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I document how to calculate ADVI quantities (objective function, gradients) in closed
form for a few simple models. These are useful for testing.

1 Univariate Model without Constraints

Consider the following simple model.

p(θ ) =N (θ ; µ0,σ2
0)

p(yi | θ ) =N (yi ; θ ,σ2)

The joint distribution is

p(y,θ ) =N (θ ; µ0,σ2
0)

n
∏

i=1

N (θ ; yi ,σ
2)

where we write the likelihoods as functions of the latent variable θ .

Now consider an approximating Gaussian distribution

q(θ ) =N (θ ; µq,σ2
q).

The evidence lower bound (ELBO) is

L = Eq[log p(y,θ )] +Eq[− log q(θ )].

The joint distribution. We can write the joint distribution as a scaled Gaussian

p(y,θ ) = SJN (θ ; µJ ,σ2
J )

where
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These equations are slightly modified from (Bromiley, 2003).

1



The ELBO. We can analytically write the ELBO as

L = log SJ + log
1

q

2πσ2
J

−
1
2
Eq

�

(θ −µJ )2

σ2
J

�

+
1
2

�

1+ log 2π+ logσ2
q

�

= log SJ + log
1

q

2πσ2
J

−
1
2

�

(µJ −µq)2

σ2
J

+
σ2

q

σ2
J

�

+
1
2

�

1+ log2π+ logσ2
q

�

The quadratic expectation is easy (Roweis, 1999).

2 Univariate Model with Constraints

Consider the above model such that we perform computations in the transformed space

θ † = logθ .

The joint distribution becomes

p(y,θ ) = p(y, expθ †) ·
�

�det Jexp(θ
†)
�

�

= p(y, expθ †)expθ †.

The approximation is in the transformed space

q(θ †) =N (θ ; µq,σ2
q).

The ELBO thus becomes

L = Eq[log p(y, expθ †) + θ †] +Eq[− log q(θ †)].

This is a bit trickier. We need the moment generating function of a Gaussian to evaluate
everything.
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3 Multivariate Model without Constraints

Consider the following d-dimensional model.

p(θ ) =N (θ ; µ0, Id×d)
p(yi | θ ) =N (yi ; θ , Id×d)

The joint distribution is

p(y,θ ) =N (θ ; µ0, Id×d)
n
∏

i=1

N (θ ; yi , Id×d)

where we write the likelihoods as functions of the latent variable θ .
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Now consider an approximating Gaussian distribution

q(θ ) =N (θ ; µq, Id×d).

The ELBO is

L = Eq[log p(y,θ )] +Eq[− log q(θ )].

The log-joint distribution. We can write the log-joint distribution as

log p(y,θ ) = ζ+η>J θ −
1
2
θ>ΛJθ

where
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These equations are slightly modified from (Bromiley, 2003).

The ELBO. We can analytically write the ELBO as

L = ζ+η>J Eq[θ]−
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The expectations are from (Roweis, 1999).

4 Multivariate Model with Constraints

Consider the above model such that we perform computations in the transformed space

θ † = logθ .

The logjoint distribution becomes

log p(y,θ ) = p(y, expθ †) + log
�

�det Jexp(θ
†)
�

�

= p(y, expθ †) +
∑

d

θ †
d .

The approximation is in the transformed space

q(θ †) =N (θ ; µq, Id×d).

The ELBO thus becomes

L = Eq[log p(y, expθ †) +
∑

d

θ †
d ] +Eq[− log q(θ †)].

This is a bit trickier. We need the moment generating function of a Gaussian to evaluate
everything.
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