
Truncated Multivariate Normal Variates in Stan

Ben Goodrich

May 1, 2017

1 Introduction
There are many situations in which we would like to draw from a truncated multivariate normal distribution with mean
vector µ and variance-covariance matrix Σ. Or we would like place a truncated multivariate normal distribution on
some parameter or outcome of a data-generating process.

Historically, the usual approach is to use a Gibbs sampler to draw from the K full-conditional distributions, which
are each univariate truncated normal. If we let−k indicate “all but the k-th”, denote the lower bound (which is possibly
−∞) by bk, and denote the upper bound (which is possibly bk), the truncated normal full-conditional distribution of
yk is

yk|y−k,µ,Σ, bk, bk ∼ T Nbk≤Yk≤bk

(
µk + Σk,−kΣ

−1
−k,−k

(
y−k − µ−k

)
,Σk,k −Σk,−kΣ

−1
−k,−kΣ

>
k,−k

)
As with any Gibbs sampler, the convergence can be slow when the conditional variance is near zero.

In any event, Stan employs a variant of Hamiltonian Monte Carlo rather than Gibbs sampling, so it would be useful
to have a way to use a truncated multivariate normal distribution in Stan. Whereas Gibbs samplers use full-conditional
distributions, Stan uses the joint kernel, which can be written telescopically as a marginal density of the first variate
times a product of partial-conditional distributions given all previous random variates. In other words, if k′ = k − 1,
we could write

y1 ∼ T Nb1≤Y1≤b1 (µ1,Σ1,1)

y2| y1 ∼ T Nb2≤Y2≤b2

(
µ2 + Σ2,1Σ−11,1 (y1 − µ1) ,Σ2,2 − Σ2,1Σ−11,1Σ2,1

)
...

yk|y1:k′ ∼ T Nbk≤Yk≤bk

(
µk + Σk,1:k′Σ

−1
1:k′,1:k′ (y1:k′ − µ1:k′) Σk,k − Σk,1:k′Σ

−1
1:k′,1:k′Σ

>
k,1:k′

)
However, this way of writing a joint kernel is not that useful because we need a way to ensure that bk ≤ yk ≤ bk

and if we had such a construction, then we would not need to evaluate a truncated normal density. The rest of this
paper establishes the necessary construction using the Cholesky factor of Σ.

2 Multivariate Transformations
This section reviews the stochastic representation of the multivariate normal distribution, with an emphasis on its
Cholesky factor. If theK-vector y is distributed multivariate normal with mean vectorµ and positive-definite variance-
covariance matrix Σ, then we can write

y
d
= µ+ Lz,

where zk is independently and identically distributed univariate standard normal and L is the Cholesky factor of
Σ = LL>.

1

This well-known result is worth proving. If y (z) = µ + Lz, then the inverse transformation is z (y) =
L−1 (y − µ), so the Jacobian matrix of the transformation from y to z is J = L−1 and its determinant is |J| =∣∣L−1∣∣ = 1

|L| = 1∏K
k=1 Lkk

> 0. Since each zk is independently and identically distributed univariate standard normal,

z is distributed multivariate normal with mean vector 0 and variance-covariance matrix I. If we substitute L−1 (y − µ)
for z in this multivariate normal density and account for the change in hypervolume, we get

fY (y|µ,L) =
1

|L|
× fZ (z (y)) =

1

|L|
× 1∏K

k=1

√
2π

exp

(
−1

2

(
L−1 (y − µ)

)> (
L−1 (y − µ)

))
=

1

|L| (2π)
K
2

exp

(
−1

2
(y − µ)

>
L−>L−1 (y − µ)

)
.

However, probability theorists who are not burdened by the requirement of having to actually estimate anything on
a finite-precision computer tend to parameterize the multivariate normal distribution in terms of Σ = LL>. Making
the substitutions that Σ−1 = L−>L−1 and |L| = |Σ|

1
2 , we can obtain the conventional parameterization of the

multivariate normal density fY (y|µ,Σ) = 1

|Σ|
1
2 (2π)

K
2

exp
(
− 1

2 (y − µ)
>

Σ−1 (y − µ)
)

.

The parameterization of the multivariate normal density in terms of the Cholesky factor is not only preferable
numerically but is also convenient for truncation. We can partition the Cholesky factor as

L =

L11 0 0
Lk1 Lkk 0
L31 L3k L33

 ,
where L11 and L33 are lower-triangular, L31 is generally a dense submatrix, Lkk > 0 is a scalar, Lk1 is a row-vector
consisting of the k − 1 elements of L to the left of Lkk, and L3k is a column-vector consisting of the k − 1 elements
below Lkk. Similarly, we can partition y, µ, and z conformably as

y =

y1

yk
y3

 µ =

µ1

µk
µ3

 z =

z1
zk
z3

 .
Thus, we can write y1

yk
y3

 d
=

µ1

µk
µ3

+

L11 0 0
Lk1 Lkk 0
L31 L3k L33

z1
zk
z3


=

µ1

µk
µ3

+

L11z1 + 0 + 0
Lk1z1 + Lkkzk + 0
L31z1 + L3kzk + L33z3

 .
3 Truncated Multivariate Normal
The previous section is sufficient if there are no constraints on y. If there are constraints on y, we can express them as
constraints on z. In some situations, the mean vector will be a function of parameters, such as µ = Xβ, but that does
not affect the following scheme to draw from a truncated multivariate normal distribution.

Let z (u) = Φ−1 (u), where u is distributed standard uniform and Φ−1 (·) is the inverse CDF of the standard
normal distribution. In other words, z (u) could be generated by the inverse CDF method, and we can write

y
d
= µ+ Lz (u) ,

where u is a vector of standard uniform variates.

2

Suppose there is a known bound, b1, on y1 = µ1 + L11z (u1). We can solve for b1−µ1

L11
= z∗ (u1) — so that

the constraint binds if b1 = z∗ (u1) — and then solve for u∗1 = Φ
(
b1−µ1

L11

)
, where Φ (·) is the CDF of the standard

normal distribution. The constraint on y1 eliminates part of the support for the uniform variate. If b1 = b1 is an upper
bound on y1, then v1 = u1u

∗
1 is uniform between 0 and u∗1 with density 1

u∗1
. If b1 = b1 is a lower bound on y1, then

v1 = u∗1 + (1− u∗1)u1 is uniform between u∗1 and 1 with density 1
1−u∗1

.
Given a realization of u1 and thus z1 = Φ−1 (u1), we can consider a known bound, b2, on y2 = µ2 + L21z1 +

L22z (u2). We can solve for y2−(µ2+L21z1)
L22

— so that the constraint binds if b2 = z∗ (u2) — and then solve for

u∗2 = Φ
(
y2−(µ2+L21z1)

L22

)
. The constraint on y2 eliminates part of the support for the uniform variate. If b2 = b2 is an

upper bound on y2, then v2 = u2u
∗
2 is uniform between 0 and u∗2 with density 1

u∗2
. If b2 = b2 is a lower bound on y2,

then v2 = u∗2 + (1− u∗2)u2 is uniform between u∗2 and 1 with density 1
1−u∗2

.

In general, given realizations of u1 · · ·uk−1 and thus z1 = Φ−1
([
u1 · · · uk−1

])
, we can consider a known

bound, bk, on yk = µk+Lk1z1+Lkkzk. We can solve for yk−(µk+Lk1z1)
Lkk

— so that the constraint binds if bk = z∗ (uk)

— and then solve for u∗k = Φ
(
yk−(µk+Lk1z1)

Lkk

)
. The constraint on yk eliminates part of the support for the uniform

variate. If bk = bk is an upper bound on yk, then vk = uku
∗
k is uniform between 0 and u∗k with density 1

u∗k
. If bk = bk

is a lower bound on yk, then vk = u∗k + (1− u∗k)uk is uniform between u∗k and 1 with density 1
1−u∗k

.
If there happens to be no constraint on yk = µk + Lk1z1 +Lkkzk, then we simply set zk = Φ−1 (uk), where uk is

standard uniform and thus has density of 1. In rare cases, there may be both a lower bound and an upper bound on yk,
in which case we can combine the previous results such that vk = u∗k +

(
u∗k − u∗k

)
uk is uniform between the implied

lower bound, u∗k, and the implied upper bound, u∗k with density 1
u∗k−u

∗
k

.

4 Implementation in a Stan Program
Algorithm 1 contains a complete Stan program to draw from a truncated multivariate normal distribution. First, we
define a function called make_stuff that constructs z (u) and a vector of K derivatives that is explained below.
We could call the expose_stan_functions function to expose make_stuff to R and verify that it is working
correctly.

Second, we passK and b to the data block of the Stan program in addition to aK-vector s whose typical element
is

sk =


−1 if bk is an upper bound
0 if yk is unconstrained
1 if bk is a lower bound

.

Also, we pass µ and L, although it would be straightforward to declare these as parameters and estimate them if we
had other data.

In the parameters block, we would prefer to declare v as a K-vector that is uniform on some subset of the unit
interval. However, Stan only permits scalar bounds on vectors declared in the parameters block. Thus, we instead have
to declare u as a K-vector that is uniform on the unit interval and construct each element of v as an intermediate. We
essentially have a “prior” on vk conditional on bk, sk, µ1:k, L1:k,1:k, and z (u1:k′) whose density is

fV (vk| bk, sk, u∗k) =

{
1
u∗k

if bk is an upper bound
1

1−u∗k
if bk is a lower bound

.

Hence, in the model block, we have to adjust the log-kernel by the logarithm of the derivative of the transformation
from vk to uk, which is

ln
∂

∂vk
uk ∼

{
lnu∗k if bk is an upper bound
ln (1− u∗k) if bk is a lower bound

.

3

Algorithm 1 Stan Program to Draw from a Truncated Multivariate Normal

functions {
vector[] make_stuff(vector mu, matrix L, vector b, vector s, vector u) {

int K = rows(mu); vector[K] d; vector[K] z; vector[K] out[2];
for (k in 1:K) {

int km1 = k - 1;
if (s[k] != 0) {

real z_star = (b[k] -
(mu[k] + ((k > 1) ? L[k,1:km1] * head(z, km1) : 0))) /
L[k,k];

real v; real u_star = Phi(z_star);
if (s[k] == -1) {
v = u_star * u[k];
d[k] = u_star;

}
else {

d[k] = 1 - u_star;
v = u_star + d[k] * u[k];

}
z[k] = inv_Phi(v);

}
else {

z[k] = inv_Phi(u[k]);
d[k] = 1;

}
}
out[1] = z;
out[2] = d;
return out;

}
}
data {

int<lower=2> K; // number of dimensions
vector[K] b; // lower or upper bound

// s[k] == 0 implies no constraint; otherwise
// s[k] == -1 -> b[k] is an upper bound
// s[k] == +1 -> b[k] is a lower bound
vector<lower=-1,upper=1>[K] s;

vector[K] mu;
cholesky_factor_cov[K,K] L;

}
parameters {

vector<lower=0,upper=1>[K] u;
}
model {

target += log(make_stuff(mu, L, b, s, u)[2]); // Jacobian adjustments
// implicit: u ~ uniform(0,1)

}
generated quantities {

vector[K] y = mu + L * make_stuff(mu, L, b, s, u)[1];
}

4

These derivatives are returned as the second vector in make_stuff. Finally, in the generated quantities
block, we construct the K-vector y = µ+ Lz (u), where is z (u) is the first vector returned by make_stuff.

To call this Stan program from R, we can execute

K <- 2
rho <- 0.5
Sigma <- matrix(c(1,rho,rho,1), K, K)
standata <- list(K = K, b = c(1/pi, exp(-1)), s = c(1,-1), mu = c(0,0),

L = t(chol(Sigma)))
library(rstan)
rstan_options(auto_write = TRUE)
post <- stan("tMVN.stan", data = standata)

which results in

print(post, digits = 3)

Inference for Stan model: tMVN.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.
##
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
u[1] 0.433 0.004 0.270 0.020 0.201 0.413 0.647 0.937 3845 1.000
u[2] 0.497 0.005 0.288 0.024 0.250 0.489 0.747 0.978 3392 0.999
y[1] 0.876 0.008 0.448 0.339 0.525 0.772 1.115 1.983 3411 1.000
y[2] -0.307 0.009 0.514 -1.549 -0.606 -0.201 0.098 0.344 3012 0.999
lp__ -5.702 0.030 1.199 -8.955 -6.172 -5.325 -4.831 -4.524 1551 1.002
##
Samples were drawn using NUTS(diag_e) at Mon May 1 03:17:57 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

It is evident from Figure 1 that the posterior distribution of u1 is not uniform due to the constraints on y1 and y2 that
make large values of u1 unlikely. Nevertheless, the posterior distribution is not difficult for Stan to sample efficiently
from, although it could become more difficult as K increases and as the bounds eliminate more of the unconstrained
density.

We can compare the results to those obtained via rejection sampling with

library(mvtnorm)
y_raw <- rmvnorm(16000, sigma = Sigma)
y <- y_raw[y_raw[,1] > (1 / pi) & y_raw[,2] < exp(-1),]
round(digits = 3, t(apply(y, 2, FUN = function(x) {
c(mean = mean(x), sd = sd(x),

quantile(x, probs = c(0.025, 0.25, 0.5, 0.75, 0.975)))
})))

mean sd 2.5% 25% 50% 75% 97.5%
[1,] 0.885 0.454 0.339 0.527 0.776 1.138 1.984
[2,] -0.298 0.514 -1.537 -0.592 -0.189 0.107 0.345

Stan is, in a manner of speaking, more efficient than rejection sampling in that it obtains an effective sample size
of a few thousand from a nominal sample size of 4000 (after thowing away 4000 realizations as warmup). To obtain a

5

Figure 1: Pairs Plot for a Truncated Bivariate Normal

pairs(post, las = 2)

u[1]
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

−
3

−
2

−
1

0 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0
u[2]

y[1]

0.5

1.0

1.5

2.0

2.5

3.0

−3

−2

−1

0 y[2]

lp__

−14

−12

−10

−8

−6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

6

8

10

12

14

16

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

−
14

−
12

−
10 −
8

−
6

energy__

6

similar number of independent realizations via rejection sampling, you have to take an unconstrained sample of about
16, 000.

c(y_raw = nrow(y_raw), y = nrow(y))

y_raw y
16000 2708

7

