
Refactoring the ODE system. . . a proposal

ODEs solved in Stan have the form

dy(t)
dt

= f(t,y,θ)

with the inital condition

y(t = t0) = y0,

which fully defines the solution y(t) at all time points t > t0. Here the state y
has N components and the parameter vector θ is of size M . However, depending
on what is requested, we also need the gradients of y(t) wrt to the initials y0
and/or the parameters θ, which we construct with what is referred to usually as
forward sensitivity analysis.

The sensitivity of the solution wrt to a parameter pi is dy(t)
dpi

, which is the gradient
of y(t) wrt to pi. It can be shown that the N components of this gradient are
related to the base ODE system as

dsi(t)
dt

= ∂f
∂y si + ∂f

∂pi
with si(t = t0) = ∂y0

∂pi
.

First we recognize that we always need the Jacobian wrt to the states, ∂f
∂y . Next,

let’s consider these terms for the two cases sensitivities for either the initials or
the parameters:

• Sensitivities for the parameters: Then the term ∂f
∂pi

is the ith column of
the Jacobian wrt to the parameters, ∂f

∂θ . The term
∂y0
∂θi

is 0 since the initial
state does not depend on any parameter.

• Sensitivities for the initials: The term ∂f
∂pi

vanishes, since the solution
at time t > t0 does not depend on the initial (in fact it does, but only
implicitly). The term ∂y0

∂pi
is easiest written with the N terms collapsed to

a matrix (∂y0
∂y1

, ..., ∂y0
∂yN

) which are equal to the 1NxN identity matrix.

Collpasing now the two types of sensitivities in matrix notation with the defini-
tions

Sy0 =
(

∂y
∂y0,1

, ...,
∂y
∂y0,N

)

Sθ =
(
∂y
∂θ1

, ...,
∂y
∂θM

)

1



let’s us write the coupled ODE system in a compact matrix form, i.e.

dSy0

dt
= ∂f
∂y Sy0

dSθ
dt

= ∂f
∂y Sθ + ∂f

∂θ
.

Hence, for Stan we need in addition to the ODE RHS, which is f in the notation
above, also always the objects

• Jacobian wrt to states, ∂f
∂y

• Jacobian wrt to parameters, ∂f
∂θ

which we usually generate using autodiff. As any ODE solver used in Stan which
uses the forward sensitivity approach will need the above objects, I am proposing
to introduce the ode_model object. The ode_model object has as template
parameter the ODE RHS system functor. As its default implementation it
uses AD to generate the needed Jacobians. With template specialisations we
are then able to inject analytic Jacobians into the ODE code. This will be of
particular importance whenever AD becomes a performance bottleneck, i.e. for
very stiff systems which need frequent evaluation of the Jacobian OR whenever
the solution is requested with a high precision.

2


	Refactoring the ODE system… a proposal

