
Rationale for
Programming Languages — Ruby

IPA Ruby Standardization WG Draft

February 4, 2010

©Information-technology Promotion Agency, Japan 2010

ii

Contents Page

0 Introduction . 1
0.1 Organization of the document . 1

1 Scope . 2

2 Normative references . 2

3 Conformance . 2

4 Terms and definitions . 2

5 Notational conventions . 2
5.1 Syntax . 2
5.2 Conceptual names . 3

6 Objects . 3
6.5 Boolean values . 3

7 Execution context . 3
7.1 Contextual attributes . 3

8 Lexical structure . 4
8.2 Source text . 4
8.3 Line terminators . 4
8.4 Whitespace . 4
8.5 Comments . 4
8.6 End-of-program markers . 4
8.7 Tokens . 4

8.7.2 Keywords . 4
8.7.6 Literals . 5

8.7.6.1 General description . 5
8.7.6.2 Numeric literals . 5

9 Scope of variables . 5
9.3 Global variables . 5

10 Program structure . 5

11 Expressions . 5
11.2 Logical expressions . 5
11.3 Method invocation expressions . 5

11.3.3 Blocks . 5
11.4 Operator expressions . 5

11.4.2 Assignments . 5
11.4.2.4 Multiple assignments . 5

11.4.4 Binary operators . 6

12 Statements . 6
12.5 The while modifier statement . 6
12.6 The until modifier statement . 6

13 Classes and modules . 6
13.3 Methods . 6

iii

13.3.1 Method definition . 6
13.4 Eigenclasses . 6

14 Exceptions . 7

15 Built-in classes and modules . 7
15.1 General description . 7
15.2 Built-in classes . 7

15.2.1 Object . 7
15.2.1.2 Direct superclass . 7

15.2.3 Class . 7
15.2.3.3 Instance methods . 7

15.2.3.3.3 Class#new . 7
15.2.8 Integer . 8

15.2.8.1 General description . 8
15.2.9 Float . 8

15.2.9.1 General description . 8
15.2.9.3 Instance methods . 8

15.2.9.3.12 Float#round . 8
15.2.10 String . 8

15.2.10.1 General description . 8
15.3 Built-in modules . 8

iv

0 Introduction1

This Rationale summarizes the deliberations of Ruby Standardization Working Group, which2

has been established under Information-technology Promotion Agency, Japan (IPA) to codify3

the specification of the Ruby language. This document has been published along with the draft4

specification to assist the review process. In this Rationale, the unqualified “WG” refers to5

Ruby Standardization Working Group.6

In drafting the specification, the WG has set the following guidelines.7

� Use Ruby 1.8.7 as the primary reference implementation.8

� Intend that existing implementations without modification can conform to the specification.9

� Keep the specification as compact as possible.10

First, Ruby 1.8.7 is used as the primary reference implementation. Ruby 1.8 remains widely11

in use and there are several implementations which implement Ruby 1.8 features only. Also,12

it seems likely that Ruby 1.8 will remain in use in the years to come. Some might argue that13

Ruby 1.9 should be used as the primary reference, but Ruby 1.9 is moving fast and its features14

change frequently. A specification based on Ruby 1.9 would get quickly out of sync.15

Second, the WG intends that existing implementations such as Ruby 1.8.7, Ruby 1.8.6, Ruby 1.9,16

JRuby, Rubinius, and IronRuby can conform to the specification without modification. There17

are some features which are not implemented in some of the implementations or are different18

among the implementations. Those features are excluded from the specification, or described as19

either “implementation-defined” or “unspecified.”20

Finally, the WG tries to keep the specification as compact as possible. But the WG would not21

like the specification to be so compact that no useful program can be written. The current draft22

therefore includes those classes, modules, and methods which are widely used and necessary for23

basic programming tasks.24

The WG will add additional classes, modules, and methods which are useful for advanced pro-25

gramming tasks, to a revised specification in the future. The WG will also revise the specification26

to support Ruby 1.9 features when Ruby 1.9 gets widely used. The addition of those classes,27

modules, and methods and the support of Ruby 1.9 may be pursued concurrently if Ruby 1.928

gets widely used until the next revision of the specification.29

0.1 Organization of the document30

This Rationale is organized to parallel the draft specification as closely as possible to facilitate31

finding relevant discussions. Some subclauses of the draft specification are absent from this32

Rationale; this indicates that the WG thought no special comment was necessary.33

A reference prefixed by “Draft” (e.g. Draft §6.1) indicates that it is a reference to the draft34

specification, and a reference prefixed by “Rationale” (e.g. Rationale §6.1) indicates that it is a35

reference to this Rationale. An unqualified reference (e.g. §6.1) is a reference to both the draft36

specification and this Rationale.37

1

1 Scope1

2 Normative references2

3 Conformance3

Some syntactic constructs, including those of regular expressions, are omitted in the draft spec-4

ification according to the drafting guidelines, but a conforming processor may support such5

syntactic constructs. In this case, however, the processor shall accept any conforming programs.6

4 Terms and definitions7

Terms defined in the draft specification follow conventional usage among Ruby users.8

However, the term eigenclass is not widely accepted among Ruby users, and is arbitrarily se-9

lected from some candidates such as singleton class and metaclass because there is no term10

widely accepted among Ruby users. The term eigenclass is used in “The Ruby Programming11

Language”, which is a book written by David Flanagan and Yukihiro Matsumoto.12

5 Notational conventions13

5.1 Syntax14

Most of the syntax of the language is specified by production rules. However, some syntax is15

specified by verbal descriptions because it is impossible or difficult to specify by production16

rules.17

For example, the syntax of the nonterminal symbol line-content is specified with a verbal de-18

scription as follows (see Draft §8.5):19

line-content ::20

source-character+21

Any characters that are considered as line-terminators are not allowed within a line-content.22

Because a line-terminator may contain two characters, it cannot be specified as follows:23

line-content ::24

(source-character but not line-terminator)+25

Instead, it can be specified as follows, but it is more complicated than the definition with a26

verbal description.27

2

line-content ::1

((source-character source-character ?) but not line-terminator)+2

5.2 Conceptual names3

Ruby has some sets of nonterminal symbols which share similar semantics but which cannot4

be syntactically reduced to the same nonterminal symbol. Conceptual names are introduced5

to organize such sets of nonterminal symbols. For example, assignment is a conceptual name6

which represents assignment-expression or assignment-statement (see Draft §11.4.2.1). Note7

that conceptual names are not produced from the start symbol program.8

6 Objects9

The lifetime of an object and garbage collection are not specified in the draft specification because10

the WG consider them implementation details. Object allocation and garbage collection may11

be implemented in an implementation-defined manner; however, it shall not violate any other12

specification in the draft specification.13

6.5 Boolean values14

The term false has two related but different meanings in the draft specification, and they are15

distinguished by font faces. false (in typewriter face) represents a keyword, but false (in16

bold sans serif face) is distinguished from false and represents the only instance of the class17

FalseClass, to which false evaluates. The same font faces are used for the terms nil and true.18

The terms trueish value and falseish value are introduced to classify objects into two categories.19

Only false and nil are falseish values, and any other objects are trueish values.20

7 Execution context21

7.1 Contextual attributes22

Other than the stacks specified in the draft specification, Ruby 1.8 has another stack called23

ruby class. However, the draft specification employs a different model, where the head of the24

list on the top of [class-module-list] is used instead of the top of ruby class. This is because25

the top of ruby class and the head of the list on the top of [class-module-list] are the same26

class or module in most cases. The top of ruby class and the head of the list on the top of27

[class-module-list] can be different during an invocation of the method class eval of the class28

Module, but such a situation is described in Step b of Draft §15.2.2.4.15.29

3

8 Lexical structure1

8.2 Source text2

The draft specification does not support ISO/IEC 10646 but ISO/IEC 646:1991 IRV because3

the support of ISO/IEC 10646 is different between Ruby 1.8 and Ruby 1.9.4

Both Ruby 1.8 and Ruby 1.9 can handle multibyte characters, but in different ways. In Ruby5

1.8, strings can be encoded in ASCII, UTF-8, EUC-JP, or Shift JIS, but strings are basically6

treated as byte strings. Ruby 1.9 supports CSI (code set independent) multilingualization, and7

UTF-8 as one of supported encodings. Ruby 1.9 also supports various encodings such as ISO-8

8859-X, GB18030, BIG5, EUC-KR, CP949, KOI8-R, and KOI8-U, and strings are treated as9

character strings (or technically codepoint strings) in Ruby 1.9.10

The support of multibyte characters and ISO/IEC 10646 should be specified according to the11

behavior of Ruby 1.9 because Ruby 1.9 supports multibyte characters and ISO/IEC 10646 better12

than Ruby 1.8; however, the current primary reference is Ruby 1.8, and the support of multibyte13

characters and ISO/IEC 10646 is thus not described in the draft specification. When the primary14

reference is switched to Ruby 1.9 or 2.0 in the future, the support of ISO/IEC 10646 should be15

described in the specification.16

8.3 Line terminators17

The draft specification supports the use of either CR+LF (0x0d 0x0a) or LF alone (0x0a) as a18

line terminator, but not CR alone (0x0d), to be in line with existing implementations.19

8.4 Whitespace20

The draft specification does not include a line-terminator in the production rules of a whitespace21

because the distinction between a line-terminator and a whitespace contributes to the clarity of22

the specification. However, in Ruby, a line-terminator is often forbidden where whitespace shall23

not occur. The draft specification therefore forbids a line-terminator to occur at the location24

indicated by “[no whitespace here]”.25

8.5 Comments26

=begin and =end shall be at the beginning of a line in the draft specification because existing27

implementations accept them only at the beginning of a line. However, a conforming processor28

may permit whitespaces before them because such a syntax extension is permitted in §3.29

8.6 End-of-program markers30

In most of existing implementations, source characters after an end-of-program-marker can be31

read from an instance of the class IO which is bound to the constant DATA. However, the draft32

specification does not require this feature because it is not necessary for basic programming33

tasks.34

8.7 Tokens35

8.7.2 Keywords36

LINE , ENCODING , FILE , BEGIN, and END are reserved for the future use.37

4

8.7.6 Literals1

8.7.6.1 General description2

Character literals (e.g. ?a) are omitted in the draft specification because they evaluate to3

instances of different classes between Ruby 1.8 and Ruby 1.9; a character literal evaluates to an4

instance of the class Integer in Ruby 1.8, but to an instance of the class String in Ruby 1.9.5

An expression such as "a"[0] can be used instead of ?a.6

8.7.6.2 Numeric literals7

The draft specification does not require IEC 60559:1989 because Ruby is implemented on some8

platforms that does not support IEC 60559:1989 such as VAX. However, if the underlying9

platform of a conforming processor supports IEC 60559:1989, the representation of an instance10

of the class Float shall be the 64-bit double format in IEC 60559:1989.11

9 Scope of variables12

9.3 Global variables13

Ruby has some built-in global variables such as $1, which are semantically not global, but14

local. The draft specification does not specify such built-in global variables because they may15

be removed from Ruby in the future.16

10 Program structure17

11 Expressions18

11.2 Logical expressions19

The unary operator ! is a built-in operator in Ruby 1.8, but is a method invocation in Ruby20

1.9. Whether ! is a method invocation or not is thus implementation-defined.21

11.3 Method invocation expressions22

11.3.3 Blocks23

In contrast to Ruby 1.8, Ruby 1.9 does not allow some syntactic constructs such as constant-24

identifiers in a block-parameter. Whether they are allowed is therefore implementation-defined.25

11.4 Operator expressions26

11.4.2 Assignments27

11.4.2.4 Multiple assignments28

The term multiple assignment is less popular than parallel assignment among English speakers;29

however multiple assignment is used in the draft specification because Yukihiro Matsumoto, the30

creator of Ruby, prefer it.31

5

There are some incompatibilities in multiple assignments between Ruby 1.8 and Ruby 1.9. For1

example, x = *[1] sets x to 1 in Ruby 1.8, but to [1] in Ruby 1.9. Behaviors in such cases are2

described as implementation-defined in the draft specification.3

11.4.4 Binary operators4

The binary operators != and !~ are built-in operators in Ruby 1.8, but are method invocations5

in Ruby 1.9. Whether they are method invocations or not is thus implementation-defined.6

12 Statements7

12.5 The while modifier statement8

If the statement of a while-modifier-statement is a rescue-expression, most of existing im-9

plementations evaluate the statement once before evaluating the expression. For example,10

print("hello") while false prints nothing, but begin print("hello") end while false11

prints “hello”. The behavior when the statement of a while-modifier-statement is a rescue-12

expression is described as implementation-defined in the draft specification because the behavior13

of existing implementations is confusing, and may be changed in the future.14

12.6 The until modifier statement15

The behavior when the statement of an until-modifier-statement is a rescue-expression is de-16

scribed as implementation-defined in the draft specification for the same reason as a while-17

modifier-statement (see §12.5).18

13 Classes and modules19

13.3 Methods20

13.3.1 Method definition21

In existing implementations, the value of a method-definition is nil. However, it may be changed22

to return a more meaningful value such as a symbol which represents the method name in the23

future. The value of a method-definition is therefore described as implementation-defined in the24

draft specification.25

13.4 Eigenclasses26

Eigenclasses were originally introduced to implement singleton methods, and were hidden from27

users at that time. But once eigenclass definitions had been introduced, users began to use them28

for advanced meta programming. The draft specification specifies eigenclasses because they are29

widely used in these days.30

However, some details of eigenclasses such as their superclasses are different between Ruby 1.831

and Ruby 1.9. Therefore, such details of eigenclasses are described as implementation-defined32

in the draft specification.33

6

14 Exceptions1

15 Built-in classes and modules2

15.1 General description3

For the sake of brevity, the draft specification includes only classes, modules and methods which4

can be implemented in pure C89 without platform-specific extensions. If a method can be5

implemented easily in terms of other methods included in the draft specification, it is omitted.6

But if it is impossible or difficult to implement in terms of other methods included in the draft7

specification, the method is included.8

15.2 Built-in classes9

The following built-in classes are omitted in the draft specification.10

Method, UnboundMethod, Binding: These classes are omitted to keep the draft specification11

as compact as possible and because they are not necessary for basic programming tasks.12

However, they will be included in a future revision of the specification.13

Thread: It is omitted because it is not necessary for basic programming tasks, and is hard14

to implement on platforms which does not support threads.15

Dir: It is omitted because it cannot be implemented in pure C89.16

Continuation: It is omitted because it is removed from built-in classes in Ruby 1.9, and17

is hard to implement on some platforms.18

Data: It is omitted because it is used only for writing extensions using external languages19

such as C.20

15.2.1 Object21

15.2.1.2 Direct superclass22

The class Object has the class BasicObject as a direct superclass in Ruby 1.9. The draft23

specification therefore permits implementations where the class Object is not the root of the24

class inheritance tree.25

15.2.3 Class26

15.2.3.3 Instance methods27

15.2.3.3.3 Class#new28

Most of existing implementations invoke the method allocate on the receiver in Step b of29

Draft §15.2.3.3.3. However, the method allocate is not intended to be invoked directly by user30

programs. The draft specification therefore does not specify it.31

7

15.2.8 Integer1

15.2.8.1 General description2

Most of existing implementations have subclasses of the class Integer, the class Fixnum and3

the class Bignum. However, the draft specification does not require these subclasses of the class4

Integer because they are defined only in order to increase implementation performance.5

15.2.9 Float6

15.2.9.1 General description7

If an arithmetic operation involving floating point numbers results in NaN, an exception may8

be raised in a future version of Ruby. Therefore, the behavior in this case is left unspecified.9

15.2.9.3 Instance methods10

15.2.9.3.12 Float#round11

In some implementations, the method round is implemented as (x + 0.5).floor, where x is the12

value of the receiver, for positive instances of the class Float. However, if x is 0.49999999999999994,13

(x + 0.5).floor returns 1, in which case it is obvious that the resulting value is not “the near-14

est integer” to the value of the receiver. This behavior is caused by a rounding error when15

calculating 0.49999999999999994 + 0.5. The WG had considered it a bug, and reported it to16

implementors. It is thus specified as “the nearest integer” in the draft specification.17

15.2.10 String18

15.2.10.1 General description19

A character is represented by an instance of the class Integer in Ruby 1.8, but by an instance20

of the class String in Ruby 1.9. For example, "abc"[0] returns 97 in Ruby 1.8, but "a" in21

Ruby 1.9. The draft specification permits both representations.22

15.3 Built-in modules23

The following built-in modules are omitted in the draft specification.24

ObjectSpace, GC: These modules are omitted because they provide implementation depen-25

dent features and are hard to implement on some platforms.26

FileTest: It is omitted because it cannot be implemented in pure C89.27

Precision: It is omitted because it has been removed in Ruby 1.9.28

8

	Contents
	Introduction
	Organization of the document

	Scope
	Normative references
	Conformance
	Terms and definitions
	Notational conventions
	Syntax
	Conceptual names

	Objects
	Boolean values

	Execution context
	Contextual attributes

	Lexical structure
	Source text
	Line terminators
	Whitespace
	Comments
	End-of-program markers
	Tokens
	Keywords
	Literals
	General description
	Numeric literals

	Scope of variables
	Global variables

	Program structure
	Expressions
	Logical expressions
	Method invocation expressions
	Blocks

	Operator expressions
	Assignments
	Multiple assignments

	Binary operators

	Statements
	The JT1JY1while modifier statement
	The JT1JY1until modifier statement

	Classes and modules
	Methods
	Method definition

	Eigenclasses

	Exceptions
	Built-in classes and modules
	General description
	Built-in classes
	Object
	Direct superclass

	Class
	Instance methods
	Class#new

	Integer
	General description

	Float
	General description
	Instance methods
	Float#round

	String
	General description

	Built-in modules

