Simulation and uncertainty: lessons from other industries

Introduction
Petroleum engineering has both led – and lagged - developments in hardware and software compared to other industries. Since the emergence of modern reservoir simulators in the late 1970's, it has led in the efficient implementation of sparse matrix algebra and the solution of partial differential equations. It was also at the forefront of developing applications using high performance computers such as the Cray.
However, the industry has been viewed from the outside world as ‘tribal (but friendly)’, and in some areas, such as non-linear optimisation, risk and uncertainty, experimental design, and the robust application of statistics, other industries have much to teach us.
A brief history
Commercial reservoir simulators made their appearance in the 1970's, and prototype tools for history matching and experimental design commenced in the mid 1980's. A variety of optimisation techniques were applied in the following years, but there was a significant delay before the application to history matching of modern algorithms such as quasi-Newton, which had been formulated and used in other industries since the late 1970's. Steepest descent methods remained stubbornly pervasive for some time.
The 1990's saw a growing interest in the use of evolutionary algorithms (or genetic algorithms), and commercial and internal tools for reservoir engineering started to emerge in the early 2000's. At the same time, advances were being made in other industries in the field of engineering optimisation, where the function being optimised involved a time consuming simulation. These approaches used a proxy or surrogate model, and the first history matching tools based on these concepts was released in 2001.
Over the years these tools have amply demonstrated their value for history matching and have become part of the standard toolkit for many practicing engineers. However, we at still at a relatively immature stage for uncertainty quantification for reservoir simulation, and there are some question marks over the validity of currently available tools and workflows.
There have been several SPE meetings in recent years devoted to probabilistic uncertainty quantification, and the DOE have, in a series of reports, highlighted its importance and the technical challenges involved. This focus will surely increase, as oil companies and regulatory bodies become increasingly interested in environmental low probability/high impact events.
As Andre Bouchard, (Manager - Reservoir Engineering Technology) at ConocoPhillips confirms: “Embracing probabilistic analysis in the quantification of reservoir dynamics allows us to extract information vital to the planning and execution of robust development strategies. The last decade has challenged the deterministic cultural paradigm that has been prevalent across our industry. With the advent of new technological advances, there is a strong motivation and opportunity to improve how we manage decisions under uncertainty”.
Monte Carlo and risk
Most engineers have some acquaintance with risk analysis tools such as Crystal Ball, @Risk and ModelRisk. These are often used by economists to evaluate reservoirs, and a typical workflow involves an engineer passing a low, medium, and high production profile from simulation to the economist for risk analysis. These uncertainty techniques are now starting to be used directly by engineers as part of their simulation workflow.
These risk tools are based around Monte Carlo (MC) simulation, which is a numerical method to approximate integrals of functions whose analytical form is unknown. Engineers describe these as S-curves, or cumulative probability curves. MC methods are used in many industries from quantum chromodynamics to financial modelling.  The moniker for the numerical method was coined during the Manhattan Project, and MC has been used in the nuclear and defense industries ever since.  In the financial world, the new rage  is for quants and analytics, and MC is being used to analyze Big Data with very large data and model dimensions to predict on what we might spend our disposable incomes.

MC methods, which cover a wide range of different algorithms, are not without potential pitfalls, which some have said contributed to the financial crash of 2008.  The extent of these practical limitations may be surprising to some engineers. Three commonly overlooked pitfalls are:

· failing to consider the inherent numerical error in MC

· selecting improper sampling or probability models

· incorrect assumptions on independence between variables
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Fig 1

Figure 1 shows the S curve for a known solution, with 32 variables with some correlations. A MC simulation with 100,000 samples was repeated 100 times to generate 100 S curves, and the minimum, mean and maximum of curves is plotted. The magnitude of the numerical errors depends on a number of factors, and prominent among these is the number of uncertain variables being sampled, the number of samples used in the MC simulation, and the strictness of the history match criteria (or magnitude of correlations).
Fortunately, MC is an active topic of research in many major universities, and the practical control of numerical error is continually improving. What is more difficult is to determine how many samples are required - repeatability is not sufficient, as it is very easy to repeat the wrong answer – and MC tools are normally tuned by the practitioner. This tuning is equivalent to the time step tuning which is a normal part of the simulation workflow.
The probability models for variables need to be chosen carefully in an appraisal or green field situation. Uniform and triangular distributions are known to be very rare in the real world, yet often used, and the standard fall back is the Gaussian distribution which may not always be appropriate. 
When calculating prediction uncertainty following history matching, probability models are derived from some fitness function to history. The choices here need careful understanding of the reliability of the measurements at different times and for different results, and their effect on future prediction. Good history matches tend to follow multiple narrow curved valleys in a high dimensional variable space.
An incorrect assumption of independence between MC variables always artifactually adds conservatism to MC results. Not all tools used to perform MC simulation have the capability to sample distributions of dependent variables.  New methods have been developed for use in medical and pharmaceutical industries that enable sampling of very complex, high dimension distributions of dependent and correlated variables.  
If an appraisal field has 50 faults, and their transmissibilities are treated independently, the risk analysis will 'average out' the faults, and will give a completely different S curve and risk profile compared to a study which applied a single fault transmissibility parameter to all the faults. The latter will give a much wider P10 - P90 interval, and dramatically increase the chances of a heavily compartmentalised system. 
Use of surrogates
Surrogates, or proxies, are fast approximations to full scale engineering simulations. They have been extensively used in many industries for over a decade, from aerospace (optimising wing design with complex air flow simulations) to weather forecasting, and are an important part of the toolkit in general engineering design, from artificial knees to car components. Surrogates have been an active area of research for over a decade in many leading universities throughout the world, and some of the original grand masters of optimisation have made significant contributions to their theoretical and practical implementation. They are indeed a natural extension of the quadratic approximations first formulated for optimisation in the 1970’s. They have also been extensively studied by statisticians, who are very familiar with problems of fitting models to data.
In the reservoir engineering world, surrogates have been found useful by many companies for accelerating the history matching process, and they can cope with the large number of samples required for Monte Carlo simulations. As surrogates become more mature, some of the reported performance issues currently associated with them will disappear. However, the wheel has yet to turn full circle, and no engineer will rely purely on a surrogate for uncertainty quantification without having a suitable probabilistic set of reservoir simulations.
High performance computing
In the oil industry, Linux clusters have emerged rapidly since 2000, and most medium and large oil and gas companies have access to large clusters. In other industries, from Google to molecular modelling, huge server facilities have been built. At a smaller scale, it is possible to purchase for a moderate sum a box under the desk of every engineer which has 64 processors (4 sockets, each of which has a 16 core processor).

Whilst 'embarrassingly parallel' software can take full advantage of this computing power, a single reservoir simulation is limited in the amount of parallelism it can achieve. There is much current interest in the use of GPU’s (graphics processing units) for highly parallel basic numerical operations, where they are being used to increase throughput tenfold for automated seismic interpretation, but in contrast reservoir simulation is a weaker candidate because of the sparse structure of the matrices.
Part of this changing paradigm, enabled by computing power and driven by the needs for uncertainty quantification, is to shift focus from parallelising a single simulation, to running multiple simultaneous serial simulations. Controlling software which can manage multiple runs efficiently, with large volumes of data, whilst maintaining a responsive user interface, is a challenge and may require radical architectural changes to current tools.
The curse of dimensionality
It is well known that intuition breaks down as the number of dimensions increase. There is a classic problem in physics 'why is it dark at night?'  (Olber’s paradox) which observes that it should be light at night because as we move away from the earth, the increase in the number of stars is balanced out by the decrease in light from individual stars.
In a simulation world of 200 unknown variables, the number of acceptable history matches explodes and this issue becomes acute. Any probabilistic forecast based on some sum of squares weighting is doomed to failure. It is only a likelihood based approach, and sophisticated robust MC methods, which can overcome these basic laws of mathematics.
Validation
Although the term probabilistic uncertainty quantification is becoming commonly used in our industry, there are limited workflows and software products which are formulated in a fully probabilistic manner. The reality is that most workflows generate a set of possible simulation cases, but without any probabilistic quantification. Even where attempts are made to do a fully probabilistic quantification, validation of the results has limited visibility, and there is little industry agreement on suitable probability models.
There have been several important and illuminating uncertainty quantification studies based on the PUNQ-S3 problem, and these have demonstrated the range of uncertainty results provided by different approaches. It is less clear what the underlying cause of this wide range is.

In the realm of non-linear and global optimisation, there is an extensive test suite which is used by researchers to test their latest algorithms. In the reservoir simulation world, there is a set of SPE models which are used for validation. Any reputable simulation vendor can be asked for their results against these tests prior to purchase.
There is no similar test suite to validate uncertainty tools being used. The current situation tends to be 'trust me', or 'let's compare apples and oranges, and compare incorrect answers with incorrect answers'. The reality is that limitations in algorithms, or errors in implementation, can very easily give rise to completely invalid and wildly inaccurate results, as has been experienced frequently in other industries.
The industry needs to validate uncertainty tools, starting from very basic tests with different degrees of complexity and size, where the S curve is known analytically. The next stage would be to compare results against an S curve which has been generated by running simple simulation models (including PUNQ-S3)  tens of millions of times to MC convergence, including  modelling of some of the difficult S curve behaviours, such as a maximum limit on cumulative oil.  This robust scientific approach to validation, and an understanding of algorithm limitations, is necessary before we should use these techniques in our field decision making. Without this, we can find that by chance our prediction fits the future, in the same way as sometimes one wins at Monte Carlo, without any increase in confidence in the fairness of the dice being thrown.
Use and abuse of probability
There are many examples where well-meaning practitioners in probability apply all the correct formulae and tools, but get the answer completely wrong. Classic cases include the Monty Hall problem, of which it has been said "... no other statistical puzzle comes so close to fooling all the people all the time" and a case of an appeal against a conviction of a mother whose two babies died of sudden death syndrome.  Another example, which has been analysed incorrectly in most publications and discussion groups, is the 'I have a boy born on a Tuesday' question.
In the realm of reservoir simulation, there are similar dangers. First, we often take a single parameterised simulation model, out of many possible geological realisations – this has immediately shifted (biased) the mean and reduced our uncertainty - and we then compound the abuse by making untested assumptions about the correlations between parameters, which affect downside risk.. It may be that not until we have performed an expensive but ineffective water injection plan that we realise the faults are mainly sealed, and the assumed independence excluded this possibility in the original economic evaluation as it was at the very extreme tail of the S curve.
Conclusions
Given the limitations in our current software tools, the limitations in our knowledge of the static properties of the reservoir, the uncertainty about parameter correlations, and the unpredictability of future operational decisions, it is tempting to give up and go back to the old ways 'best HM case plus or minus 10%'. However, we have seen major advances in the last decade, in computing power, software and algorithms, and if the industry continues to invest training in young engineers in the skills required, particularly probability and statistics, it will be able to quantify uncertainty with increasing understanding, rigour, and validity. This will then enable the engineering alchemist’s dream – optimisation and decision making under uncertainty.
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