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I document how to calculate ADVI quantities (objective function, gradients) in closed
form for a few simple models. These are useful for testing.

1 Univariate Model without Constraints

Consider the following simple model.

p(6) = N (6 ; o, 02)
p(yi10)=A(y;; 0,0%)

The joint distribution is

p(y,0) =N (05 o, o] [H(0; yi,0%)

i=1
where we write the likelihoods as functions of the latent variable 6.

Now consider an approximating Gaussian distribution
q(0) = A (8 ; by, 02).
The evidence lower bound (ELBO) is

& =Eqllogp(y, 0)]+ Ej[—logq(0)].

The joint distribution. We can write the joint distribution as a scaled Gaussian
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These equations are slightly modified from (



The ELBO. We can analytically write the ELBO as
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The quadratic expectation is easy ( R ).

2 Univariate Model with Constraints

Consider the above model such that we perform computations in the transformed space
0" =1logh.
The joint distribution becomes
p(y,6)=p(y,exp67) - |det o, (67)]
=p(y,exp6T)exp6’.
The approximation is in the transformed space
CHENACHTNC}
The ELBO thus becomes
% =Ey[logp(y,exp 0 +6"+ Eq[—logq(ei)].

This is a bit trickier. We need the moment generating function of a Gaussian to evaluate
everything.
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3 Multivariate Model without Constraints

Consider the following d-dimensional model.

p(0) =AN(0; o, L4xq)
Pl 0)=A(¥i; 6,14xa)
The joint distribution is
p(3,0) = N0 tos Iaxa) | [ A0 yirTaxa)
i=1

where we write the likelihoods as functions of the latent variable 6.



Now consider an approximating Gaussian distribution
q(e) = ‘/V(Q 5 .u'q’IdXd)'
The ELBO is

£ =E,[logp(y,0)]+Ej[—logq(6)].
The log-joint distribution. = We can write the log-joint distribution as

1
logp(y,0)=¢+n) 60— EQTAJG

where
{= —% ((n+ 1)d log 27 + g pho +nyyi)
Ny = Mo+ Z Yi
A=+ 1)lld><d
These equations are slightly modified from ( : ).

The ELBO. We can analytically write the ELBO as
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The expectations are from ( , ).

4 Multivariate Model with Constraints

Consider the above model such that we perform computations in the transformed space
0" =1logh.
The logjoint distribution becomes
logp(y, 0) = p(y,exp 0") +log | det oy (6]
=p(y,exp6’) + Z 9;.
d
The approximation is in the transformed space

q(e-‘) = =/V(9 5 .u'q71d><d)'

The ELBO thus becomes

£ = E,[logp(yexp0")+ > 011+, [~logq(6")]
d

This is a bit trickier. We need the moment generating function of a Gaussian to evaluate
everything.
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