Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Software Architecture

Lab 1
Selenium

Part 1

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Rough Sketch

In order to get an idea how selenium is structured, the following sketch gives a nice
overview. Here we can identify several language bindings which are used by different
clients. Each language binding has the ability to establish a connection to the browser
drivers (e.g. IEDriver, FirefoxDriver, ...). These browser drivers act as a server in order
to retrieve some information about the web site or to manipulate the input. The
important point by using a client server architecture is, that a language independent
protocol is introduced for establishing loose coupling. Therefore there is no need to
implement each driver in each language. The common layer Atoms together with the
Google-Closure-Layer provide functionalities for all drivers. i.e. The so called Atoms is a
javascript library, providing functions which can be executed within all browsers initiated
by the respective browser driver.

Java dotNet (C#)

(Language Binding) (Languzge Binding)

Firefox

‘WebDriver

Wire Protocol
1SON

AN

The driver on the ,server” side are
implemented in different languages Eg
Firefox is implemented in Javascript like a
typical Firefox extension
Internet EX[]|0I'EI' Safari Driver The Intemet Explorer is deve loped partly in

P Javawhich then accesses C and C++
Driver (Safari Extension, Operations via the JNA interface
SIS : {lava=> INA > C > mp! er!ted i The part which is used in common are the
primitives of Firefox) C++-> COM) Javascript} so called Atoms” which are implmented as
aJavascript library Consider this is not a
layer which could be used by all drivers. In
runs directly in the browser. ETE fact the IE Driver first used the compiled
(extensions). E.g.: Firfox, Javascript Version as Constants in C++ S0
but the IE driveris not Google Closure the Atoms are more like a common code

directly integrated into the IE which could used in different areas.
- /
¢)

important: Not all drivers are
standalone instances, some

Qualities & Tactics

Usability

The quality usability describes how easy it is to use an object, in our case Selenium.
There are a vast of different quality attributes regarding usability:

e How easy it is to write my first browser automation with Selenium?
e How easy it is to maintain my code when the codebase is getting bigger?
e Are utility functions which are helping me to reach my goal available?

2

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

How many lines do | need to do certain things?
How detailed is the documentation?

Are there active support forums?

Is there a real customer support?

Some points mentioned above are not part of this elaboration about the software
architecture such as support and the quality of the documentation but during our
research we used them a lot to gather information and knowledge. Hence we can say
that Selenium has a very active community organized in different forums and the
documentation of the project is in the most times very useful and has high quality.

Language bindings

The nature of Selenium is that their users are software developer. This means all
potential users have some programming knowledge but generally you can not assume
that all of them have the same skill level or know the same languages. To tackle this
problem the contributor to Selenium decide to offer language bindings to their browser
automation in all main languages from a web technology point of view. The
available language bindings are written in Java, JavaScript, Perl, PHP, Ruby, C# and
Python.

Concise API

Besides the language bindings in different languages the selenium team took also many
decisions in the codebase to improve the usability. To have an example we take a look
at very basic code snippet from the official documentation:

package org.openga.selenium.example;

import org.opendga.selenium.By;

import org.openga.selenium.WebDriver;

import org.openga.selenium.WebElement;

import org.openga.selenium.htmlunit.HtmlUnitDriver;

public class Example {
public static void main(String[] args) {
// Create a new instance of the html unit driver
// Notice that the remainder of the code relies on the interface,
// not the implementation.
WebDriver driver = new HtmlUnitDriver () ;

// And now use this to visit Google
driver.get ("http://www.google.com") ;

// Find the text input element by its name

"

WebElement element = driver.findElement (By.name ("q"));

// Enter something to search for
element.sendKeys ("Cheese!") ;

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

// Now submit the form. WebDriver will find the form for us from the element
element.submit () ;

// Check the title of the page
System.out.println ("Page title is: " + driver.getTitle());

driver.quit () ;

}

If the JAR-files are in place this is a fully working Java example and basically opens the
URL “http://www.google.com”, writes in the field “q” the word “Cheese!” and submits the
selected field. As we can see every line is very concise and therefore very intuitive and
easily read. To achieve this the selenium team tries to name all functions and objects as
concise as possible. In addition they try to help the developer during coding by placing
not to many functions and only relevant functions in the classes which the user uses
to interact with the API. Hence if the users is pressing Ctrl+Space on a object in his
favourite IDE the IDE displays only relevant functions and hopefully from the names of
the functions he roughly knows what they do. One central class which facilitates this is
the class By. It basically offers all different types of possibilities to get a WebElement.
For example to select by ID, class or XPath. When you are calling a function on the
class By it just delegates the call to the respective function in the class Webdriver. This
function could have been called previously and directly by the user in the class
Webdriver but using this class By, the code is more readable and in the class By are
only functions to select a WebElement. Therefore working in an IDE the IDE just
suggest functions to select a WebElement and not all the other functions available in the
WebDriver class.

Consistent APl implementation

Another important chosen tactic is a consistent APl and implementation across all
different browsers. When the user uses the API across different browsers the
functions should return the values in the same format and the algorithms to retrieve the
value should concern all browser-specific quirks. For example the API assures that CSS
colours are returned always in the same format. The problem is here that some browser
for the color black would return the value “#000” where other browser would return
“#000000”, “rgb(0,0,0)” or even “black”.

Pattern support

Selenium tries also to sustain the user when he is applying established patterns to his
code base. For example the class PageFactory sustains the software developer when
he wants to use the page object pattern. With the PageFactory he just needs to define
a class for each web page or module of a web page and within the class, members for

4

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

each element on the page or module. Afterwards the class can be passed to the
PageFactory which instantiates the class members regarding their name with
WebElements from the page or module. The newly created object can then be used for
further processing or asserting and the user doesn’t need to search for every single
element on the page or module.

Help and support functions

To further improve the usability Selenium provides many utility and help functions.
For instance in the Java language binding there is a whole package with support
classes to make the use of the API as easy as possible. Also when it comes to find the
executable file of a browser Selenium tries to find the browser on the default location
for the actual operating system. Selenium tries also to make the exceptions from the
webdriver as verbose and informative as possible. This is actually helpful when user are
contacting the developers for help because then a lot of information is already available
in the exception message and it is more unlikely that the users forgets to include
something.

Doesn’t promise something which can’t be kept

Finally Selenium doesn’t try to make promises which can’t be hold. For instance with the
todays technologies it is not possible to precisely define when a page has finished
loading. Some user may say the page is loaded after all pending AJAX calls are
finished, some may say after the whole DOM is available. Another problem is to define
the term when it comes to AJAX calls which are scheduled every second or pages with
an infinite scroll. When is the page loading finished on these pages? For all kind of
these problems Selenium pushes the responsibility to the user and the user has to
provide his own synchronisation. This maybe sound inconvenient and maybe some
user claim that this is a usability flaw. But as mentioned it is not possible to tackle this
problem in a clear way and therefore Selenium doesn’t try to do it.

Modifiability

Selenium is a very big open-source software project. The most special thing about the
project is that there are used over 5 different programming languages. As mentioned in
the last chapter this is necessary to provide a good usability of the project and of course
this introduces a lot of complexity in the project. Another important point about the
project is that the goal is to sustain as many browsers as possible. This basically means
that with language bindings available in x different programming languages it should be
possible to steer y different browser. It is very obvious that this could led to a
complexity explosion towards x times y. To avoid this problem the whole project
should be very fast and easy to modify.

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Thin language bindings

One tactical design decision was to keep the language bindings as small as possible
and to move as much code as possible in the different webdrivers. Hence the
language bindings easier to maintain because they are small and in addition there is
less code written in different languages. They also decided to introduce uniform
communication protocol between the language bindings and the different webdrivers.
This communication protocol is realized with HTTP and JSON and so very similiar to a
RESTful communication. The uniform protocol allows to reuse a lot of code and
therefore also helps to keep the language bindings thin.

Atoms

Browser automation atoms are JavaScript code blocks which are used across all
driver implementations. Instead of implementing in every single driver the same
functionality the code is written at one central location. During the build this so called
atom is then copied as compiled fragment into the webdrivers. The benefit of this tactic
is that a bug in the functionality of a driver could be found in one of these atoms. Solving
the bug would then solve the problem in all driver implementations rather than in
only one webdriver implementation. In addition with this approach it is much more
easier to test functionality of the webdrivers because all atoms related test can be
tested separately.

Cross-language build system

As there are so many different languages and also cross-languages dependencies the
build is very complex. To solve this problem Selenium has a cross-language build
system with rake. This build system allows to build each system separately with
cross-platform dependencies such as browser automation atoms. This powerful build
systems cuts the development time drastically and hence supports the overall
modifiability of the project.

In-browser development

One of the most important parts of Selenium are the automation atoms. They are
shared over all driver implementation and therefore it is very important to have as few
as possible bugs in the atoms. A bug in an automation atom would cause a
misbehaviour of all webdrivers which are using the atom. To make the development of
the automation atoms as easy as possible the test suite is built to use directly in the
browser. This is much more comfortable then running the test in a CLI-interface and it
is very easy to set breakpoints.

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Continuous integration

Another point to consider is that not all browser can run on every operating system.
Therefore for most of the developers it is not possible to run the integration tests
for the projects on their systems. To solve this issue the Selenium project provides a
service hosted by Sauce Labs to run the integrations tests. This lowers the barrier for
new contributor and it also speeds up the development time hence improves the
modifiability of the project.

Scope of the Model

Considering the diagram in the section “Rough Sketch” we could see the high number
of language bindings and browser drivers. In order to describe Selenium Web API
appropriately it was decided to focus on one specific browser driver and one language
binding implementation. Therefore we chose Java as the binding and the
“IEDriver’-implementation as the concrete driver. In contrast to the selected language
binding the Internet Explorer Driver was implemented in C++. Hence we used Eclipse
and Microsoft Visual Studio 2013 as environment for structural and behavioural analysis
of the code. Although it was quite hard to read C++ code, we thought it reflects the
components and connectors quite well by preferring deeper instead of broader analysis
of n * m language bindings and drivers implementations.

14.12.2014

«parts parts

sparts
[E3, converter: JsonToWebElementConverter| [E, webDriver: WebDriver

=4 executor: CommandExecutorConnector

Selenium WebDriver

il aer commuricaions ver hag L

_ 5

B inout value: Ohjert [€3 AuM_ [l inout value: Object &l out command: Command[3] =& T e (@)
El out request: HiepUriRequest IW_
B in response: Response AIL _MI [l out response: Respanse

[# in response: HttpResponse|é—

[l out request: HitpUriRequest

[in response: HipResponse

«parts
[Eg, webElement: WebElement

Y
hal

E] out command: String |

El out command: String

T

B in command: String | €= m [E] out command: String !
[\ [in response: String €= “

|

[E] out response: Respanse m m [in response: Response

" [in response: String

Firstos Maricnss aver sackets L

Safiri awer web sackets

wparts
3w uchScreen: TouchScreen

El out command: String

sparts
[, htmiSFeatures: HtmiSFeatures

parts
[Eg, executeMethod: ExecuteMethadConnectar

&| El out command: String B in command: String | €= El out command: Command

¥ <«
-
[El out respanse: Object ur m

[in response: Dhject

m [in respanse: Response

sparts
[mouseAndKeyboard: MouseAndKeyboar

¢&| & outcommand: Command

m B in flowpert: Object

Software Architecture Lab 1
component & connector View

Group 7

Selenium WebDriver

Software Architecture Lab 1

Group 7

14.12.2014

sblocks

B Seleniuim IEDriver

~parts
1 webServer: HTTPServerConne ctar

“patts
15 sessio

v |ESesian

3| in httpRequest: HTTPReguest

El out command: DesenalizedComman

[in serializedfiesponse: SerializedRespanse

I
oL
£
m
E
=

N

£ aut httpResponse: HpRespanse

=
€| B out serialzedRespanse: SerializedResponie

3| B incommand: DeserializedCommand

& aut command: DeserializedCammand -2

S in serialized_Respanse: SerializadRespance

rE

51 elementWrapper: ElementWrapper

parts

[in foundElement: Element

= out elementinfo: Elementinfa [}

parts

[elementRepo: ElementRepasitor

B inout saveElement: Element.

=parts
= elementFinder: ElementFinder

& inout foundElement: Element ﬂ

\

B inaut elementTaFind: Elementg
= in elementTafind: Element

1 part3: ElementFinderSeriptConnectar

= executar: Comn

i aparts =

annector

]

H inout foundElement: Element

& jnout elementinf

E ingut inputCmd: InputCemmand

& in gettmd: GetCommand

lementinfo

B inout statusCode: StatusCode

&l aut elementToFind: Element

FA inaut saveElament: Elament

[

<parte

H in inputSequence: inputSequence

parts
[=1 part?: InputScriptConnector

£l out scriptSre: <Undefined>

&
)

2 inout statusCode: <Undefined> ﬂ

E out foundElement: Element

riptE

El out seriptSee: SeriptSource [

d: DeserialzedCommand

=) cemmandHandler; CemmandHangler

aparts

El aut senalizediesponie: SerializedResponse

<]
(3| © i commandRndParams: Dese

H in elementinfa: Elementinfo

[€] @ out gercme: GetCommand
B El
[«

[in statusCade: StatusCode
& inout resourcePtr COMResource (€

[# in executionMesult ScriptExecutionResult

[€] # outinputCommand: InputCammand

lizedCommand

{1}

cparts
1 inputMgr: Inputhlgr

lis]

= inout inputSequence: inputSequenice

= inout statusCode; Status Code

inaut resourcePtr; COMResource)

out inputTaSend: OSLevellnput [

—

Sl

1 part]: AtomScriptEsecutar

oy

£l out arg: Actia

5

£ aut executionReiult SeriptExecutionReult \

atusCotle: StatusCode

B in scriptSee: SeriptSaurce

B inout resource: COMResaurce

aparts

=l camObjectCannector COMCennectar

&)

A.M_ 8 inaut resourcePtr: COMResource
inout FeundReseurce: COMResaurce V2 o

=]
B inaut statusCode: StalbgCode

B ina cggn! COMResource

inarg: Actionfrgument

parts

scriptWrapper: ScriptConnector

nout executionResult SciptExecutionResult

out seriptSre: <Undefined>

aparts

= oslevelConn: OSLevelCannector

3] H ininputToSend: OSLevelinput

El outinputToSend: OSLevellnput [3]

) out osLewvelCall: OSLevelinpul

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Supporting Connectors

Modifiability

As it was already explained, Selenium uses a “REST"-ish interface which controls the
communication flow between the language binding and the different browser drivers.
Therefore we would point out the HTTPServerConnector at the browser drivers’ side
and the CommandExecutorConnector at the language binding side. These two
connectors facilitate the loose coupling of the two stated entities. Suppose that this
would not be the case, tight coupling would the developers force to consider n * m
implementations for Selenium WebAPI and the complexity would appear on all locations
and language bindings. Due to this failure of encapsulating complexity in only a few
locations (e.g. at browser drivers’ side) the quality of modifiability would be ruined.
Therefore a language independent HTTP and JSON data exchange using the
HTTPServerConnector and the CommandExecutorConnector facilitates
modifiability.

At the language binding side the CommandExecutorConnector encapsulates all the
functionality which is needed to communicate in the right way with all different browsers.
For example the Safari exposes instead of an HTTP endpoint a websocket to
communicate. In this case the connector is responsible to translate the command into a
string representation and send it over the websocket connection instead of sending a
HTTPUriRequest. As we can see the component WebDriver doesn’t care with which
browser the communication is established. Therefore when we want to change how the
language binding communicates to a specific browser we only have to look at the
connector. This encapsulation of course increases the modifiability because specific
code changes need to be applied only at one location.

After a successful communication with the browser over the corresponding connectors
the webdriver receives from his connector a response object. By using the
JsonToWebElementConverter he translates every JSON object with the form
{"ELEMENT": id} into a WebElement. Here we can see that Selenium doesn’t
distinguish between different HTML elements and instantiate everything as a
WebElement. This conversion and the convention to mark WebElements with
‘ELEMENT” is very generic approach and helps to reduce number of code lines. With
less code lines normally when it comes to modify something there are also less places
where to modify and hence improves the modifiability.

10

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Finally the importance of the use of atoms should be emphasized by considering
different connectors which enables access to the execution of atoms in the browser. Of
course, as it was already discussed, atoms support the modifiability throughout the
application. By providing atom connectors like InputScriptConnector,
ElementFinderConnector or simply the ScriptConnector, the execution of different
commands (e.g. key input, element finding etc.) is mainly done within the javascript
execution environment of the browser. This ensures that a large part of the complexity
could also be encapsulated in one place, which facilitates the reuse of this fundamental
building blocks, called atoms.

Usability

Usability is a very important non functional property of the Selenium project. The
HTTPServerConnector and the CommandExecutorConnector play again a central role
to enable this property. The connectors are mainly responsible for the communication
between the language binding and the driver. Without these clear separation it would be
very difficult for the developers to maintain so many language bindings and browser
drivers at one time. Hence they also play an important role regarding the usability of
the project.

Another connector is the ExecuteMethodConnector. He is responsible that all
components are calling the webdriver in a clear way. These components encapsulate
the logic to call commands which steer different interfaces of the browser such as
mouse, keyboard, touchscreen or HtmI5 features like local storage. Normally these
function could also lie in the webdriver implementation but with this separation the user
can execute for instance a mouse click very verbose by calling
webdriver.getMouse().Click(); which of course enhances the usability of Selenium.

Role of the connectors:

HTTPServerConnector

The HTTPServerConnector acts as a converter by parsing the HTTP request with
JSON content. Finally the role of being a facilitator is also fulfilled by this connector,
due to providing a link between the language binding and the browser driver. By
assigning the incoming requests to command types the HTTPServerConnector also
prepares the coordination task for deciding which command is handled by which
command handler.

11

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

InputScriptConnector, ElementFinderConnector and ScriptConnector

These three connectors are quite similar, because each of them establishes a link to the
execution of javascript atoms. Because of the already mentioned advantage of using
atoms, namely the reusability of code throughout the project, the script connectors
become important parts of the browser driver. By giving access to this central defined
code, we could speak about facilitators.

CommandExecutorConnector (IEDriver)

Different roles are combined here. First, several links are provided to different key
components like the InputManager or ElementFinder (Fascilitator). Secondly, incoming
commands are handed over to the specific command handlers, therefore the
CommandExecutorConnector coordinates which handler is the right one for a concrete
task (Coordinator).

CommandExecutorConnector (Language Binding)

The roles of the CommandExecuteConnector are communicator, coordinator and
converter. It implements different communication mechanism (communicator),
coordinates the communication with timeouts and asynchronous calls (coordinator) and
converts the commands in the right format for the communication (converter).

JsonToWebElementConverter

The role of this connector is the conversion from JSON to the corresponding
WebElements of a response. Hence he has only one role, conversion.

ExecuteMethodConnector

The ExecuteMethodConnector has the main roles communicator and coordinator as
he facilitates the communication between the component WebDriver and the different
interfaces of the browser.

Model-to-Implementation Information

Selenium IEDriver

The component & connectors’ diagram was realized in a bottom-up way. After having a
look on the general architecture and the overall structure we decided to analyze the
code base of the IEDriver C++ project. Therefore the implemented components and
connectors were built upon classes and program language level interfaces. In order to
stay on the same abstraction level and to provide a certain amount added value in the
model we did not only just map the classes to components but rather performed some
aggregation. E.g. we introduced the “HTTPServerConnector” as a bundle of a couple

12

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

of classes, which take care for the request and response parsing as well as the
initialization of the session and the forwarding of JSON-object commands. The following
ct+ classes, located in the namespace “webdriver-server”’, “IEDriver” and
“IEDriverServer”, in the implement this behaviour:

e |EServer.cpp

e Server.cc

e \WebDriver.cpp

e |EDriverServer.cpp

Code snippets of server.cc show for example the dispatching of command method
signature as well as the binding of URLs to Commands, which are main connector tasks
of a typical coordinator (defines the used commandtype, which is the foundation for
deciding which command handler should act):

void Server::PopulateCommandRepository() {

this->AddCommand("/session/:sessionid/touch/click", "POST",
webdriver: :CommandType: :TouchClick);
this->AddCommand("/session/:sessionid/keys", "POST",

webdriver::CommandType: :SendKeysToActiveElement);

std::string Server::DispatchCommand(const std::string& uri,
const std::string& http_verb,
const std::string& command_body) {

bool session_is_valid = session_handle->ExecuteCommand(
serialized_command,
&serialized_response);

Secondly the different script connectors come into play: [nputScriptConnector,
ElementFinderConnector and ScriptConnector

The model-to-implementation mapping for these connectors could be described by
having a look into the corresponding c++ classes.

e ElementFinder.cpp

e ComandHandler.cpp

e InputManager.cpp

13

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

These classes make use of a handle named Script which is used similarly in each
implementation. The following code snippet shows how Script is used to execute a
mouse button down command:

std::wstring script_source = L"(function() { return function(){" +
atoms::asString(atoms: :INPUTS) +
L"; return
webdriver.atoms.inputs.mouseButtonDown(arguments[0]);" +

L0057
CComPtr<IHTMLDocument2> doc;
browser_wrapper->GetDocument (&doc);
Script script_wrapper(doc, script_source, 1);
script_wrapper.AddArgument(this->mouse_state_);
int status_code = script_wrapper.Execute();

As we can see in the given code, an additional handle CComPtr is used within Script
which provides access to the com object interface of the IE Browser. So the task of
Script is to perform the execution of javascript code by making use of the specific IE
interface.

In order to model the different connectors InputScriptConnector,
ElementFinderConnector and ScriptConnector we just made a difference for each of
them by considering in which context Script is used. Of course we could have modelled
only one connector, but we decided to identify different ones, because there were
different kind of data flows processed. (e.g. InputScriptConnector just performs write
operations on the current browser page, the ElementFinderConnector retrieves
elements and the ScriptConnector works as a connector for command handler specific
queries.)

Language binding

With the Java language we proceeded the same way as with the IEDriver. After drawing
the class diagram we discovered that the main functionality is exposed by the
interface WebDriver. Hence we aggregated all implementing interfaces and utility
classes in the component WebDriver where the most important are:

RemoteWebDriver

FirefoxDriver

SafariDriver

InternetExplorerDriver

ChromeDriver

HtmlUnitDriver

14

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

The main implementation of the interface WebDriver can be found in the class
RemoteWebDriver. Most of the other mentioned class inherit from the
RemoteWebDriver and add browser-specific capabilities, properties and behaviour. The
exception is the HtmlUnitDriver which directly implements the WebDriver interface
because it doesn’t have to talk with the HtmlUnit browser over a remote connection. In
the code snippet you can see a part of the execute function of the RemoteWebDriver.
The code snippet below shows how a command in the RemoteWebDriver is passed
over to the CommandExecutorConnector and in addition it shows the conversion of the
response value to WebElements with the JsonToWebElementConverter.

log(sessionld, command.getName(), command, When.BEFORE);
response = executor.execute(command);
log(sessionld, command.getName(), command, When.AFTER);

if (response == null) {
return null;

}

/' Unwrap the response value by converting any JSON obijects of the form
/[{"ELEMENT": id} to RemoteWebElements.

Object value = converter.apply(response.getValue());
response.setValue(value);

In the code snippet we have seen the link between the WebDriver component and the
first class connector CommandExecutorConnector. The CommandExecutorConnector
is responsible for the communication between the language binding and the different
web browsers and aggregates many classes and interfaces. The most important ones
are:

e CommandExecutor

e HttpCommandExecutor

e JsonHttpCommandCodec

As the name suggests the class JsonHttpCommandCodec is responsible to decode and
encode the commands sent between the driver and the language binding. The send
mechanism is exposed by the CommandExecutor interface and the main
implementation of this interface is located in the HftpCommandExecutor. The following
code snippet from the HttpCommandExecutor shows how the command is encoded and
then send over the function fallBackExecute to the browser. Afterwards the program
follows all redirects on the page if there are any and returns the response.

15

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

HttpRequest request = commandCodec.encode(command);

log(LogType.PROFILER, new HttpProfilerLogEntry(command.getName(), true));
HttpResponse response = fallBackExecute(context, httpMethod);
log(LogType.PROFILER, new HttpProfilerLogEntry(command.getName(), false));

response = followRedirects(client, context, response, /* redirect count */0);

return createResponse(response, context);

Complementary View

For the complementary view we used an interaction view. This view describes how the
different components and connectors interact with each other and how the different
browsers can be managed with just one single implementation.

For this we used the component & connector view as a basis. It gives an overview
which components must interact in some way and on which basis this is achieved. The
first diagram shows the IE Selenium Driver and it's different interacting components.
The main connector that provides the handling between the single components, is like
in the component & connector view of the Selenium IE Driver, the CommandExecutor.
On the other side is the java language binding. This part of Selenium was also one main
part that we had to analyze. As we have seen in the component & connector view the
main connector that is the same as it is in the IE driver package, was the
CommandExecutor.

To link those two together the HTTPServerConnector in the IE driver (the other drivers
are pretty similar to this one) takes the HTTP-requests, processes them and sends a
certain code back to the language binding. To show this relationship between those two
the following code snippet of the server.cc is used:

int Server::OnNewHttpRequest(struct mg_connection* conn) {
mg_context* context = mg_get_context(conn);
Server* current_server = reinterpret_cast<Server*>(mg_get user_data(context));
mg_request_info* request_info = mg_get request_info(conn);
int handler_result_code = current_server->ProcessRequest(conn, request_info);
return handler_result_code;

16

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

At the current server the new process request received and at the next step the request
is further processed and after it finishes the result_code is sent back.
The steps in between are shown as an example in the next code snippet. It is also from
the server.cc class, but it shows a different part of the component. Also the session
comes into play and is a part of the process chain.
server.cc:
std::string Server::DispatchCommand(const std::string& uri,

const std::string& http_verb,

const std::string& command_body) {

bool session_is_valid = session_handle->ExecuteCommand(
serialized_command,
&serialized_response);

return serialized_response;

}

IESession.cpp:
bool IESession::ExecuteCommand(const std::string& serialized_command,
std::string* serialized_response) {
::SendMessage(this->executor_window _handle_,
WD_SET_COMMAND,
NULL,
reinterpret_cast<LPARAM>(serialized_command.c_str()));
.:PostMessage(this->executor_window_handle |,
WD_EXEC_COMMAND,
NULL,
NULL);

int response_length =
static_cast<int>(::SendMessage(this->executor_window_handle_,
WD_GET_RESPONSE_LENGTH,
NULL,
NULL));
LOG(TRACE) << "Beginning wait for response length to be not zero";
while (response_length == 0) {
/I Sleep a short time to prevent thread starvation on single-core machines.
::Sleep(10);

17

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

response_length = static_cast<int>(::SendMessage(this->executor_window_handle_,
WD _GET_RESPONSE_LENGTH,
NULL,
NULL));
}
std::vector<char> response_buffer(response_length + 1);
::SendMessage(this->executor_window_handle_,
WD_GET_RESPONSE,
NULL,
reinterpret_cast<LPARAM>(&response_buffer[0]));
*serialized_response = &response_buffer[0];
bool session_is_valid = ::SendMessage(this->executor_window_handle_,
WD _IS_SESSION_VALID,
NULL,
NULL) != 0;
return session_is_valid;

}

This short code snippet shows how the server knows which session is online and on
which browser it is running. One thing not shown in this code is the method call to look
up all sessions that are running, but it is clear how this is done within the code. There
are some more classes involved in the part of executing a command after it is received,
but it would be too big to outline every single class in this document.
As we said before the second part was to analyze the language bindings in the code.
The classes that are most interesting here are:

e webdriver

e commandExecutor

These two are the main actors and do the processing between the commands from the
Mouse, Keyboard and many other things, and the HTTPExecutor. The webdriver class
is like we said before just an interface that is used by the remoteWebDriver class. This
class is then implemented by all the specific browsers and is easier to be accessed and
edited. The commandExecutor is the interface between the language binding and the
special drivers and communicates with both sides.

18

Software Architecture Lab 1

Group 7

Complementary View

Selenium WebDriver

i

IIIN‘U'HMMW“"W”%E e
_'I

2 -
£ =
!__]g i |§
po |
oy g A -
= - e
2 k] §|
£ :
i
A S i L"
3 3
E] =
. =
8
=
E
=

s

|
|
_.___%__‘_‘_
|
—

wl?mupuluw:)iwmﬂi_‘_'_

|1‘||n.||‘|i‘nu|Nmu>1mm.~$

::\mmﬂt

[g L)

|
‘ BRI g L ‘

iy
g }(il

14.12.2014

£

=

3

£
-
£
g
=
=
£

ﬂuudw:mmulﬂ

TRUECHR A -

‘ T T ‘ ‘pguqimww il L ‘

r fanug 3 f{l

g

Java language Binding

19

Software Architecture Lab 1
Group 7

Selenium WebDriver
14.12.2014

T

g
.
Iuoratjuas 5LIM

[waning i

-0
B
e
]
=
=
3
g

sy

M

=
=
g

™ DonaiBiguiasdues .

__‘_
|
|
|
I
|
|

l‘.umd'um]mp\uw =

[t)M"?F“%

i &

I3 e
T

O

[aaipns -

AL

gt

e T e
|
|
|

1 {radde g P

TFlles -y

[E TR T h

|

apadiy

51

Ry

Diundiagis g

mucd:a.huhuw:-mmm»r:m'. d
'

i

1
1
1
I
|
1
1
| ARG U | |

L |
| L]

faunggreyifaumgnda £

A Id!"lﬁ

g [

IE Selenium driver

20

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

I[E Selenium driver

The approach for this view was to analyze the component & connector view and to take
the code basis for checking which different methods and parts are interacting between
the components. In the interaction view the same basic components are used, but there
are some parts that are shown more in detail like the response.cpp class. This class is
for handling the responses that are sent back and forth between the session, the
executor and the handler classes. It is analyzing the different commands that are sent
via the executor from the session to the handler and sets a specific response for every
single command.

But the first part of the interaction view is the webserver that is called upon a new
HTTP-request. Before it can receive any HTTP- requests, the server has to be initialized
and running. After the request is received the server processes this request through
various stages. It is processed to the session, that was looked up before by the server.
If the command before is invalid or points to a wrong url, the serialized response that is
sent back is put together by hand.

In the specific IESession the command is executed and is evaluated too. This is
happening in the other specific sessions too like firefox session or something else. The
session is initialized by the webserver when the lookup is done. The specific session
has than to check whether the command executor is running and if the component is
registered there. Only if this is positive, commands can be sent and executed. For this
five actions has to be taken.

Sending a command consists of five actions:

1. Setting the command to be executed

2. Executing the command

3. Waiting for the response to be populated

4. Retrieving the response

5. Retrieving whether the command sent caused the session to be ready for
shutdown

This part is taken from the code as a comment from a developer. It describes exactly
what has to be done to reliably execute a command and get the right response for the
client back.

As long as there are commands to be executed the session takes them and tries them
to execute. This can result in many different outcomes. After finishing with all
commands those results are sent back to the client in a serialized way. At the end of the
program, a shutdown sequence is initialized by the server to shutdown the sessions,
and afterwards itself.

21

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

But let’s look at the executing of one single command. A really important aspect in that
case is the command executor. This class is exactly drafted for executing and handling
commands and therefore is the main part in this action. It has to get the response for
the right command and the right handling. This means, it has to call the command
handler class and also the response class in order to produce a valuable outcome. This
has to happen for every single command that is in line for execution.

Also the element that has to accessed by the command has to be found by the
command executor in order to get the command at the right element. If for example a
click has to be made, it has to be evaluated if the click can even be done on the
element. If this part is not clickable an error code is sent back and the execution is
aborted.

The command handler class is not really one simple class, but many classes that
abstract the IECommandHandler class for the IE driver. This means that there is for
every single command a specified command handler that has to be called by the
executor. To simplify this we used one overall class to show how this is done. All in all
the interaction view is a simplified version of how the real access is done and how to
single modules are interacting between each other.

Java language binding

The second part of the component & connector view is about the java language binding
and how this helps to develop a well maintainable system and also a useable system
that is not to hard to understand, if someone would like to adapt one certain aspect.
We used mainly the same components for the complementary view, we just simplified
some interactions. This helps to understand how the language binding is achieved. One
exception is the response class, that is also introduced into this view.

The main component of the view, that is in addition the main component for the whole
project is the webdriver, that is implemented by every single webdriver like firefox, IE or
safari driver. At the beginning it has to be initialized, the special options here are the
desired capabilities and the required capabilities. These two options are never the same
for different browsers, so they have to be specified for every single one. Also for every
single implementation the desired capabilities could be something else, so for every run
a user uses Selenium for, he is enabled to change them as he likes.

After the initialization has finished the client and the session have to be started, the
session also with the capabilities that were specified before. The next step is to execute
the commands, that are then sent to the client and are performed. There are many
options for how a single command could look like and this is shown with the view with
the loop and the execute method calls.

22

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Selenium is able to execute more or less every single input that is available on a device.
This can cover a touch, a mouse click or just a keyboard button. It could also be a
command that is done by a web element. For example the remoteMouse and
remoteKeyboard classes were introduced, so that a user of Selenium could easily click
the mouse or the keyboard.

Model Consistency Arguments

In the two views many similar components can be found. As we can see in the
component & connector the view, the webdriver class is the main part that has to be
called. Also in the interaction view the webdriver is the most important class that we
looked into. In both views the command is passed on to the next class/component. This
is done in the interaction view via method calls.

This is also done in the IE Selenium Driver, there we used the commandExecutor in
both views. In the component & connector view this class is not a single class like in the
interaction view, but a combined component out of different classes. In the interaction
view this is split up into more than one class, this reflects with the response class and
the commandExecutor.

The component & connector view was the basis of the complementary view and every
change was first applied to the component & connector view and was afterwards
reflected to the complementary view. This methodical implementation of changes
ensures that the views stay consistent. It also helped to clarify the views, and to bring
out the important components, that are also important for the complementary view.
Both the complementary view and the component & connector view use the same
names for components and connectors. This approach ensures that these are used
consistently and no naming confusion occurs. The only difference between the two
views is, that in the interaction view some components are split up into several parts
that are needed like that for the interactions. One important class that we drawed just in
the interaction view is the response class. This is because we aggregated this class into
the commandExecutorConnector in the component & connector view.

23

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Found Architectural Styles

Object-oriented

When the Selenium started with the Webdriver project they decided to build an
object-oriented API for their users. This object-oriented API is of course a big benefit
for the users and enhanced the usability of the project as explained in the previous
chapters. Before the Webdriver project was released the users had to use a
dictionary-based API where you have to split up your command always into three parts.
For instance if you wanted to type “something” into the query field “search” you had to
send the command “type name=search something” over the API.

Not only in the language bindings an object-oriented style is used also all the driver
implementations are using this style. This is not a big surprise because most of the big
modern software projects are using this style to reach their quality goals.

REST

Another very important decision was the to choose REST with JSON as communication
style between the language bindings and the various driver implementations. There
were also several other possibilities which could have been used as communication
channel but all of them had some serious caveats. For instance for a communication
over raw sockets there wouldn’t have been many libraries available to sustain a custom
protocol. Additionally this approach would have restricted the communication to be
line-based and therefore sending images such as screenshot would have brought
bigger problems.

To don’t have these restrictions Selenium team choose HTTP as transport mechanism
for their protocol. In this next iteration of the select process they had again some
possibilities to choose from. A possible protocol could have been SOAP, which would
had exposed a single end-point for communication. The original protocol of Selenium
used such a single end-point communication to receive the column-based query strings
which also worked pretty well. Nevertheless the Selenium team ruled SOAP out, it didn’t
felt right to them and they had the vision of being able to connect to a remote WebDriver
instance in a browser to view the state of the server. Tu fulfill these requirements they
choose REST with JSON but they call their approach “REST-ish” because they are
breaking several rules of a true REST communication. For instance in their
communication it makes so far no sense to cache requests and they communication
between the language bindings and webdriver implementations is not stateless.

24

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Overview of information sources

https://code.google.com/p/selenium/
https://code.google.com/p/selenium/wiki
https://code.google.com/p/selenium/source/checkout
https://github.com/SeleniumHQ/selenium

http://www.seleniumhgq.org/
http://www.praveenjana.com/selenium-webdriver-architecture/
http://www.guru99.com/introduction-webdriver-comparison-selenium-rc.html
http://docs.seleniumhqg.org/docs/03_webdriver.jsp
http://en.wikipedia.org/wiki/Google_ Closure_Tools

https://saucelabs.com/

videos:
https://www.youtube.com/watch?v=MwUHEdAL1Ts
https://www.youtube.com/watch?v=IflzZRHNXQhM
https://www.youtube.com/watch?v=lheoX9bgwNg

groups/forums:
https://groups.google.com/forum/#!forum/selenium-users
https://groups.google.com/forum/#!forum/selenium-developers

25

https://code.google.com/p/selenium/
https://code.google.com/p/selenium/wiki
https://code.google.com/p/selenium/source/checkout
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FSeleniumHQ%2Fselenium&sa=D&sntz=1&usg=AFQjCNHkKde0Tk6bIXBUV5x9uzBcOzKBbQ
http://www.google.com/url?q=http%3A%2F%2Fwww.seleniumhq.org%2F&sa=D&sntz=1&usg=AFQjCNG1VtYDtwNHXN5G6vQ846EreBq0zw
http://www.google.com/url?q=http%3A%2F%2Fwww.praveenjana.com%2Fselenium-webdriver-architecture%2F&sa=D&sntz=1&usg=AFQjCNHrAfMse0akoqJUF0BuQvCOBwjq9w
http://www.google.com/url?q=http%3A%2F%2Fwww.guru99.com%2Fintroduction-webdriver-comparison-selenium-rc.html&sa=D&sntz=1&usg=AFQjCNHc54DYmtZ_qs9wj9w_wBleOgmj7g
http://www.google.com/url?q=http%3A%2F%2Fdocs.seleniumhq.org%2Fdocs%2F03_webdriver.jsp&sa=D&sntz=1&usg=AFQjCNFPCTRVTkiQkQsUmJB-SMgdf41I7A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGoogle_Closure_Tools&sa=D&sntz=1&usg=AFQjCNFFW-9jD2f52ct-DxG4rH84xmwOPA
https://www.google.com/url?q=https%3A%2F%2Fsaucelabs.com%2F&sa=D&sntz=1&usg=AFQjCNG5cUySUgdsukhDrWjCXpI7sN2_Bw
https://www.youtube.com/watch?v=MwUHEdAL1Ts
https://www.youtube.com/watch?v=lfIzRHNXQhM
https://www.youtube.com/watch?v=IheoX9bgwNg
https://groups.google.com/forum/#!forum/selenium-users
https://groups.google.com/forum/#!forum/selenium-developers

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Software Architecture

Lab 1
Selenium

Part 2 - What did we learn?

26

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

Modelling

For all of us it was the first try to model such a big software project. We spend many
hours with just reading and digging around in the code base. One thing which it made
very complex was of course the many different languages used throughout the project.
In the whole project there were used over six different languages and of course nobody
of us knew all of them well. This was then also one of our main problems because if you
know a language just superficial you have to spend even more time to just understand
maybe some easy code snippet. Additionally it was complex for us to figure out which
code belongs to which part of the project. Selenium uses one single repository where all
different drivers, language bindings and even the Selenium RC are stored.

After this hard start we somehow understood how all the pieces worked together. At this
point we decided to focus on the Java language binding and on the Internet Explorer
driver implementation and started to draw a class diagram of these two system
components. For this task the tool support was very good and all of us knew the class
diagram from other courses so we hadn’t had big difficulties to carry out this task.

After we had drawn a class diagram we tried to find the right level of abstraction. For us
this task was not very easy. The biggest problem there was that we never had drawn a
component & connector view before. Therefore we had the problem to assign the
classes to the right components and to find a good level of abstraction. For instance at
the language binding we introduced the CommandExecutorConnector. But as we
understood the definition of first class connectors from the lecture a huge percentage of
the classes were part of this connector and basically there weren’t many classes left to
form other components or connectors. After some discussion we insisted on this huge
connector in the language binding because in our opinion a language binding is nothing
else than a big connector which allows the user to connect to some system, in our case
the different webdrivers.

Similar problems we encountered when we tried to model the driver implementation for
the Internet Explorer. There the problem was more about to assign the classes to the
right components. For instance we never exactly knew if we should form a new
component or if the class belongs to an already existing component.

Correctness

As it is our first component & connector view and also the first time that we tried to
model something we don’t have written on our own it is very difficult to say how good
the outcome is. As said before we spent many hours just reading the code line by line
and at the beginning we were very overtaxed with the big repository.

27

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

At the point where we decided to start drawing a normal class diagram we actually
started to do something and additionally it helped us a lot to understand the application
more deeply. As we already mentioned we based then our component & connector view
mainly on these two class diagrams. Because of that fact we think that the created
model is to a great extent correct. Of course we have to mention that that we only
modelled the overall picture of the application because we focused on one language
binding and one driver implementation Therefore are maybe some important and
interesting driver-specific implementation details missing.

Another point which gives us confidence that the model is correct is that we had some
contact with one of the contributors. He gave us additional information to the project and
feedback to our current solution which clarified many uncertainty about the project and
therefore gave us a better understanding of the code base.

Chapter in the book “The Architecture of Open Source Applications*

We started our analysis of the software project by reading the corresponding chapter in
the book “The Architecture of Open Source Applications”. It was a good starting point
for us but let also many questions open. Basically already there we had a big problem to
actually understand which component is running where. Some parts of the chapter were
also not important for this report such as the history part and sections about the
Selenium RC. All in all the whole chapter mixes the names Selenium, Selenium RC,
Selenium Core, Selenese and Webdriver very often and so if you read it the first time it
is very confusing.

Reading through the chapter again at some later point or after the whole analysis many
parts of the chapter make more sense and actually some chapters were also very
valuable to carry out this report.

We also didn’t found any differences or contradictions between the information we
gathered from the chapter in the book and the model we derived from the various other
artifacts. Of course we could have overlooked something but in general we can see that
the chapter from the book “The Architecture of Open Source Applications” was very
valuable and aligns with the architecture derived from the artifacts.

Groupwork

At the beginning all of us read many general articles and tutorials about Selenium. We
shared the articles and tried to have the same knowledge level. Afterwards we started
to dive into the code. There we splitted us up into two teams where one team tried to
understand the various language bindings and the other team the driver
implementations. The teams were formed as following:

28

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

e Simon and Valdemar: Java language binding
e Thomas, Christoph and Balint: Internet Explorer driver

After every session we tried again to keep us up to date and to share the knowledge.
This pair-reading approached worked very well because it was very important for us to
discuss during reading code. Most of the time also one of our group members was more
experienced as the other ones and therefore helped us to keep the speed. Nevertheless
the reading part was a very time consuming task.

After both of the groups were comfortable with their respective code base each group
started with the component & connector view. Additionally the group with language
binding started to think about the which complementary view we should choose.

During all this tasks we always extended and discussed together the qualities and
tactics of the project. Therefore we could start at same time to elaborate this part of the
report.

At the end we could work very individually and we were able to save some time
because group work wasn’t needed anymore. To still have a report with a high quality
we gave us mutual feedback and tried to be very critic.

Communication with the developers/maintainers

Selenium has organized their project on google code and they use mainly a google
forum to discuss topics around Selenium. After we have spent some hours for our report
we decided to post our current solutions in the developer forum and asked for feedback,
information and insights. After some days we were very happy that one of the
contributor of the project replied us very detailed. He extended the list of applied tactics
and design decisions to improve the qualities usability and modifiability. Besides the
new tactics and design decision the reply was for us very helpful to get a deeper
understanding of the application and the purpose of some design decisions.

So far we don’t know how good the outcome of our work is but we have planned to
share the report with the Selenium team. We don’'t know if they are using some
architectural models to onboard new developers or to discuss about the current
architecture and of course we would be very happy if they can reuse something from
this report.

Lecture

One of our main problems was regarding the first class connectors. We didn’t knew if
we should or could model components and connectors inside of first class connector

29

Software Architecture Lab 1 Selenium WebDriver
Group 7 14.12.2014

and if yes how. Maybe this is forbidden in a normal component & connector view but in
the case of the CommandExecutorConnector the first class connector already wrap
many classes and so there weren’t many classes left to form new connectors and
component.

In addition it wasn’'t easy for us to find other first class connectors besides the
CommandExecutorConnector and the HTTPServerConnector. Maybe some more code
example during the lecture which are showing connectors would help to tackle this
problem.

Another problem we had was actually the modelling part. We didn’t found many good
resources about the semantics and syntax of the component & connector view with
sysUML and all definitions we found were very long and detailed. Therefore we choose
the approach to be as consistent as possible with the models discussed during the
lecture. This of course is not a very scientific way of doing things and here maybe some
good resources would help and clarify a lot. Additionally it would be useful to extend this
part in the lecture and to provide more slides on this topic.

To further improve the elaboration of the reports it should be considered to introduce a
feedback session some weeks before the deadline. For this feedback session the
students can prepare questions and the professor could review the current models. We
think this would be very valuable and improve the outcome and therefore also provide
better learnings for the students.

What we think helped us was the lecture about the qualities and the tactics. The slides
have a very concise and clear structure and gave a perfect overview over the topic.
During the report we easily identified some qualities of the project and also found many
tactics which are trying to enhance these qualities.

30

