
19. Model Identifiability

This chapter discusses the frequentist notion of model identifiability and the Bayesian
notion of identifiability in terms of well-behaved posteriors, concentrating on compu-
tational issues arising from model formulation and computation in Stan.

19.1. Identifiability of Likelihoods

In traditional frequentist statistics, a model is said to be identifiable if and only if dif-
ferent parameters produce different likelihood functions. More formally, a likelihood
function f

✓

(y) = p(y|✓) is identifiable if and only if

✓ î ✓0 implies f
✓

î f
✓

0
.

The inequality on the right hand side of this definition is between functions of y ,
meaning that f

✓

î f
✓

0 if there is some y such that f
✓

(y) î f
✓

0
(y).

Model identifiability is a necessary (but not sufficient) condition for the existence
of maximum likelihood estimates (MLE). Without identifiability, the maximum likeli-
hood estimate

✓̂ = argmax
✓

p(y|✓)
might not be unique.

Examples

A simple normal model with a location parameter µ, a scale parameter � > 0, and
likelihood

p(y|µ,�) =
NY

n=1
Normal(y

n

|µ,�).

is identifiable because every distinct value of µ and � produces a different likelihood
function p(y|µ,�).

A similar model1 with two location parameters, �1 and �2, a scale � > 0, and
likelihood function

p(y|�1,�2,�) =
NY

n=1
Normal(y

n

|�1 + �2,�)

1This example was raised by Richard McElreath on the Stan users group in a query about the behavior
of the no-U-turn sampler (NUTS).
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is not identifiable because for any non-zero quantity q,

p(y|�1,�2,�) = p(y|�1 + q,�2 � q,�).

Another example of a non-identifiable model is a normal mixture model, with two
location parameters µ1 and µ2, a shared scale � > 0, a mixture ratio ✓ 2 [0,1], and
likelihood

p(y|✓, µ1, µ2,�) =
NY

n=1

�
✓ ⇥ Normal(y

n

|µ1,�)+ (1� ✓)⇥ Normal(y
n

|µ2,�)
�
.

The issue here is exchangeability of the labels 1 and 2, because

p(y|✓, µ1, µ2,�) = p(y|(1� ✓), µ2, µ1,�).

19.2. Bayesian “Identifiability”

In the broadest sense, a Bayesian model is identified if the posterior distribution,

p(✓|y)/ p(y|✓)p(✓),

is proper, i.e., Z
p(✓|y)d✓ = 1.

Mathematically speaking, with a proper posterior, one can do Bayesian inference and
that’s that. There is not even a need to require a finite variance or even a finite
mean—all that’s needed is a finite integral.

Examples (continued)

Consider again the non-identifiable model from the previous section with two
mean parameters. Now suppose we create a Bayesian model with the likelihood
p(y|�1,�2,�) and an improper uniform prior p(�1,�2,�) = 1. The result is an im-
proper posterior

p(�1,�2,� |y) / p(y|�1,�2,�)p(�1,�2,�) = p(y|�1,�2,�).

The posterior contains a ridge with a peak along the line where the sum �1 + �2 is
equal to the maximum likelihood estimate µ̂ from the identified model

p(y, µ,�) =
NY

n=1
Normal(y

n

|µ,�).
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Figure 19.1: Posteriors of an unidentified model and the same model identified with a prior. In
both models, the likelihood function is y

n

⇠ Normal(�1+�2,�). Both plots show the posterior for
the same 100 data points simulated from a unit normal distribution. The left-hand plot shows
the posterior for the model with no priors for �1 or �2 (or � ). The resulting posterior has a ridge
extending infinitely to the northwest and southeast, and is thus improper (does not integrate to
1). The posterior density in the right-hand plot is from a model that adds unit normal priors
�1,�2 ⇠ Normal(0,1), resulting in a proper posterior.

The posterior ridge is illustrated in the plot in the left-hand figure of Fig-
ure 19.1, which shows the posterior resulting from sampling 100 data points y

n

⇠
Normal(0,1). With 100 data points, the posterior for � is proper, even in the model
parameterized by �1 and �2. With improper posteriors, sampling becomes impossi-
ble. A “proper” posterior sample should spend as much time in the neighborhood of
�1 = 1000000000 and �2 = �1000000000 as it does in the neighborhood of �1 = 0
and �2 = 0, and so on for ever larger values. This is, of course, impossible in finite
amounts of time, not to mention with limited maximum and minimum values for
double-precision floating point numbers as used in computers.

By way of contrast, consider what happens when we add proper priors for �1 and
�2, say

p(�1,�2) = Normal(�1|0,1)⇥ Normal(�2|0,1).
With proper priors on �1 and �2, the posterior is now proper. The effect on the
posterior is to convert the ridge into a hill, as illustrated in the right-hand plot in
Figure 19.1. With the same 100 data points y

n

, the probability density quickly falls
off as �1 and �2 move away from the origin (0,0).

19.3. What Goes Wrong Sampling in Non-Identifiable Models

With an improper posterior, it is theoretically impossible to properly explore the pos-
terior. However, Gibbs sampling as performed by BUGS and JAGS behaves quite dif-
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ferently the Hamiltonian Monte Carlo sampling performed by Stan when faced with
the two-location model discussed in the previous section.

Gibbs Sampling

Gibbs sampling, as performed by BUGS and JAGS, may appear to be efficient and well
behaved for this unidentified model, but as discussed in the previous subsection, will
not actually explore the posterior properly.

Consider what happens with initial values �(0)1 ,�
(0)
2 . Gibbs sampling proceeds in

iteration m by drawing

�

(m)

1 ⇠ p(�1 |�(m�1)2 , �

(m�1)
, y)

�

(m)

2 ⇠ p(�2 |�(m)1 , �

(m�1)
, y)

�

(m) ⇠ p(� |�(m)1 , �

(m)

2 , y).

Now consider the draw for �1 (the draw for �2 is symmetric), which is conjugate in
this model and thus can be done very efficiently. In this model, the range from which
the next �1 can be drawn is highly constrained by the current values of �2 and � .
Gibbs will run very quickly and provide excellent inference for �1 + �2. But it will
not explore the full range of the posterior; it will merely take a slow random walk
from the initial values. This random walk behavior is typical of Gibbs sampling when
posteriors are highly correlated and the primary reason to prefer Hamiltonian Monte
Carlo to Gibbs sampling for models with parameters correlated in the posterior.

Hamiltonian Monte Carlo Sampling

Hamiltonian Monte Carlo (HMC), as performed by Stan, is much more efficient at
exploring posteriors in models where parameters are correlated in the posterior. In
this particular example, the Hamiltonian dynamics (i.e., the motion of a fictitioous
particle given random momentum in the field defined by the negative log posterior)
is going to run up and down along the valley defined by the potential energy (ridges
in log posteriors correspond to valleys in potential energy). In practice, even with a
random momentum for �1 and �2, the gradient of the log posterior is going to adjust
for the correlation and the simulation will run along the valley corresponding to the
ridge in the posterior log density.

No-U-Turn Sampling

The no-U-turn sampler (NUTS), the default form of HMC used in Stan, shows even
more pathological behavior in the face of non-identifiability. Because NUTS tries to
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simulate the motion of the fictitious particle representing the parameter values until
it makes a U-turn, it will be defeated in most cases, as it will just move down the
potential energy valley indefinitely without making a U-turn. What happens in practice
is that the maximum number of leapfrog steps in the simulation will be hit in many of
the iterations, causing a very large number of log probability and gradient evaluations
(1000 if the max tree depth is set to 10, as in the default). Thus sampling will appear
to be very slow. But like the case for HMC and Gibbs, sampling is not just slow, it’s
impossible in this case. NUTS continues to explore more of the posterior density than
HMC with few leapfrog steps and much more of the posterior than a Gibbs sampler.
The problem is that it’s never possible to explore all of it because it’s improper.

Examples: Fits in Stan

To illustrate the issues with sampling from non-identified and only weakly identified
models, we fit three models with increasing degrees of identification of their param-
eters. The first model is the unidentified model with two location parameters and no
priors.

data {
int N;
real y[N];

}
parameters {
real lambda1;
real lambda2;
real<lower=0> sigma;

}
transformed parameters {
real mu;
mu <- lambda1 + lambda2;

}
model {
y ~ normal(mu, sigma);

}

The second adds priors to the model block for lambda1 and lambda2 to the previous
model.

lambda1 ~ normal(0,10);
lambda2 ~ normal(0,10);

The third involves a single location parameter, but no priors.
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Two Scale Parameters, Improper Prior
Inference for Stan model: improper_stan
Warmup took (2.7, 2.6, 2.9, 2.9) seconds, 11 seconds total
Sampling took (3.4, 3.7, 3.6, 3.4) seconds, 14 seconds total

Mean MCSE StdDev 5% 95% N_Eff N_Eff/s R_hat
lp__ -5.3e+01 7.0e-02 8.5e-01 -5.5e+01 -5.3e+01 150 11 1.0
n_leapfrog__ 1.4e+03 1.7e+01 9.2e+02 3.0e+00 2.0e+03 2987 212 1.0
lambda1 1.3e+03 1.9e+03 2.7e+03 -2.3e+03 6.0e+03 2.1 0.15 5.2
lambda2 -1.3e+03 1.9e+03 2.7e+03 -6.0e+03 2.3e+03 2.1 0.15 5.2
sigma 1.0e+00 8.5e-03 6.2e-02 9.5e-01 1.2e+00 54 3.9 1.1
mu 1.6e-01 1.9e-03 1.0e-01 -8.3e-03 3.3e-01 2966 211 1.0

Two Scale Parameters, Weak Prior
Warmup took (0.40, 0.44, 0.40, 0.36) seconds, 1.6 seconds total
Sampling took (0.47, 0.40, 0.47, 0.39) seconds, 1.7 seconds total

Mean MCSE StdDev 5% 95% N_Eff N_Eff/s R_hat
lp__ -54 4.9e-02 1.3e+00 -5.7e+01 -53 728 421 1.0
n_leapfrog__ 157 2.8e+00 1.5e+02 3.0e+00 511 3085 1784 1.0
lambda1 0.31 2.8e-01 7.1e+00 -1.2e+01 12 638 369 1.0
lambda2 -0.14 2.8e-01 7.1e+00 -1.2e+01 12 638 369 1.0
sigma 1.0 2.6e-03 8.0e-02 9.2e-01 1.2 939 543 1.0
mu 0.16 1.8e-03 1.0e-01 -8.1e-03 0.33 3289 1902 1.0

One Scale Parameter, Improper Prior
Warmup took (0.011, 0.012, 0.011, 0.011) seconds, 0.044 seconds total
Sampling took (0.017, 0.020, 0.020, 0.019) seconds, 0.077 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -54 2.5e-02 0.91 -5.5e+01 -53 -53 1318 17198 1.0
n_leapfrog__ 3.2 2.7e-01 1.7 1.0e+00 3.0 7.0 39 507 1.0
mu 0.17 2.1e-03 0.10 -3.8e-03 0.17 0.33 2408 31417 1.0
sigma 1.0 1.6e-03 0.071 9.3e-01 1.0 1.2 2094 27321 1.0

Figure 19.2: Results of Stan runs with default parameters fit to N = 100 data points generated
from y

n

⇠ Normal(0,1). On the top is the non-identified model with improper uniform priors
and likelihood y

n

⇠ Normal(�1 + �2,�). In the middle is the same likelihood as the middle plus
priors �

k

⇠ Normal(0,10). On the bottom is an identified model with an improper prior, with
likelihood y

n

⇠ Normal(µ,�). All models estimate µ at roughly 0.16 with very little Monte Carlo
standard error, but a high posterior standard deviation of 0.1; the true value µ = 0 is within the
90% posterior intervals in all three models.
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data {
int N;
real y[N];

}
parameters {
real mu;
real<lower=0> sigma;

}
model {
y ~ normal(mu, sigma);

}

All three of the example models models were fit in CmdStan 2.1.0 with default pa-
rameters (1000 warmup iterations, 1000 sampling iterations, NUTS sampler with max
tree depth of 10). The results are shown in Figure 19.2. The key statistics from these
outputs are the following.

• As indicated by R_hat column, all parameters have converged other than �1
and �2 in the non-identified model.

• The average number of leapfrog steps is roughly 3 in the identified model, 150
in the model identified by a weak prior, and 1400 in the non-identified model.

• The number of effective samples per second for µ is roughly 31,000 in the
identified model, 1900 in the model identified with weakly informative priors,
and 200 in the non-identified model; the results are similar for � .

• In the non-identified model, the 95% interval for �1 is (-2300,6000), whereas it
is only (-12,12) in the model identified with weakly informative priors.

• In all three models, the simulated value of µ = 0 and � = 1 are well within the
posterior 90% intervals.

19.4. What can Go Wrong with Proper Posteriors

Multimodal Posteriors

Even with proper priors, the normal mixture model discussed earlier will have a pos-
terior p(✓, µ1, µ2,� |y) that can be difficult in practice due to multiple modes that
swap the indexes and value of ✓. The model is not identified in any real sense.

Theoretically, this should not present a problem for inference because all of the
integrals involved in posterior predictive inference will be well behaved. The prob-
lem in practice is computation. Even if the posterior is proper, MCMC samplers are
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notoriously ineffective at exploring multiple modes efficiently, especially when the
number of modes grows exponentially as it does for mixture models with increasing
numbers of components. In Gibbs sampling, it is unlikely for µ1 to move to a new
mode when sampled conditioned on the current values of µ2 and ✓. For HMC and
NUTS, the problem is that the sampler gets stuck in one of the two “bowls” arounds
the modes and cannot gather enough energy from random momentum assignment to
move from one mode to another.

Supposing a sample could adequately explore multiple posterior modes, a further
complication arises due to the fact that posterior means and standard deviations pro-
vide poor summaries of the posterior, thus complicating issues such as convergence
monitoring and effective sample size estimation.

One possibility for dealing with multimodal posteriors that arise from label
switching in mixture models is to somehow define an ordering on the values, such
as requiring µ1 < µ2. This can be achieved with Stan’s constraint language, but can
lead to estimation bias if the posterior uncertainty of µ1 overlaps with that of µ2. In
other cases, such as a discrimination parameter �

j

in an item-response theory model,
restricting �

j

> 0 can solve the identifiability problem.

Posteriors with Unbounded Densities

In some cases, the posterior density grows without bounds as parameters approach
certain poles or boundaries. In thse cases, there are no maximum likelihood esti-
mates. One such example is a binary mixture model with scales varying by compo-
nent, �1 and �2 for locations µ1 and µ2. In this situation, the density grows without
bound as �1 ! 0 and µ1 ! y

n

for some n; that is, one of the mixture components
concentrates all of its mass around a single data item y

n

.
Another example of unbounded densities arises with a posterior such as

Beta(�|0.5,0.5), which can arise if very “weak” beta priors are used for groups that
have no data. This density is unbounded as � ! 0 and � ! 1. Similarly, a Bernoulli
likelihood model coupled with a “weak” beta prior, leads to a posterior

p(�|y) / Beta(�|0.5,0.5)⇥QN

n=1 Bernoulli(y
n

|�)
= Beta(� |0.5+PN

n=1 yn, 0.5+N �
P
N

n=1 yn).

If N = 10 and each y
n

= 1, the posterior is Beta(�|10.5,0,5), which is unbounded as
�! 1.

Because the posterior is proper even in these cases (i.e., the posterior mass does
not grow without bound), Bayesian inference can often overcome the difficulty with
maximum likelihood inference and calculate proper posterior means. In other cases,
when the unbounded posterior modes are attractive enough, the simulated particle
falls down an infinitely deep well corresponding to unbounded negative log posterior
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density and never gains enough random kinetic energy in future iterations to climb
back out again.

Uniform Posteriors

Suppose your model includes a parameter  that is defined on [0,1] and is given a
flat prior Uniform( |0,1). Such a model is guaranteed to have a proper posterior for
 no matter what the data looks like. But suppose the data don’t tell us anything
about  , so that our posterior is also Uniform( |0,1). The maximum likelihood
estimate is ill defined, but the Bayesian posterior is proper. The posterior mean for  
is well defined at 1/2, but the model still feels non-identified. Nevertheless, posterior
predictive inference may do the right thing by simply integrating (i.e., averaging) over
the predictions for  at all points in [0,1].

19.5. Weak Identification

Suppose that with reasonable data, you’d have a posterior with a standard deviation
of 1 (or that order of magnitude). But suppose you have sparse data or co-linearity
of predictors, and so you have some dimension in your posterior that’s really flat—
essentially a “ridge” with a standard deviation of 1000. Then it makes sense to say
that this parameter or linear combination of parameters is only weakly identified. Or
one can say that it’s identified from the prior but not the likelihood.

Although technically sound in the mathematical sense, a posterior that is only
weakly identified by the data in this way can be problematic for practical inference.
With very weak priors, the ridge illustrated in Figure 19.1 becomes a very gently
sloping hill, and sampling remains problematic due to the large extent of the posterior
that must be explored.

In general, identification depends not just on the model but also on the data. So,
strictly speaking, one should not talk about an “identifiable model” but rather an
“identifiable fitted model” or “identifiable parameters” within a fitted model.

That is, we can think of a weakly informative prior as being one that supplies
relatively little information compared to the data about the posterior. A strongly
informative prior, on the other hand, supplies relatively more information than the
data about the posterior. The dividing line between “strong” and “weak” here is not
well defined, and also depends on the amount.

The crucial notion computationally is that the data plus the prior together need to
provide enough information about the posterior that it is not effectively a very long
ridge of equal density.

It is common to see very diffuse priors applied to parameters in BUGS or JAGS
models, such as Uniform(�20000,20000) or Normal(0,10000). Presumably such pri-
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ors are motivated by the desire of modelers to produce Bayesian posterior mean
estimates for a parameter that are very close to the maximum likelihood estimate
obtained in a non-Bayesian setting.

Although these very diffuse priors do identify models in theory, they are not very
effective in practice. When considering their effect on the geometry of the posterior,
the reason is obvious—they flatten the ridge that would otherwise arise in a non-
identified model, but only very gently. Adding a very diffuse prior to a non-identified
model like y

n

⇠ Normal(�1 + �2,�) causes major headaches and is not much better
than just using the non-identified model without any prior at all.

It is important to keep in mind that Gibbs samplers like BUGS or JAGS do not
effectively explore the full posterior entailed by these diffuse priors, instead devolving
into a random walk. It may just seem like they are better behaved and exploring the
posterior because of inferences for transformed parameters such as �1 + �2 in the
models driving Figure 19.2.

On the other hand, Hamiltonian Monte Carlo samplers like Stan will do a better
job at exploring the full posterior, but it will take them considerable time to explore
the extent of the shallow valleys induced in the negative log posterior. As can be seen
in the behavior of the non-identifed model in Figure 19.2, the posterior scale should
be less than 1000 for the no-U-turn sampler to behave even remotely reasonably with
Stan’s default settings.

The ideal solution would be to employ informative priors based on knowledge
of the data being modeled. The modeler will almost always have some grip on the
scale of the parameters expected based on the data being modeled. If -25,000 or
+25,000 are not reasonable values for a parameter, a prior of Normal(0,10000) is not
reasonable.

A kind of halfway solution is to use weakly informative priors that indicate the
rough scale of the estimates without being too diffuse or exerting too much influence
on the posterior. For example, if we expect a parameter to be in the range (-2,2), as
we would for a logistic regression coefficient for a standardized (mean 0, deviation 1)
predictor, then a prior for the coefficient of Normal(0,5) will be enough to bring the
posterior geometry under control while at the same time not providing a noticeable
shrinking of the posterior toward 0.
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