if   the   equation   passed   is   independent   of   the   term   passed   in   the   second  

argument.   But,   this   function   is   such   that   it   will   ignore   terms   like     but   won’t   ignore   terms   like   

.   

 

Parameters:  

● eq  

1. Type:   Equation  

2. Explanation:   The   equation   that   has   to   be   tested.  

● t  

1. Type:   Symbol  

2. Explanation:   The   symbol   required   for   the   test.  

 

Returns:  

● is_independent  

1. Type:   Boolean  

2. Explanation:   True   if   the   check   passes,   False   otherwise.  

 

4. _nth_order_to_first_order:  

This   helper   function   reduces   a   linear   nth   order   system   of   ODEs   to   a   first   order   system   of   ODEs   by  

introducing   more   dependent   variables.   If   the   system   is   already   in   first   order,   then   it   doesn’t   change   the  

equations.  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   The   equation   that   has   to   be   reduced.  

● order  

1. Type:   Dictionary  

2. Explanation:   The   original   dependent   variables   and   their   maximum   order.  

 

Returns:  

● new_eqs  

1. Type:   List  

2. Explanation:   The   reduced   first   order   linear   system   of   ODEs.  

● new_funcs  

1. Type:   List  
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2. Explanation:   New   list   of   dependent   variables.  

 

5. _component_division:  

This   helper   function   takes   the   system   of   ODEs   (required   to   be   in   canonical   form)   and   returns   a   2D   list  

where   each   element   in   this   list   is   a   sub-system.   The   original   system   is   first   divided   as   weakly   connected  

components   and   each   weakly   connected   component   is   divided   into   a   list   of   strongly   connected  

components.   Strongly   connected   components   are   sorted   in   reverse   topological   order.  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   The   system   that   has   to   be   divided  

● funcs  

1. Type:   List  

2. Explanation:   The   list   of   dependent   variables   in   the   system.  

 

Returns:  

● components  

1. Type:   2D   List   of   tuples  

2. Explanation:   2D   list   of   sub   systems   formed   after   dividing   the   original   system.   Each   element  

in   this   2D   list   is   a   tuple   of   2   elements   where   the   first   element   is   the   list   of   the   equations   to  

be   solved   and   the   second   element   is   the   list   of   dependent   variables   that   are   to   be   solved   in  

the   corresponding   equations.  

 

6. _get_func_order:  

This   helper   function   takes   the   system   of   ODEs   and   for   each   dependent   variable   finds   the   maximum  

order   of   that   dependent   variable   found   in   the   system   of   ODEs.  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   The   system   of   ODEs.  

● funcs  

1. Type:   List  

2. Explanation:   The   list   of   dependent   variables   in   the   system.  

● t  

1. Type:   Symbol  

2. Explanation:   The   independent   variable   in   the   system   of   ODEs  

 



Returns:  

● order  

1. Type:   Dictionary  

2. Explanation:   A   dictionary   where   keys   are   the   dependent   variables   and   value   is   the  

maximum   order   of   that   dependent   variable   found   in   the   system.  

 

7. _preprocess:  

This   helper   function   takes   the   system   of   ODEs   and   preprocesses   it   to   bring   it   to   a   particular   format   so  

that   the   solvers   and   the    _match_ode    function   can   work   on   it   properly.  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   The   system   of   ODEs.  

 

Returns:  

● eqs  

3. Type:   List  

4. Explanation:   Preprocessed   equations.  

 

8. _get_coeff_matrix:  

This   function   works   only   for   linear   systems   of   ODEs   of   from   .   It   returns   the  

coefficient   matrix   and   the   homogeneous   term.   This   function   expects   the   equations   in   the   form  

mentioned   above,   that   is,   the   canonical   form.  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   The   system   of   ODEs.  

● funcs  

1. Type:   List  

2. Explanation:   The   list   of   dependent   variables   in   the   system.  

 

Returns:  

● A_t  

1. Type:   Matrix  

2. Explanation:   Matrix   of   coefficients   from   the   linear   system   of   ODEs.   May   or   may   not   be  

constant.  

● f_t  
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1. Type:   Matrix  

2. Explanation:   Vector   of   non   homogeneous   terms   from   the   linear   system   of   ODEs.  

 

9. _canonical_form:  

This   function   takes   the   system   of   ODEs   along   with   the   highest   order   of   every   dependent   variable   and  

solves   the   system   for   dependent   variables   in   their   highest   order   to   reduce   the   system   of   ODEs   to   its  

canonical   form.  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   The   system   of   ODEs.  

● order  

1. Type:   Dictionary  

2. Explanation:   The   dependent   variables   and   their   maximum   order.  

 

Returns:  

● eqs  

1. Type:   List  

2. Explanation:   ODEs   in   their   canonical   form.  

 

Solvers  

 

1. n   equations   linear   first   order   constant   coefficient   homogeneous   ODE :  

This   solver   solves   the   system   of   n   equations   where   the   system   is   linear,   first   order,   constant   coefficient  

and   homogeneous.   This   solver   is   invoked   by   the   function    _linear_ode_solver    when   the   match   dict   of  

the   system   indicates   that   this   system   is   linear,   constant   coefficient,   homogeneous   and   that   every  

dependent   variable   is   in   its   first   order.   Rough   layout   of   the   function   is   given   as   follows:-  

 

 

def     _neq_linear_first_order_const_coeff_homogeneous (match):  

 

          #   First,   we   get   the   coefficient   matrix  

          #   from   the   system   X'   =   A   *   X   and   the   

          #   independent   variable.  

         A   =   match[ "func_coeff" ]  

         t   =   match[ "t" ]  

 

          #   Next   thing,   we   get   the   last   constant  

          #   index   used   to   define   our   own   constants  



         const_idx   =   match[ "const_idx" ]  

         C   =   symbols( "c{}:{}" .format(const_idx   +    1 ,   const_idx   +    1    +   n))  

         sol   =   (A*t).exp()   *   C  

         const_idx   +=   n  

  

          #   Finally   we   return   the   solution   of   the   system  

          return    sol,   const_idx  

 

Parameters:  

● match  

1. Type:   Dict  

2. Explanation:   match   is   a   dictionary   that   contains   the   system   of   ODEs   that   need   to   be   solved  

along   with   various   other   information   about   the   system.   The   information   that   is   required   to  

solve   this   particular   type   of   system   is   stored   as   values   with   key   names:   func_coeff  

(coefficient   matrix),   t   (independent   variable)   and   const_idx   (last   number   of   the   constant  

used   in   solving   previous   ODEs).  

Returns:  

● sol  

1. Type:   Matrix  

2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   It   is   in   Matrix   form   because   the  

solution   is   obtained   through   Matrix   operations.  

● const_idx  

1. Type:   int  

2. Explanation:   This   is   the   last   numbered   constant   that   was   used   as   the   integrating   constant  

due   to   solving   the   system.  

 

2. n   equations   linear   first   order   constant   coefficient   non-homogeneous   ODE :  

This   solver   solves   the   system   of   n   equations   where   the   system   is   linear,   first   order,   constant   coefficient  

and   non-homogeneous.   This   solver   is   invoked   by   the   function    _linear_ode_sol    when   the   match   dict   of  

the   system   indicates   that   this   system   is   linear,   constant   coefficient,   non-homogeneous   and   that   every  

dependent   variable   has   a   maximum   order   of   1.   This   solver   is   very   similar   to   the   previous   solver   and  

hence   the   descriptions   and   pseudo   code   are   also   very   similar.   Rough   layout   of   the   function   is   given   as  

follows:-  

 

 

 

def     _neq_linear_1st_order_const_coeff_non_homogeneous (match):  

 

          #   First,   we   get   the   coefficient   matrix  

          #   from   the   system   X'   =   A   *   X,   the   

          #   independent   variable   and   the   term  



         #   f(t)  

         A   =   match[ "func_coeff" ]  

         t   =   match[ "t" ]  

         f(t)   =   match[“non_homogeneous_term”]  

 

          #   Next   thing,   we   get   the   last   constant  

          #   index   used   to   define   our   own   constants  

         const_idx   =   match[ "const_idx" ]  

         C   =   symbols( "c{}:{}" .format(const_idx   +   1,   const_idx   +   n   +   1))  

  

         exp_A   =   (A*t).exp()  

         sol   =   exp_A   *   (integrate((-A*t).exp()   *   f(t),   t)   +   C)  

         const_idx   +=   n  

  

         #   Finally   we   return   the   solution   of   the   system  

          return    sol,   const_idx  

 

Parameters:  

● match  

1. Type:   Dict  

2. Explanation:   match   is   a   dictionary   that   contains   the   system   of   ODEs   that   need   to   be  

solved   along   with   various   other   information   about   the   system.   The   information   that   is  

required   to   solve   this   particular   type   of   system   is   stored   as   values   with   key   names:  

func_coeff   (coefficient   matrix),   t   (independent   variable),   non_homogeneous_term  

(the   non-homogeneous   term     in   the   system   of   ODEs)   and   const_idx   (last  

number   of   the   constant   used   in   solving   previous   ODEs).  

Returns:  

● sol  

1. Type:   Matrix  

2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   It   is   in   Matrix   form   because  

the   solution   is   obtained   through   Matrix   operations.  

● const_idx  

1. Type:   int  

2. Explanation:   This   is   the   last   numbered   constant   that   was   used   as   the   integrating  

constant   due   to   solving   the   system.  

 

3. n   equations   linear   first   order   non-constant   coefficient   homogeneous   ODE :  

This   solver   solves   the   system   of   n   equations   where   the   system   is   linear,   first   order,   non-constant  

coefficient   and   homogeneous.   This   solver   is   invoked   by   the   function    _linear_ode_solver    when   the  

match   dict   of   the   system   indicates   that   this   system   is   linear,   non-constant   coefficient,   homogeneous  

and   that   every   dependent   variable   is   in   its   first   order.   But   this   solver   tests   the   coefficient   matrix   and  
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solves   it   after   it   satisfies   a   particular   condition,   that   is   the   coefficient   matrix   and   its   antiderivative  

commute.   Rough   layout   of   the   function   is   given   as   follows:-  

 

 

def     _neq_linear_1st_order_non_const_coeff_homogeneous (match):  

 

          #   First,   we   get   the   coefficient   matrix  

          #   from   the   system   X'   =   A(t)   *   X   and   the   

          #   independent   variable  

         A   =   match[ "func_coeff" ]  

         t   =   match[ "t" ]  

  

          #   Here   we   check   the   coefficient   matrix  

          #   using   the   helper   function.   If   the   check  

          #   is   successful,   then   we   solve   the   system  

          #   of   ODEs   using   the   solution   defined   below  

         #   this   check.  

         B,   is_commuting   =   _commutative_anti_derivative(A,   t)  

          if    is_commuting    is     not     True :   

             raise    NotImplementedError( "There   is   no   available   method   to   solve  

this   system   of   ODEs   yet." )  

 

          #   Next   thing,   we   get   the   last   constant  

          #   index   used   to   define   our   own   constants  

         const_idx   =   match[ "const_idx" ]  

         C   =   symbols( "c{}:{}" .format(const_idx   +    1 ,   const_idx   +   n   +    1 ))  

  

         exp_B   =   B.exp()  

         sol   =   exp_B   *   C  

         const_idx   +=   n  

  

          #   Finally   we   return   the   solution   of   the   system  

          return    sol,   const_idx  

 

 

Parameters:  

● match  

1. Type:   Dict  

2. Explanation:   match   is   a   dictionary   that   contains   the   system   of   ODEs   that   need   to   be  

solved   along   with   various   other   information   about   the   system.   The   information   that   is  

required   to   solve   this   particular   type   of   system   is   stored   as   values   with   key   names:  

func_coeff   (coefficient   matrix),   t   (independent   variable),   const_idx   (last   number   of  

the   constant   used   in   solving   previous   ODEs).  

Returns:  

● sol  

1. Type:   Matrix  



2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   It   is   in   Matrix   form   because  

the   solution   is   obtained   through   Matrix   operations.  

● const_idx  

1. Type:   int  

2. Explanation:   This   is   the   last   numbered   constant   that   was   used   as   the   integrating  

constant   due   to   solving   the   system.  

 

4. n   equations   linear   first   order   non   constant   coefficient   non-homogeneous   ODE :  

This   solver   solves   the   system   of   n   equations   where   the   system   is   linear,   first   order,   non   constant  

coefficient   and   non-homogeneous.   This   solver   is   invoked   by   the   function    _linear_ode_sol .   This   solver  

is   very   similar   to   the   previous   solver   and   has   a   similar   check   for   solving   the   system   of   ODEs.   Rough  

layout   of   the   function   is   given   as   follows:-  

 

 

 

def     _neq_linear_1st_order_non_const_coeff_non_homogeneous (match):  

 

          #   First,   we   get   the   coefficient   matrix  

          #   from   the   system   X'   =   A   *   X,   the   

          #   independent   variable   and   the   term  

          #   f(t)  

         A   =   match[ "func_coeff" ]  

         t   =   match[ "t" ]  

         f(t)   =   match[ "non_homogeneous_term" ]  

 

          #   Here   we   check   the   coefficient   matrix  

          #   using   the   helper   function.   If   the   check  

          #   is   successful,   then   we   solve   the   system  

          #   of   ODEs   using   the   solution.  

         B,   is_commuting   =   _commutative_anti_derivative(A,   t)  

          if    is_commuting    is     not     True :   

             raise    NotImplementedError( "There   is   no   available   method   to   solve  

this   system   of   ODEs   yet." )  

 

          #   Next   thing,   we   get   the   last   constant  

          #   index   used   to   define   our   own   constants  

         const_idx   =   match[ "const_idx" ]  

         C   =   symbols( "c{}:{}" .format(const_idx   +    1 ,   const_idx   +   n   +    1 ))  

  

         exp_B   =   B.exp()  

         sol   =   exp_B   *   (integrate((-B).exp()   *   f(t),   t)   +   C)  

         const_idx   +=   n   

 

          #   Finally   we   return   the   solution   of   the   system  

          return    sol,   const_idx  

 



 

Parameters:  

● match  

1. Type:   Dict  

2. Explanation:   match   is   a   dictionary   that   contains   the   system   of   ODEs   that   need   to   be  

solved   along   with   various   other   information   about   the   system.   The   information   that   is  

required   to   solve   this   particular   type   of   system   is   stored   as   values   with   key   names:  

func_coeff   (coefficient   matrix),   t   (independent   variable),   non_homogeneous_term  

(the   non-homogeneous   term     in   the   system   of   ODEs)   and   const_idx   (last  

number   of   the   constant   used   in   solving   previous   ODEs).  

Returns:  

● sol  

1. Type:   Matrix  

2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   It   is   in   Matrix   form   because  

the   solution   is   obtained   through   Matrix   operations.  

● const_idx  

1. Type:   int  

2. Explanation:   This   is   the   last   numbered   constant   that   was   used   as   the   integrating  

constant   due   to   solving   the   system.  

 

5. 2   equations   nonlinear   first   order   ODE :  

This   solver   solves   the   system   of   2   first   order   ODEs   where   it   is   possible   to   eliminate   the   independent  

variable   by   simple   division   to   get   a   direct   relation   between   the   two   dependent   variables.   If   the   relation  

is   possible,   then   this   solver   first   solves   the   first   dependent   variable   in   terms   of   the   second   dependent  

variable,   then   uses   the   relation   and   solves   for   one   dependent   variable   in   terms   of   the   independent  

variable   by   substituting   the   relation   in   one   of   the   ODEs.   Finally,   after   finding   one   of   the   dependent  

variables   in   terms   of   the   independent   variable,   it   is   trivial   to   get   the   value   of   the   second   dependent  

variable   using   the   relation   established   earlier.    Note   that   this   solver   can   be   extended   to   handle   3   or  

more   equations   but   as   of   now,   only   the   solution   for   2   non-linear   equations   is   discussed.   Rough   layout  

of   the   function   is   given   as   follows:-  

 

 

 

def     _2eq_non_linear_first_order (match):  

 

          #   First,   we   get   the   equations,  

          #   the   independent   variable   and   

          #   the   two   dependent   variables  

         eqs   =   match[ "eqs" ]  

         t   =   match[ "t" ]  

https://www.codecogs.com/eqnedit.php?latex=f(t)#0


         x,   y   =   [eq.lhs.args[ 0 ]    for    eq    in    eqs]  

         const_idx   =   match[ "const_idx" ]  

         constants   =   symbols( "c{}:{}" .format(const_idx   +    1 ,   const_idx   +    3 ))  

 

          #   Here   we   check   if   it   is   possible  

          #   to   solve   the   system   of   ODEs.  

         is_independent   =   _independent_rhs(eqs,   t)  

          if     not    is_independent:  

             raise    NotImplementedError( "There   is   no   available   method   to   solve  

this   system   of   ODEs   yet." )  

 

          #   In   this   section,   we   will   divide   the   

          #   two   equations,   get   a   differential   equation  

          #   independent   of   the   independent   variable   which  

          #   gives   us   the   relation   between   two   dependent   variables  

          #   that   we   use   to   get   the   values   of   both   the   variables  

 

          #   Note:   A   rough   code   is   not   yet   shown   because   it  

          #   still   has   to   be   implemented   properly.  

 

          #   The   answer   is   stored   as   a   Matrix.  

         z   =   Dummy()  

         relation_eq   =   Eq(type(y)(z).diff(z),   (eqs[ 1 ].rhs/eqs[ 0 ].rhs).subs({y:  

type(y)(z),   x:z}))  

         relation_sol   =   dsolve(relation_eq,   type(y)(z),   ics={type(y)( 0 ):  

constants[ 0 ]})  

         relation_sol   =   relation_sol.subs({type(y)(z):   y,   z:   x})  

         new_first_eq   =   eqs[ 0 ].subs(relation_sol.lhs,   relation_sol.rhs)  

         sol_first_eq   =   dsolve(new_first_eq,   x,   ics={type(x)( 0 ):  

constants[ 1 ]})  

  

         sol   =   Matrix([x,   y])  

         const_idx   +=    2  

 

          #   Finally   we   return   the   solution   of   the   system  

          return    sol,   const_idx  

 

 

Parameters:  

● match  

1. Type:   Dict  

2. Explanation:   match   is   a   dictionary   that   contains   the   system   of   ODEs   that   need   to   be  

solved   along   with   various   other   information   about   the   system.   The   information   that   is  

required   to   solve   this   particular   type   of   system   is   stored   as   values   with   key   names:   eqs  

(ODEs),   t   (independent   variable)   and   const_idx   (last   number   of   the   constant   used   in  

solving   previous   ODEs).  

Returns:  



● sol  

1. Type:   Matrix  

2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   

● const_idx  

1. Type:   int  

2. Explanation:   This   is   the   last   numbered   constant   that   was   used   as   the   integrating  

constant   due   to   solving   the   system.  

 

Main   functions  

Now,   we   will   look   at   how   all   of   these   pieces   fit   together   and   solve   a   given   system   of   ODEs.   First,   we   will  

look   at   two   high   level   solvers,   namely    _linear_ode_solver      and    _non_linear_ode_solver .   After,  

explaining   these   two   solvers,   we   will   finally   look   at   the   main   solver   functions    ode_solver     and   its   helper  

function    _ode_component_solver .  

 

1. _linear_ode_solver:  

This   function   takes   the   match   dictionary,   extracts   information   and   assigns   a   particular   solver   to   solve  

the   ODE   if   it   is   possible   with   the   current   solvers.   This   solver   doesn’t   work   for   nonlinear   systems   of  

ODEs.   This   solver   assumes   that   all   the   necessary   information   like   the   coefficient   matrix   or   the  

non-homogeneous   matrix   is   available   in   the   match   dictionary.   This   solver   also   reduces   a   nth   order  

system   to   a   first   order   system.   This   solver   returns   None   if   the   system   can’t   be   solved   using   current  

techniques.   Rough   layout   of   the   function   is   given   as   follows:-  

 

 

def     _linear_ode_solver (match):  

 

         eqs   =   match[ "eqs" ]  

         funcs   =   match[ "funcs" ]  

         order   =   match[ "order" ]  

         t   =   match[ "t" ]  

         const_idx   =   match[ "const_idx" ]  

         is_first_order   =   match[ "is_first_order" ]   

 

          #   First,   we   reduce   the   higher   order   

          #   system   of   ODEs   to   first   order   system  

          if    is_first_order    is     False :  

             new_eqs,   new_funcs   =   _nth_order_to_first_order(eqs,   order)  

             A,   f   =   _get_coeff_matrix(new_eqs,   new_funcs)  

             match[ "func_coeff" ]   =   A  

             match[ "non_homogeneous_term" ]   =   f   

 



          #   Now,   we   will   match   the   system   of   ODEs  

          #   with   the   corresponding   solver  

         solver   =    None  

          if    match[ "is_constant" ]:  

              if    match[ "is_homogeneous" ]:  

                solver   =   _neq_linear_1st_order_const_coeff_homogeneous  

              else :  

                solver   =   _neq_linear_1st_order_const_coeff_non_homogeneous  

          else :  

              if    match[ "is_homogeneous" ]:  

                solver   =   _neq_linear_1st_order_non_const_coeff_homogeneous  

              else :  

                solver   =   _neq_linear_1st_order_non_const_coeff_non_homogeneous  

  

          try :   

             sol,   const_idx   =   solver(match)  

          except    NotImplementedError:  

              return     None  

 

         sol   =   {func:   value    for    func,   value    in    zip(new_funcs,   sol)}  

         sol   =   {func:   sol[func]    for    func    in    funcs}  

 

          #   Finally   we   return   the   solution   of   the   system  

          return    sol,   const_idx  

 

 

Parameters:  

● match  

1. Type:   Dict  

2. Explanation:   match   is   a   dictionary   that   contains   the   system   of   ODEs   that   need   to   be  

solved   along   with   various   other   information   about   the   system.   

Returns:  

● sol  

1. Type:   Dictionary  

2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   Here,   keys   are   the   dependent  

variables   and   values   are   the   solutions.  

● const_idx  

1. Type:   int  

2. Explanation:   This   is   the   last   numbered   constant   that   was   used   as   the   integrating  

constant   due   to   solving   the   system.  

 

2. _non_linear_ode_solver:  

This   function   is   similar   to    _linear_ode_solver     but   is   defined   separately   because   this   function   is   still  

incomplete   and   it   is   easier   to   deal   with   linear   and   nonlinear   systems   separately.   Similar   to   the   above  



function,   this   function   returns   None   if   there   is   no   technique   to   solve   the   current   system   of   ODEs.  

Rough   layout   of   the   function   is   given   as   follows:-  

 

 

def     _non_linear_ode_solver (match):  

 

         eqs   =   match[ "eqs" ]  

         funcs   =   match[ "funcs" ]  

         is_first_order   =   match[ "is_first_order" ]  

  

         solver   =    None  

          if    len(eqs)   ==    2     and    is_first_order:  

             solver   =   _2eq_non_linear_first_order  

 

          #   Note   that   more   nonlinear   solvers   can   be   added  

          #   and   then   we   just   have   to   add   appropriate   code   

          #   in   this   function   to   solve   the   system.  

  

          try :  

             sol,   const_idx   =   solver(match)  

          except    (TypeError,   NotImplementedError):  

              return     None  

  

         sol   =   {func:   value    for    func,   value    in    zip(funcs,   sol)}  

 

          return    sol,   const_idx  

 

Parameters:  

● match  

1. Type:   Dict  

2. Explanation:   match   is   a   dictionary   that   contains   the   system   of   ODEs   that   need   to   be  

solved   along   with   various   other   information   about   the   system.   

Returns:  

● sol  

1. Type:   Dictionary  

2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   Here,   keys   are   the   dependent  

variables   and   values   are   the   solutions.  

● const_idx  

1. Type:   int  

2. Explanation:   This   is   the   last   numbered   constant   that   was   used   as   the   integrating  

constant   due   to   solving   the   system.  

 

 

3. _ode_component_solver:  



 

This   function   uses   the   two   solvers   defined   above   to   solve   a   particular   subsystem   of   ODEs.   This   function  

is   invoked   by    ode_solver    and   rough   layout   of   the   function   is   given   as   follows:-  

 

 

def     _ode_component_solver (eqs,   funcs,   t,   const_idx= 0 ):  

         order   =   _get_func_order(eqs,   funcs,   t)  

         match   =   _match_ode(eqs,   order,   t)  

         match[ "const_idx" ]   =   const_idx  

  

          if    match[ "is_linear" ]    is     True :  

              return    _linear_ode_solver(match)  

 

          return    _non_linear_ode_solver(match)  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   The   ODEs   that   make   the   subsystem   to   be   solved  

● funcs  

1. Type:   List  

2. Explanation:   The   list   of   dependent   variables   that   are   in   the   subsystem   of   ODEs.  

● t  

1. Type:   Symbol  

2. Explanation:   The   independent   variable   in   the   system   of   ODEs  

 

Returns:  

● sol  

1. Type:   Dictionary  

2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   Here,   keys   are   the   dependent  

variables   and   values   are   the   solutions.  

● const_idx  

1. Type:   int  

2. Explanation:   This   is   the   last   numbered   constant   that   was   used   as   the   integrating  

constant   due   to   solving   the   system.  

  Or   

● None  

 

 

4. ode_solver:  

 



This   is   the   main   function   that   is   called   to   solve   the   system   of   ODEs.   Two   of   the   most   important   things  

that   this   function   does   is   handles   the   strongly   and   the   weakly   connected   components,   and   handles   the  

numbering   of   the   integration   constants.   For   now,   this   function   returns   the   solutions   for   the   dependent  

variables   that   it   can   solve   for.   This   function   also   keeps   track   of   and   returns   the   systems   that   aren’t  

solved   by   this   function.   Rough   layout   of   the   function   is   given   as   follows:-  

 

 

def     ode_solver (eqs,   funcs,   t):  

          #   Firstly,   we   will   do   some   preprocessing   of   the   

          #   equations   as   it   is   required   for   dividing   the   

          #   system   into   subsystems   and   later   for   the   solvers.  

         eqs   =   _preprocess(eqs)  

         order   =   _get_func_order(eqs)  

         eqs   =   _canonical_form(eqs,   order)  

  

          #   Initialising   the   solution   dictionary,   the   

          #   constant   index   and   dividing   the   system   into  

          #   subsystems.  

         sol   =   {}  

         const_idx   =    0  

         components   =   _component_division(eqs,   funcs)  

  

          #   This   list   will   be   used   to   keep   track   of   the   systems   

          #   not   solved   by   this   function  

         not_solved_systems   =   []  

 

          for    wcc    in    components:  

 

             #   Keeping   track   of   the   solutions   obtained   for   each   loop.  

            loop_sol   =   {}  

 

             for    j,   scc    in    enumerate(wcc):  

                eqs,   funcs   =   scc  

                eqs   =   eqs.subs(loop_sol)  

                component_solution   =\  

                       _ode_component_solver(eqs,   funcs,   t,   const_idx)  

 

                 #   If   no   solution   is   found   for   the   scc,   then   

                 #   we   break   out   of   this   loop   as   the   other   sccs   for  

                 #   this   wcc   won't   be   able   solvable   since   they   require  

                 #   the   solutions   of   this   scc  

                 if    component_solution    is     None :  

  

                     #   Including   all   the   sccs   after   this   scc   

                     #   in   the   not_solved_systems   list   since   the   

                     #   other   sccs   depend   on   the   solutions   of   this   

                     #   scc  

                    not_solved_systems   +=   wcc[j:]  



                     break  

 

                temp_sol,   const_idx   =   component_solution  

 

                 #   Updating   the   loop   sol   with   the   new   solutions.  

                loop_sol.update(temp_sol)  

 

             #   Updating   the   original   solution   dictionary  

            sol.update(loop_sol)  

 

          return    sol,   not_solved_systems  

 

Parameters:  

● eqs  

1. Type:   List  

2. Explanation:   The   ODEs   that   make   the   subsystem   to   be   solved  

● funcs  

1. Type:   List  

2. Explanation:   The   list   of   dependent   variables   that   are   in   the   subsystem   of   ODEs.  

● t  

1. Type:   Symbol  

2. Explanation:   The   independent   variable   in   the   system   of   ODEs  

 

Returns:  

● sol  

1. Type:   Dictionary  

2. Explanation:   This   is   the   solution   of   the   system   of   ODEs.   Here,   keys   are   the   dependent  

variables   and   values   are   the   solutions.  

● not_solved_systems  

1. Type:   List  

2. Explanation:   These   are   the   subsystems   of   ODEs   that   weren’t   solved   using   the   above   solver.  

Each   element   is   a   tuple   of   2   elements   where   the   first   element   is   the   equations   and   the  

second   element   is   the   list   of   dependent   variables   found   in   those   equations.  

 

 

Solvers   to   be   replaced  

There   are   many   solvers   that   can   be   replaced   after   the   addition   of   the   general   solvers.   Here,   a   list   is  

made   as   to   which   solver   should   be   replaced   after   some   of   the   general   solvers   are   added.   The   title   is   the  

general   solver   introduced   and   the   list   given   below   is   that   of   the   solvers   that   are   currently   present   in   the  

module   which   can   be   removed.   The   information   about   these   solvers   is   given   here    [ 7 ].  

 

https://github.com/sympy/sympy/wiki/ODE-Systems-roadmap


1. n   equations   linear   first   order   constant   coefficient   homogeneous   ODE :  

● Linear,   2   equations,   Order   1,   Type   1   [ 9 ]  

● Linear,   3   equations,   Order   1,   Type   1   [ 10 ]  

● Linear,   3   equations,   Order   1,   Type   2   [ 11 ]  

● Linear,   3   equations,   Order   1,   Type   3   [ 12 ]  

● Linear,   n   equations,   Order   1,   Type   1   [ 13 ]  

 

2. n   equations   linear   first   order   constant   coefficient   non-homogeneous   ODE :  

● Linear,   2   equations,   Order   1,   Type   2   [ 14 ]  

 

3. Higher   order   to   first   order   ODE:  

● Linear,   2   equations,   Order   2,   Type   1   [ 15 ]  

● Linear,   2   equations,   Order   2,   Type   2   [ 16 ]  

● Linear,   2   equations,   Order   2,   Type   3   [ 17 ]  

● Linear,   2   equations,   Order   2,   Type   4   [ 18 ]  

 

4. n   equations   linear   first   order   non-constant   coefficient   homogeneous   ODE :  

● Linear,   2   equations,   Order   1,   Type   3   [ 19 ]  

● Linear,   2   equations,   Order   1,   Type   4   [ 20 ]  

● Linear,   2   equations,   Order   1,   Type   5   [ 21 ]  

● Linear,   2   equations,   Order   2,   Type   5   [ 22 ]  

● Linear,   2   equations,   Order   2,   Type   6   [ 23 ]  

● Linear,   2   equations,   Order   2,   Type   7   [ 24 ]  

● Linear,   2   equations,   Order   2,   Type   8   [ 25 ]  

● Linear,   2   equations,   Order   2,   Type   9   [ 26 ]  

● Linear,   2   equations,   Order   2,   Type   10   [ 27 ]  

● Linear,   3   equations,   Order   1,   Type   4   [ 28 ]  

 

5. n   equations   linear   first   order   non   constant   coefficient   non-homogeneous   ODE :  

As   of   now,   SymPy   can’t   solve   any   linear   first   order   non   constant   coefficient   non-homogeneous   system  

of   ODEs.   

 

6. 3   equations   nonlinear   first   order   ODE :  

In   this   proposal,   only   2   equations   nonlinear   solver   is   discussed   but   the   method   discussed   can   be  

extended   and   it   is   included   in   the   plans.  

● Nonlinear,   2   equations,   Order   1,   Type   1   [ 29 ]  

● Nonlinear,   2   equations,   Order   1,   Type   2   [ 30 ]  

● Nonlinear,   2   equations,   Order   1,   Type   3   [ 31 ]  

● Nonlinear,   2   equations,   Order   1,   Type   4   [ 32 ]  

● Nonlinear,   3   equations,   Order   1,   Type   1   [ 33 ]  

https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-1-type-1
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-3-equations-order-1-type-1
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-3-equations-order-1-type-2
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-3-equations-order-1-type-3
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-n-equations-order-1-type-1
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-1-type-2
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-1
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-2
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-3
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-4
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-1-type-3
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-1-type-4
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-1-type-5
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-5
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-6
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-7
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-8
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-9
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-2-equations-order-2-type-10
https://docs.sympy.org/dev/modules/solvers/ode.html#linear-3-equations-order-1-type-4
https://docs.sympy.org/dev/modules/solvers/ode.html#nonlinear-2-equations-order-1-type-1
https://docs.sympy.org/dev/modules/solvers/ode.html#nonlinear-2-equations-order-1-type-2
https://docs.sympy.org/dev/modules/solvers/ode.html#nonlinear-2-equations-order-1-type-3
https://docs.sympy.org/dev/modules/solvers/ode.html#nonlinear-2-equations-order-1-type-4
https://docs.sympy.org/dev/modules/solvers/ode.html#nonlinear-3-equations-order-1-type-1


● Nonlinear,   3   equations,   Order   1,   Type   2   [ 34 ]  

 

7. Connected   components:  

● Nonlinear,   2   equations,   Order   1,   Type   5   [ 35 ]  

 

A   total   of   27   solvers   can   be   replaced   by   adding   just   5   new   solvers   and   one   new   technique   of   solving  

systems   of   ODEs.    

https://docs.sympy.org/dev/modules/solvers/ode.html#nonlinear-3equations-order-1-type-2
https://docs.sympy.org/dev/modules/solvers/ode.html#nonlinear-2-equations-order-1-type-5


 

Proposed   Timeline  

The   timeline   proposed   below   indicates   exact   time   intervals   required   to   complete   each   component   of  

the   project.  

 

 

Pre-GSoC   Period   (Present   -   27   April)  
During   this   period,   I   will   keep   working   on   my   currently   open   PRs   especially   the   ones   where   a   new  

feature   is   added   to   the   SymPy   module.   Along   with   that,   this   period   will   be   used   for   working   on   PR  

#18720    which   is   the   starting   point   for   this   project.   The   first   solver   can   be   added   during   this   period   and  

hence   lots   of   work   can   be   done   ahead   of   time,   but   when   it   comes   to   this   project,   the   top   priority   for  

this   period   would   be   efficient   design   of   the   main   function    ode_solver.  

 

 

Community   Bonding   Period   (4   May   -   1   June)  
Since   I   already   have   been   contributing   towards   SymPy   for   a   while   now,   I   would   like   to   focus   this   time  

on   the   initial   phases   of   the   project   which   include   adding   the   implementation   of   the   structure   of   the  

main   function    ode_solver.    This   period   will   be   utilised   for   the   following   tasks:  

1. Finalisation   of   the   design   of    ode_solver    if   not   done   already.   

2. The   main   functions   like    ode_solver    will   be   defined   along   with   all   the   necessary   helper   functions  

in   a   new   PR.   This   is   a   high   priority   task.  

3. Completion   of   the   implementation   of   solver   introduced   in   PR    #18720 .  

4. Checking   all   the   test   cases   of   the   old   solvers   that   are   in   principle   replaced   by   the   new   solver.  

5. Fixes   of   the   implementation   if   the   solver   fails   any   old   test   cases.  

6. Adding   test   cases,   removing   unwanted   solvers   and   updating   the   documentation.  

 

 

Phase   I   (1   June   -   3   July)  
This   phase   will   be   the   longest   one   with   respect   to   the   number   of   days.  

 

1.   In   the   first   week,   a   new   PR   will   be   created   for   adding   the   second   solver,   that   is   the   technique   to   solve  

linear   first   order   constant   coefficient   non-homogeneous   systems(n   equations).   Along   with   that,   the  

reviews   given   by   the   mentor(s)   and   the   community   will   be   taken   into   account   to   update   the   old   solver.  

 

https://github.com/sympy/sympy/pull/18720
https://github.com/sympy/sympy/pull/18720


2.   In   the   second   week,   a   new   PR   will   be   created   for   adding   the   function   that   reduces   linear   higher   order  

ODEs   to   linear   first   order   ODEs.   This   function   would   then   be   thoroughly   tested   and   updated   based   on  

the   errors   and   suggestions.  

 

3.   In   the   third   week,   a   new   PR   will   be   created   for   adding   a   special   case   solver   when   linear   first   order  

non-constant   ODE   has   a   commuting   coefficient   matrix,   homogeneous   case.   Along   with   that,   updating  

the   old   PRs   according   to   mentor(s),   community   suggestions   and   reviews   will   be   done.   The   important  

helper   functions   for   this   update   also   need   to   be   taken   care   of.  

 

4.   In   the   fourth   week   and   the   remaining   time   left,   test   cases   will   be   updated,   the   PRs   added   till   now   will  

be   updated   based   on   the   reviews,   work   for   detailed   documentation   will   take   place,   unwanted   solvers  

will   be   replaced   and   issues   that   are   fixed   by   adding   new   general   solvers   will   be   closed.  

 

For   the   Phase   I   evaluation,   three   new   general   solvers   will   be   ready   along   with   a   working   layout   of   the  

main   function    ode_solver,    some   of   the   issues   will   be   closed   and   unwanted   solvers   will   be   removed.  

 

 

Phase   II   (4   July   -   31   July)  
This   phase   is   3   weeks   and   6   days   long   including   the   Phase   II   deadline.   

 

1.   In   the   first   week,   adding   technique   to   solve   non-constant   non-homogeneous   linear   ODE   based   on  

the   solver   added   by   the   end   of   Phase   I.   Along   with   that,   this   week,   new   test   cases   need   to   be   added   as  

this   is   a   new   addition   to   the   library.  

 

2.   In   the   second   week,   the   main   focus   would   be   evaluating   and   eliminating   unnecessary   solvers   and  

closing   related   issues   for   linear   systems   of   ODEs.  

 

3.   In   the   third   week,   all   the   PRs   related   to   linear   systems   of   ODE   solvers   will   be   updated   and   will   be  

brought   to   its   final   stages.   I   want   these   PRs   to   be   ready   for   getting   merged.   This   is   essential   so   that  

when   work   for   other   components   begins,   then   it   would   be   almost   certain   that   there   is   no   primary   issue  

with   the   general   solvers   in   case   any   error   arises   due   to   new   additions.   

 

4.   In   the   fourth   week,   adding   basic   rearrangements   to   simplify   the   system   of   ODEs.   Along   with   that,  

documentation   will   be   updated   and   added   wherever   required.  

 

For   Phase   II   evaluation,   all   the   solvers   that   attempt   to   solve   linear    first   order   systems   of   ODEs   will   be   in  

their   final   stages.  

 



Phase   III   (18   July   -   17   August)  
For   this   phase,   the   main   priorities   would   be   to   add   the   nonlinear   solvers   and   when   all   the   solvers   are  

ready   and   fully   tested,   adding   the   component   division   part.  

 

1.   Dividing   the   ODEs   by   evaluating   which   sub-systems   are   weakly   and   strongly   connected   and   handling  

both   of   these   cases   accordingly.  

 

2.   In   the   first   week,   adding   a   special   case   solver   where   the   independent   variable   can   be   eliminated   and  

thus   solving   the   system   becomes   easier.   First   step   to   complete   this   task   would   be   to   discuss   with   the  

mentor(s)   about   the   exact   method.   Then,   creating   a   PR   for   the   same   and   updating   the   implementation  

based   on   the   reviews   provided   by   the   mentor(s)   and   the   community.  

 

3.   The   second   week   would   be   devoted   to   implementing   the   final   part   of   the   project,   that   is   the  

component   division.   This   part   will   be   done   only   after   the   nonlinear   solver   is   well   tested.  

 

4.   The   final   two   weeks   will   be   utilised   to   wrap   things   up,   updating   and   adding   test   cases,   updating   the  

documentation   wherever   necessary,   updating   the   PRs   based   on   the   reviews,   time   will   be   given   to  

complete   the   pending   work   and   working   on   the   final   evaluation.  

 

For   the   final   evaluation,   we   will   have   the   non   linear   system   solvers   along   with   the   component   division  

functionality.  

 

Time   commitment  
The   current   semester   is   my   last   one(8th).   The   semester   will   end   mostly   in   the   first   week   of   June.   I   will  

still   contribute   even   when   my   colleges   are   going   on   as   I   have   been   doing   since   January.   I   would   have  

roughly   2   months   free   before   my   job   starts   but   I   would   contribute   my   best   irrespective   of   anything   else  

and   I   am   confident   about   my   performance   regarding   the   same   even   when   my   job   starts,   I   will   be   able  

to   contribute   40   hours   weekly,   by   covering   up   on   the   weekends   and   working   a   little   less   in   the  

weekdays.   This   will   be   only   for   the   last   month   though   and   hence,   I   have   planned   this   project   in   such   a  

way   that   the   parts   that   will   take   time   to   implement   will   be   done   in   the   first   two   phases.   Along   with   that,  

I   am   also   planning   to   work   more   than   40   hours   weekly   during   the   first   two   phases   for   backup   incase  

during   the   last   phase   things   become   intense.   Working   more   in   the   first   two   phases   will   give   a   head   start  

for   the   last   phase.   

 

Post   GSoC   period  
After   the   completion   of   the   final   evaluation   and   the   project,   I   will   still   keep   contributing   to   SymPy.   I  

have   grown   fascinated   after   reading   the   theory   that   will   be   involved   in   this   project   and   I   wish   to   learn  

more.   If   possible,   I   would   try   to   find   out   more   about   solving   systems   of   ODEs   to   further   advance   the  



ODE   solvers   in   SymPy.   Along   with   that,   my   contributions   won’t   be   limited   towards    solvers.dsolve    and   I  

would   try   to   contribute   towards   other   modules   as   well.   I   will   also   keep   trying   out   new   examples   to  

identify   the   weaknesses   and   shortcomings   of   the   functionalities   available   and   report   them   on   GitHub  

by   creating   an   issue   so   that   the   community   is   also   aware   of   the   same   and   everyone   can   work   on  

improving   and   upgrading   the   library.  

 

My   special   thanks   to   the   members   of   the   organization,   most   importantly,   Oscar  

Benjamin(oscarbenjamin),    Aaron   Meurer(asmeurer),   Gagandeep   Singh(czgdp1807),   Kalevi  

Suominen(jksuom),   S.   Y.   Lee(sylee957)   and   Christopher   Smith(smichr)   who   have   helped   me   a   lot   by  

giving   their   reviews   to   my   PRs   and   providing   guidance   wherever   it   was   necessary.   Due   to   the   members  

mentioned   above   and   the   community,   I   have   learned   a   lot   and   this   has   motivated   me   to   contribute   to  

this   community   and   become   a   part   of   it.  

 

Side   note:   A   lot   of   examples   in   the   Theory   section   are   in   latex   code   and   the   Printing   functionality   of  

SymPy   was   very   helpful   in   making   these   latex   codes.   Hence,   I   wish   to   contribute   towards   this   module  

as   a   token   of   appreciation.  
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