
Comprehensive Evidence Implies a Higher 
Social Cost of CO2

Kevin Rennert, Frank Errickson, Brian C. Prest, Lisa Rennels, Richard G. Newell, William Pizer, 
Cora Kingdon, Jordan Wingenroth, Roger Cooke, Bryan Parthum, David Smith, Kevin Cromar, 
Delavane Diaz, Frances C. Moore, Ulrich K. Müller, Richard J. Plevin, Adrian E. Raftery, 
Hana Ševčíková, Hannah Sheets, James H. Stock, Tammy Tan, Mark Watson, Tony E. Wong & 
David Anthoff

This is a PDF file of a peer-reviewed paper that has been accepted for publication. 
Although unedited, the content has been subjected to preliminary formatting. Nature 
is providing this early version of the typeset paper as a service to our authors and 
readers. The text and figures will undergo copyediting and a proof review before the 
paper is published in its final form. Please note that during the production process 
errors may be discovered which could affect the content, and all legal disclaimers 
apply.

Received: 23 December 2021

Accepted: 11 August 2022

Accelerated Article Preview 
Published online xx xx xxxx

Cite this article as: Rennert, K. et al.  
Comprehensive Evidence Implies a  
Higher Social Cost of CO2. Nature  
https://doi.org/10.1038/s41586-022-05224-9 
(2022)

https://doi.org/10.1038/s41586-022-05224-9

Nature | www.nature.com

Accelerated Article Preview

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

https://doi.org/10.1038/s41586-022-05224-9


1 
 

Comprehensive Evidence Implies a Higher Social Cost of CO2 1 

7/29/2022 2 

Kevin Rennert1, Frank Errickson2*, Brian C. Prest1*, Lisa Rennels3*, Richard G. Newell1, William Pizer1, 3 
Cora Kingdon3, Jordan Wingenroth1, Roger Cooke1, Bryan Parthum4, David Smith4, Kevin Cromar5,6, 4 

Delavane Diaz7, Frances C. Moore8, Ulrich K. Müller9, Richard J. Plevin, Adrian E. Raftery10, Hana 5 
Ševčíková11, Hannah Sheets12, James H. Stock13, Tammy Tan4, Mark Watson9, Tony E. Wong12, David 6 

Anthoff3† 7 

1Resources for the Future, Washington, DC 20036, USA 8 
2School of Public and International Affairs, Princeton University, Princeton, NJ 08540, USA 9 
3Energy and Resources Group, University of California, Berkeley, CA 94720, USA 10 
4Environmental Protection Agency, Washington, DC 20004, USA 11 
5Marron Institute of Urban Management, New York University, Brooklyn, NY 11201, USA, 12 
6NYU Grossman School of Medicine, New York, NY 10016, USA 13 
7Electric Power Research Institute (EPRI), Palo Alto, CA 94304, USA 14 
8Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA 15 
9Department of Economics, Princeton University, NJ 08540, USA 16 
10Departments of Statistics and Sociology, University of Washington, Seattle, WA 98195, USA 17 
11Center for Statistics and the Social Sciences, University of Washington, Seattle, WA 98195, USA 18 
12School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA 19 
13Department of Economics, Harvard University, Cambridge, MA 02138, USA 20 

* These authors contributed equally to this work 21 
† e-mail: anthoff@berkeley.edu 22 

Abstract 23 

The social cost of carbon dioxide (SC-CO2) measures the monetized value of the damages to 24 

society caused by an incremental metric tonne of CO2 emissions and is a key metric informing 25 

climate policy. Used by governments and other decision-makers in benefit-cost analysis for over 26 

a decade, SC-CO2 estimates draw on climate science, economics, demography, and other 27 

disciplines. However, a 2017 report by the US National Academies of Sciences, Engineering, and 28 

Medicine1 (NASEM) highlighted that current SC-CO2 estimates no longer reflect the latest 29 

research. The report provided a series of recommendations for improving the scientific basis, 30 

transparency, and uncertainty characterization of SC-CO2 estimates. Here we show that 31 

improved probabilistic socioeconomic projections, climate models, damage functions, and 32 

discounting methods that collectively reflect theoretically consistent valuation of risk, 33 

substantially increase estimates of the SC-CO2. Our preferred mean SC-CO2 estimate is $185 per 34 ACCELE
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tonne of CO2 ($44-413/t-CO2: 5-95% range, 2020 US dollars) at a near-term risk-free discount rate 35 

of 2 percent, a value 3.6-times higher than the US government’s current value of $51/t-CO2. Our 36 

estimates incorporate updated scientific understanding throughout all components of SC-CO2 37 

estimation in the new open-source GIVE model, in a manner fully responsive to the near-term 38 

NASEM recommendations. Our higher SC-CO2 values, compared to estimates currently used in 39 

policy evaluation, substantially increase the estimated benefits of greenhouse gas mitigation and 40 

thereby increase the expected net benefits of more stringent climate policies. 41 

Main 42 

Policies to mitigate greenhouse gas emissions are often evaluated in terms of their net benefits 43 

to society. The net benefit of a climate policy is the difference between the economic cost of the 44 

emission reduction (the mitigation costs), and the value of the damages that are prevented by 45 

that emission reduction (climate benefits, among others). In regulatory impact analysis the 46 

climate benefits of CO2 emission reductions are typically computed by multiplying the change in 47 

CO2 emissions caused by the policy with an estimate of the SC-CO2. This makes the SC-CO2 a 48 

highly influential metric, informing analysis of a wide range of climate policies worldwide. 49 

For more than a decade, the US government has used the SC-CO2 to measure the benefits of 50 

reducing carbon dioxide emissions in its required regulatory analysis of more than 60 finalized, 51 

economically significant regulations, including standards for appliance energy efficiency and 52 

vehicle and power plant emissions2. In the United States, the SC-CO2 has also been used as the 53 

basis for federal tax credits for carbon capture and storage; proposed federal carbon tax 54 

legislation; state-level zero emission credit payments for nuclear generators and power sector 55 

planning; among other applications3. The SC-CO2 also supports decision making by government 56 

environmental agencies in other countries (e.g., Germany, Canada, and Mexico), and is used in 57 

standardized corporate environmental and sustainability accounting4. 58 

The SC-CO2 is estimated using integrated assessment models (IAMs) that couple together 59 

simplified representations of the climate system and global economy to estimate the economic 60 

effects of an incremental pulse of CO2 emissions. These models generally follow a four-step 61 

process in which (1) projections of population and GDP inform a CO2 emissions pathway; (2) the 62 
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CO2 emissions path drives a climate model that projects atmospheric greenhouse gas 63 

concentrations, temperature changes, and other physical variables such as sea level rise; (3) the 64 

resulting climate change impacts are monetized and aggregated as economic damages; and (4) 65 

economic discounting combines all future damages into a single present value. 66 

In 2017, a NASEM report assessing the SC-CO2 estimation methodology used by the US federal 67 

government found that the leading IAMs used for estimating the SC-CO2 have not kept pace with 68 

recent advances in climate, economic, and demographic science1. The NASEM report offered 69 

near-term recommendations for improving each step of the SC-CO2 estimation process to 70 

improve the scientific basis, characterization of uncertainty, and transparency of the SC-CO2. 71 

Recently, Executive Order 13990 re-established the US Interagency Working Group on the Social 72 

Cost of Greenhouse Gases (IWG) to update the federal government’s official SC-CO2 estimates, 73 

and to consider these NASEM recommendations in the process. Others have also criticized the 74 

models supporting the past federal SC-CO2 estimates for a number of problems including 75 

damages representations that do not reflect recent science, outdated climate system models, 76 

and imperfect characterization of the compounding uncertainties affecting SC-CO2 estimates.5–7 77 

Here, we provide probabilistic SC-CO2 estimates from the Greenhouse Gas Impact Value 78 

Estimator (GIVE), a newly created integrated assessment model designed for quantifying the 79 

benefits of emission reductions. The model is built on the Mimi.jl platform, an open-source 80 

package for constructing modular integrated assessment models8. By using novel components 81 

for each step of the SC-CO2 estimation process, GIVE incorporates recent scientific advances that 82 

are unaccounted for by the previous generation of IAMs used in regulatory analysis. Crucially, 83 

GIVE quantifies uncertainties in each component and propagates these compounding 84 

uncertainties through the entire computation, thus allowing for a theoretically consistent 85 

valuation of the risk associated with a marginal emission of CO2. 86 

Each individual component in GIVE is based on recent peer-reviewed research on socioeconomic 87 

projections, climate modelling, climate impact assessments, and economic discounting. We 88 

implement GIVE with a set of internally consistent, probabilistic projections of population9, per-89 

capita economic growth10, and CO2, CH4, and N2O emissions3 generated using a combination of 90 

statistical modelling and expert elicitation, collectively referred to as the Resources for the Future 91 
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Socioeconomic Projections3 (RFF-SPs). Many existing IAMs use outdated climate models and have 92 

been shown to produce temperature dynamics inconsistent with more sophisticated Earth 93 

system models1,11. Further, damage functions supporting previous SC-CO2 estimates are, to a 94 

large extent, based on studies from several decades ago1. A vast literature since then has 95 

expanded and improved our scientific understanding of how changes in climate will likely affect 96 

human wellbeing12. To address these shortcomings, we combine socioeconomic uncertainty with 97 

probabilistic models for the climate system and damage functions (defined as functions that 98 

relate changes in climate outcomes such as temperature to economic impacts in dollars). The 99 

GIVE model employs the FaIR v1.6.2 climate model13,14, the BRICK sea-level model15–17, and 100 

updated damage function components representing the latest empirical research for the impacts 101 

of climate on agriculture18, mortality19, energy consumption20, and sea-level rise21. 102 

Recent important contributions to the SC-CO2 literature have generated improvements to various 103 

components used by integrated assessment models22–27 (see Supplemental Information section 104 

SI.3 for an overview of this literature). The GIVE model’s key contribution to this literature is the 105 

holistic implementation of recent advances in probabilistic socioeconomics accounting for policy 106 

uncertainty, fully quantified scientific uncertainty including climate tail risk and sea-level rise, 107 

addition of non-market sectoral damages (i.e., costs not included in GDP accounting such as 108 

mortality risk), and economic discounting tied to uncertain economic growth. These advances 109 

allow for a full valuation of the risk resulting from those compounding uncertainties based on 110 

improved scientific, economic, and demographic evidence,3 which have previously been 111 

unavailable. The GIVE model’s implementation of this comprehensive set of scientific 112 

improvements affirms a key result from recent work on the SC-CO222–27, namely that improved 113 

scientific understanding of the components of SC-CO2 calculation leads to a higher SC-CO2 than 114 

has been previously used in US policymaking; moreover, our approach demonstrates this using a 115 

more robust methodology reflecting the current state of the literature. GIVE’s inputs and outputs 116 

are spatially resolved at the level of 184 countries for population, income, and damages (except 117 

for agriculture damage outputs which are resolved at 16 regions). Climate change has the 118 

potential to exacerbate existing economic inequities6,28,29, and our work would allow future 119 

consideration of this issue through equity weighting30. 120 
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We calculate the SC-CO2 as the discounted sum of additional damages per incremental tonne of 121 

CO2 produced by an emissions pulse in 2020 along an uncertain emissions trajectory derived via 122 

formal expert elicitation that reflects continued technology and policy evolution. We use an 123 

empirically calibrated stochastic discounting framework consistent with the observed behaviour 124 

of interest rates and economic growth31. We provide 10,000 SC-CO2 values using a Monte Carlo 125 

approach that samples interrelated socioeconomic, climate, and damage function uncertainties 126 

(Extended Data Table 2). The GIVE model can also be used to compute the social cost of other 127 

greenhouse gases (e.g., CH4, N2O, HFCs). 128 

We illustrate the relative importance of our updated model components by comparing them to 129 

outputs from the well-known DICE model32. We also assess the sensitivity of our SC-CO2 estimates 130 

to our choice of sectoral, regionally disaggregated damage functions by comparing them to two 131 

aggregate, global damage functions based on meta-analyses of the broader damages 132 

literature32,33. 133 

Socioeconomic projections of economic growth, population, and greenhouse gas emissions 134 

represent important sources of uncertainty in the SC-CO2. In previous models, this uncertainty 135 

has been poorly characterized1,34,35. Population and growth scenarios based upon the Shared 136 

Socioeconomic Pathway (SSP)36 narratives, which were prominently featured in the 137 

Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6)14, do not 138 

typically come with associated probabilities, though there have been efforts to assign such 139 

probabilities a posteriori based on expert surveys37. The small number of SSPs precludes sampling 140 

the large and continuous space of possibilities that characterizes future socioeconomics and 141 

emissions. A strength of scenario-based analysis is in the qualitative exploration of uncertainty, 142 

for example through the use of bounding scenarios, including scenarios accounting for outcomes 143 

well outside the range of historical experience that become increasingly possible over very long 144 

time horizons. Such an approach does not, however, facilitate the quantitative evaluation of 145 

uncertainty and the calculation of expected values, a common requirement for policy analysis. In 146 

some cases, a lack of quantification of relative probabilities can lead to disagreements over what 147 

scenarios constitute a plausible reference case38–40. A holistic, probabilistic approach to 148 

accounting for these uncertainties was recently introduced41,42. Building on this approach, we 149 
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sample the RFF-SPs, comprising multi-century probabilistic projections of population9 and GDP 150 

per capita10 at the country level as well as a distribution of projections of global CO2, CH4, and 151 

N2O emissions derived from a combination of statistical and expert-based approaches. 152 

The RFF-SPs complement the scenario-based approach by providing an alternative approach that 153 

characterizes the joint uncertainty across annual GDP, population, and greenhouse gas emissions 154 

for the multi-century timespan required for climate damage estimation. They also leverage 155 

expert knowledge to account for potential future changes in policy and technology. They project 156 

that (Fig. 1): median world population peaks at 11 billion around 2130 and subsequently declines 157 

to 7.3 billion in 2300, (2.8 billion–21 billion: 5-95% range); median global per capita annualized 158 

economic growth declines slowly to reach a cumulative time-average rate of 0.88% between 159 

2020 and 2300 (0.17%–2.7%: 5-95% range); median net global CO2 emissions decline to roughly 160 

40 percent of today’s levels in 2100 (-20%-150%: 5-95% range), with slower declines thereafter 161 

(see Supplemental Information section SI.1 for more detail on the RFF-SPs). 162 

Our mean SC-CO2 estimate using the preferred discounting scheme is $185/t-CO2 ($44-413/t-163 

CO2: 5-95% range, in 2020 US dollars, as are all dollar results in this study) (Fig. 2). This is 3.6 times 164 

greater than the US government’s current, most commonly cited mean value of $51/t-CO2 using 165 

a 3% constant discount rate43. We report mean SC-CO2 values throughout this paper to align our 166 

results with the standard expected net benefit framework that is routinely used for policy 167 

analysis44 and supported by standard economic theory45,46. 168 

SC-CO2 estimates are well-known to be highly sensitive to the discount rate32 because the long 169 

residence time of CO2 in the atmosphere means a CO2 emissions pulse continues to cause 170 

damages long after it was emitted.  Our preferred discounting scheme uses a 2% near-term risk-171 

free discount rate, which reflects  the recent literature on real interest rates47–49, which have 172 

declined substantially over recent decades50,51, as well as the central tendency from a survey of 173 

academic economists52. Our discount rate is related to stochastic consumption growth in a 174 

Ramsey-like equation, which is the commonly used approach to value marginal impacts amid 175 

uncertainty in future payoffs and consumption levels53,54. In this way, the parameterization of the 176 

discount rate captures risk preferences using the risk aversion parameters discussed in the 177 

Methods. 178 
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We also assess (Extended Data Fig. 1 and Table 1) the sensitivity of our SC-CO2 estimates to 179 

discounting by also using near-term rates of 3% ($80/t-CO2 mean: $12-197/t-CO2 5-95% range), 180 

to facilitate comparison with the US government’s current, most commonly cited $51/t-CO2 181 

figure, as well as 2.5% ($118/t-CO2 mean: $23-280/t-CO2 5-95% range) and 1.5% ($308/t-CO2 182 

mean: $94-626/t-CO2 5-95% range). We additionally show (Extended Data Fig. 2) the temporal 183 

evolution of the discounted marginal damages by year based upon the preferred 2% near-term 184 

discount rate case. 185 

Our SC-CO2 estimates are based on regionally disaggregated damage functions for four sectors. 186 

As a sensitivity analysis, we replace the sectoral damage functions in GIVE with two distinct, 187 

globally aggregated damage functions that are based on meta-analyses of the climate impacts 188 

literature32,33. Under a 2% near-term discount rate, these sensitivity runs yield relatively similar 189 

SC-CO2 distributions with mean values that differ by -18% to +11% (Extended Data Table 1) from 190 

our preferred SC-CO2 estimate (Extended Data Fig. 1). 191 

The single largest contributor to the overall increase in the SC-CO2 relative to the widely used 192 

DICE model is the use of a lower near-term discount rate, with updated damage functions being 193 

the second largest contributor. We disaggregate impacts of the changes to the near-term 194 

discount rate, the sectoral damage functions, and the remaining GIVE components (the RFF-SPs 195 

and FaIR) in Table 1. We start by running DICE-2016R, which uses none of our updated 196 

components and uses DICE’s default discounting approach, yielding an SC-CO2 estimate of $44/t-197 

CO2. Updating the climate modelling, the socioeconomic scenarios, and the discounting approach 198 

reflecting a 3% near-term discount rate but retaining the DICE-2016R damage function increases 199 

the mean SC-CO2 by 34% to $59/t-CO2. Incorporating our sectoral damage functions in place of 200 

the DICE-2016R damage function further increases the estimate to $80/t-CO2, or a total increase 201 

of 81%. Finally, using a lower 2% near-term discount rate has the largest effect, increasing the 202 

mean SC-CO2 estimate to this study’s value of $185/t-CO2, a 321% increase relative to $44/t-CO2, 203 

and a 3.6-fold increase relative to the widely cited US government value of $51/t-CO2. 204 

The four climate damage sectors represented in the model vary substantially in their respective 205 

contributions to the overall magnitude and uncertainty of the SC-CO2 (Fig. 3). Temperature 206 

mortality impacts are the largest driver of the SC-CO2, contributing a mean partial SC-CO2 207 
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(defined as the SC-CO2 estimated for an individual impact sector) of $90/t-CO2 ($39-165/t-CO2, 208 

5-95% range) to the $185/t-CO2 total using a near-term 2% discount rate. Agricultural impacts 209 

have a similar mean contribution of $84/t-CO2, but greater uncertainty, with a 5-95% partial SC-210 

CO2 range spanning -$23 to $263/t-CO2. This large range, which includes the potential for 211 

beneficial effects of higher temperatures and CO2 concentrations on agriculture, arises due to 212 

compounding uncertainty in the relationship between CO2, temperature, and crop yields and 213 

how these factors interact with the economic system to affect human welfare18. We sample 214 

uncertain parameters for mortality and agriculture (see Methods), the damage sectors for which 215 

parameter uncertainty is quantified in the underlying studies. 216 

The relatively small contribution of sea-level rise, which includes both coastal damages and 217 

adaptation costs, to the total SC-CO2 (mean partial SC-CO2 of $2/t-CO2, $0-4/t-CO2, 5-95% range) 218 

is attributable in part to the inertia in the physical system connecting CO2 emissions and sea-level 219 

rise and in part to the optimal regional adaptation response allowed by the Coastal Impact and 220 

Adaptation Model (CIAM) that we incorporate into GIVE21. Such optimal, forward-looking 221 

adaptation responses can substantially reduce estimated coastal damages relative to a static 222 

scenario assuming no response to evolving coastal risks55,56. Future research could improve the 223 

characterization of plausible versus optimal coastal adaptation responses. The relatively slow 224 

pace of sea-level rise also causes the greatest damages to occur far in the future when 225 

discounting effects are strongest. Energy costs for residential and commercial buildings (based 226 

on Clarke et al. 201820) also make a relatively small contribution to the overall SC-CO2 (mean 227 

partial SC-CO2 of $9/t-CO2, $4-15/t-CO2, 5-95% range), due to increased energy demand from 228 

cooling being offset by decreased heating demand and future technological progress; these 229 

results are broadly consistent with other recent empirical work57. 230 

We quantify impacts on four critical, globally significant damage sectors that are often considered 231 

to contribute the most to the SC-CO21,58 and for which studies exist that can be readily 232 

incorporated into SC-CO2 estimation due to their global coverage, regional disaggregation, and 233 

monetization. A limitation of this study is that other categories of climate damages, including 234 

additional non-market damages other than human mortality, remain unaccounted for. The 235 

inclusion of additional damage sectors such as biodiversity59, labour productivity60,61, conflict62, 236 
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and migration63 in future work would further improve our estimates. Current evidence strongly 237 

suggests that including these sectors would raise the estimates of the SC-CO2, although 238 

accounting for adaptation responses could potentially counteract some of that effect. Other 239 

costs of climate change including the loss of cultural heritage, particular ways of life, or valued 240 

ecosystems, may never be fully valued in economic terms but would also likely raise the SC-CO2 241 

beyond the estimates presented here. The addition of alternate studies covering the same 242 

sectors to incorporate additional independent lines of evidence is also a promising area for 243 

continued work to improve the SC-CO2. The modular structure of the Mimi.jl framework 244 

facilitates such addition of new damage sectors with ease, providing a flexible basis for future 245 

scientific improvement of the SC-CO2. 246 

While we approximate the effects of a rapid Antarctic ice sheet disintegration tipping point within 247 

the BRICK sea-level component, incorporating additional potential discontinuities in the climate 248 

system would further improve our SC-CO2 estimates64. We expect that, in total, the future 249 

inclusion of additional damage sectors and tipping elements is likely to raise the estimates of the 250 

SC-CO2, and therefore that the estimates from the present study are likely best viewed as 251 

conservative. Similarly, accounting for different climate model structures, as the recent IPCC AR6 252 

report does in chapter 714, would further strengthen the robustness of our SC-CO2 estimates and 253 

their associated uncertainty levels. For example, that chapter (see Cross-Chapter Box 7.1, Table 254 

2 therein) shows the MAGICC climate model projects slightly higher temperature increases than 255 

the FaIR model. 256 

The methods employed in this study reflect the culmination of several important advances: 257 

development of fully probabilistic very long-run socioeconomic inputs that natively incorporate 258 

uncertainty over future climate policy; incorporation of state-of-the-science representations of 259 

the climate system and sectoral damage functions; and an empirically calibrated discounting 260 

approach that accounts for uncertainty in future economic growth. These advances collectively 261 

allow for the full characterization of uncertainties, and their compounding interactions, 262 

throughout all steps of SC-CO2 estimation, including sectoral market and nonmarket damages to 263 

human health. Their implementation on Mimi.jl8, an open-source, modular computational 264 

platform for assembling IAMs, improves the scientific basis and transparency of the resulting 265 
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estimates and is responsive to the NASEM near-term recommendations. The methodology also 266 

provides a straightforward means to calculate SC-CO2 results for other years and estimate the 267 

social cost of other greenhouse gases (e.g., CH4, N2O, HFCs). Our higher SC-CO2 values, compared 268 

to estimates currently used in policy evaluation, substantially increase the estimated benefits of 269 

greenhouse gas mitigation, and thereby increase the expected net benefits of more stringent 270 

climate change policies. 271 
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Tables 404 

Row Scenario 

Mean SC-
CO2  

($/t-CO2) 

Incremental 
Change  

($/t-CO2) 

Share of 
Total 

Change (%) 
a  DICE-2016R $44   
b GIVE w/ DICE damage function, 3% near-term discount rate $59 $15 11% 
c GIVE, w/ sectoral damages, 3% near-term discount rate $80 $21 15% 

d 
This study: 
GIVE, w/ sectoral damages, 2% near-term discount rate $185 $105 74% 

Table 1 | Evolution of mean SC-CO2 from DICE-2016R to this study. All SC-CO2 values are expressed in 405 
2020 US dollars per metric tonne of CO2. (a) represents the SC-CO2 using base DICE-2016R deterministic. 406 
The mean SC-CO2 of $44/t-CO2 is similar to the value previously estimated from IWG DICE-2010 of $46/t-407 
CO2 at a 3% discount rate, after converting to 2020$65, (b) then retains the DICE-2016R damage function 408 
but otherwise deploys GIVE under discounting parameters of = 0.8%, = 1.57, which are consistent 409 
with a 3% near-term discount rate, (c) then replaces the DICE-2016R damage function with our sectoral 410 
damage functions, (d) then uses our preferred discounting parameters from this study of = 0.2%, =411 1.24, which are consistent with a 2% near-term discount rate. The final row represents the preferred 412 
mean value from this study.  413 
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Figure legends 414 
Fig. 1 | RFF-SP socioeconomic scenarios and the resulting climate system projections. a-c, Probabilistic 415 
socioeconomic projections for global population (a), per capita GDP growth rates (b), and carbon dioxide 416 
emission levels (c) from the RFF-SP scenarios. d-f, corresponding climate system projections that account 417 
for parametric uncertainty in FaIR and BRICK for atmospheric carbon dioxide concentrations (d), global 418 
surface temperature changes relative to the 1850-1900 mean (e), and global mean sea-level changes 419 
relative to 1900 (f). In all panels, solid centre lines depict the median outcome, with darker shading 420 
spanning the 25-75% quantile range and lighter shading spanning the 5-95% quantile range. 421 

Fig. 2 | SC-CO2 distributions vary with the choice of near-term discount rates. Distributions of the SC-422 
CO2 based on RFF-SP scenario samples, a stochastic, growth-linked discounting framework, uncertainty in 423 
the FaIR climate and BRICK sea-level models, and uncertainty in climate damage parameters. Colours 424 
correspond to near-term average discount rates of 3.0% (blue), 2.5% (orange), 2.0% (red, our preferred 425 
specification), and 1.5% (teal). Dashed vertical lines highlight mean SC-CO2 values. Box and whisker plots 426 
along the bottom of the figure depict each SC-CO2 distribution’s median (centre white line), 25-75% 427 
quantile range (box width), and 5-95% quantile range (coloured horizontal lines) values. All SC-CO2 values 428 
are expressed in 2020 US dollars per metric tonne of CO2. 429 

Fig. 3 | Partial SC-CO2 estimates and uncertainty levels strongly differ across the four climate damage 430 
sectors. Box and whisker plots for the climate damage sectors included in the GIVE model, based on partial 431 
SC-CO2 estimates for each sector. Figure depicts the median (centre white line), 25-75% quantile range 432 
(box width), and 5-95% quantile range (coloured horizontal lines) partial SC-CO2 values. Black diamonds 433 
highlight each sector’s mean partial SC-CO2, with the numeric value written directly above. All SC-CO2 434 
values are expressed in 2020 US dollars per metric tonne of CO2.  435 
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Methods 436 

Socioeconomic projections 437 

The RFF-SPs3 used in this study were designed to address the requirements for socioeconomic 438 

projections posed by SC-CO2 estimation: (1) The roughly 300-year time-horizon required to 439 

account for the vast majority of discounted future damages; (2) the need for geographically 440 

disaggregated estimates of GDP and population to support damages at a regional scale; (3) 441 

uncertainty accounting for expected future changes in both technology and policy (the SC-CO2 is 442 

measured against the best estimate of future emissions, inclusive of future mitigation policies 443 

except the one under analysis); and (4) the interdependence of future population, GDP, and 444 

greenhouse gas emissions trajectories1. 445 

The RFF-SPs address key shortcomings identified in the approach to socioeconomic projections 446 

originally developed by the US IWG in 201066 and used consistently through the current US 447 

interim estimates43. The IWG used five socioeconomic scenarios to 2100, drawn from the Energy 448 

Modeling Forum 22 modelling exercise67, one of which represented future climate policy. The 449 

IWG scenarios were critiqued for not spanning the true uncertainty in GDP, population and 450 

emissions, nor reflecting the broader scenario literature overall34,68. The RFF-SPs used here 451 

improve on those scenarios by explicitly characterizing uncertainty in the demographic, economic 452 

and emissions projections. 453 

The multi-century time horizon required for the projections is long relative to the length of the 454 

historical record available to estimate country-level statistical models of population and 455 

economic growth. Accounting for uncertainty in future emissions over that time horizon requires 456 

assessing the potential for structural changes in technology and policies that are out of the range 457 

of historical experience. To address these challenges, the RFF-SPs were generated based upon a 458 

combination of statistical and expert-based approaches. 459 

We generated probabilistic, country-level population projections through 23009 by extending the 460 

fully probabilistic statistical approach used by the United Nations (UN) for its official population 461 

forecasts to 2100. We further incorporated feedback and improvements suggested by a panel of 462 

nine leading demographic experts convened to review preliminary results. 463 ACCELE
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Our trajectories of country-level GDP per capita from 2018 to 2300 come from a multifactor 464 

Bayesian dynamic model, in which each country’s GDP per capita is based on a global frontier of 465 

developed economies and country-specific deviations from that frontier10. We reweight the 466 

probabilities of the Bayesian model trajectories using results from the RFF Economic Growth 467 

Survey, a formal expert elicitation focused on quantifying uncertainty in long-run economic 468 

growth3. 469 

The resulting probabilistic socioeconomic trajectories represent an alternative to existing 470 

scenario-based approaches, such as those based on the Shared Socioeconomic Pathways 471 

narratives. Such scenarios do not typically come with associated probabilities, though there have 472 

been efforts to assign such probabilities to the SSPs a posteriori based on expert surveys37. The 473 

use of non-probabilistic scenarios have been criticized in the literature for being overconfident 474 

and failing to reflect uncertainty69. Indeed, multi-century socioeconomic projections are deeply 475 

uncertain, as illustrated by the wide 5-95% ranges that we consider (see Figure 1). The scenarios 476 

based on the SSP narratives and their commonly used extensions beyond 210063,70–72 fail to span 477 

that uncertainty.3 478 

We also generate multi-century distributions of global CO2, CH4, and N2O emissions through RFF’s 479 

Future Emissions Survey, which elicited experts in socioeconomic projections and climate policy3. 480 

Experts provided uncertainty ranges for future fossil fuel and process-related CO2 emissions as 481 

well as changes in natural CO2 stocks and negative-emissions technologies, incorporating their 482 

own uncertainty around future mitigation policy. They also quantified the sensitivity of emissions 483 

projections to future economic growth, thereby allowing for the development of a joint set of 484 

projections of emissions and economic growth. The experts additionally provided uncertainty 485 

ranges for trajectories of CH4 emissions, N2O emissions, and net CO2 emissions from other 486 

sources of CO2 emissions and sinks. 487 

Climate models 488 
(1) FAIR 489 

We represent the global climate system and carbon cycle dynamics using version 1.6.2 of the 490 

Finite Amplitude Impulse Response (FaIR) model.73–75 FaIR is an emissions-based simple climate 491 

model with a carbon cycle that depends on background warming levels and cumulative carbon 492 
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uptake by land and ocean sinks. This state-dependency enables FaIR to replicate the equilibrium 493 

and impulse-response behaviours found in more sophisticated Earth system models, which is 494 

important for producing scientifically grounded SC-CO2 estimates. These features are not found 495 

in the previous climate models used for SC-CO2 calculations, which lack carbon cycle feedbacks 496 

and have been shown to respond too slowly to changes in radiative forcing1,11. We run FaIR with 497 

randomly sampled CO2, CH4, and N2O emissions time-series from the RFF-SPs and represent other 498 

greenhouse gases and short-lived climate forcers using the SSP2-4.5 scenario76, the scenario that 499 

most closely matches the median RFF-SP emissions trajectories. We account for climate model 500 

uncertainties by randomly sampling a calibrated 2,237-member ensemble of parameters that 501 

was produced using FaIR as part of the IPCC AR674. See Supplemental Information section SI.2 for 502 

more detail on the FaIR model. 503 

(2) BRICK 504 

We make probabilistic projections of regional changes in sea level using the Building blocks for 505 

Relevant Ice and Climate Knowledge (BRICK) model. BRICK represents individual contributions to 506 

sea level from the Greenland and Antarctic ice sheets, glaciers and small ice caps, thermal 507 

expansion, and land water storage and has been thoroughly described in prior studies15. BRICK 508 

downscales changes in global sea level to regional changes using maps of time-invariant scaling 509 

factors15,77. The Antarctic ice sheet model component also accounts for a potential tipping point 510 

where rapid ice sheet disintegration can occur when annual mean Antarctic surface temperatures 511 

cross an uncertain threshold16. 512 

We closely follow past work and calibrate BRICK to the historic sea-level record over the period 513 

1850-2017 with a Bayesian framework15,17,78,79. This calibration process uses observational 514 

constraints on global mean sea-level changes80 in addition to individual contributions from 515 

glaciers and small ice caps81 , the Greenland ice sheet82,83, the Antarctic ice sheet84, and trends in 516 

thermal expansion85. It further statistically accounts for measurement error estimates provided 517 

with each observational time-series data set86. We select physically informed prior distributions 518 

for BRICK’s uncertain parameters that are consistent with previous model calibration studies15,17. 519 

For the Antarctic ice sheet model component, we select prior distributions based on a 520 

paleoclimate calibration that uses independent sea-level data from 240,000 years before the 521 
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current era to the present16. We use our calibration framework to create a Markov chain of ten 522 

million representative samples from BRICK’s joint posterior parameter distribution and assess 523 

convergence based on graphical diagnostics and Gelman-Rubin potential scale reduction factors 524 

that are less than 1.187,88. We discard the first one million samples for the initial burn-in period 525 

and select a random subset of 10,000 samples from the remaining chain for our final sea-level 526 

parameter values. The distributions of the uncertain parameters in BRICK are shown in 527 

Supplemental Information Table 4. 528 

Damage functions 529 
(1) Sea-level rise 530 

The sea-level rise damage calculations are based on the work of Diaz21 which presents the Coastal 531 

Impacts and Adaptation Model (CIAM).  CIAM is an optimization model that assesses the costs of 532 

various adaptation strategies against flooding damages and potential impacts from regional 533 

changes in sea level. It chooses the least-cost strategy for each of over 12,000 coastal segments 534 

across the globe in the Dynamic Interactive Vulnerability Assessment (DIVA) database89 after 535 

taking into account local physical and socioeconomic characteristics. CIAM’s potential adaptation 536 

strategies are specified as a combination of (1) a choice on retreating inland from the coastline, 537 

protecting coastal communities and infrastructure, or remaining in place without taking any 538 

adaptive actions and (2) a choice on the degree of investment in coastal defence against several 539 

different storm surge return periods conditional on protection being decided on. The DIVA 540 

database provides generalized extreme value distributions that define these return periods for 541 

each individual segment. 542 

CIAM is a deterministic model. All uncertainty in coastal damages is therefore the result of 543 

uncertain sea-level projections that arise due to GIVE’s probabilistic emission scenarios and 544 

climate and sea-level model parametric uncertainties that we sample. 545 

(2) Building Energy Expenditures 546 

The energy demand damage function is based on the results of Clarke et al. (2018)20, a study that 547 

used the Global Change Analysis Model (GCAM)90,91 to project how climate change affects 548 

regional building energy demand through 2100. GIVE’s damage functions relate each degree of 549 

global temperature rise to a change in regional energy expenditures, expressed as a proportion 550 
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of that region’s GDP. We derive these damage functions using output data provided by the 551 

authors of Clarke et al20. That output includes, for each of the 12 GCAM regions, the net change 552 

in regional energy expenditures as a proportion of regional GDP at various temperature levels 553 

(varying over both time and scenario). Clarke et al.20 note that this relationship is approximately 554 

linear in temperature. For each of the 12 GCAM regions, we fit a linear function to these 555 

datapoints by regressing the net change in energy expenditures as a proportion of GDP on global 556 

temperature rise relative to the preindustrial period. We assume the intercept is zero to ensure 557 

the resulting function yields no change in energy expenditures at zero temperature rise. This 558 

yields a coefficient for each region, denoted  (see Supplemental Information Table 2 for these 559 

values). Energy damages for each country  located in region  are then calculated using the 560 

corresponding coefficient, as 561 ℎ         , = × (  ) . (1) 562 

We multiply this energy expenditure share by country-level GDP to generate damages in dollars.  563 

Clarke et al.20 did not feature any explicit consideration of uncertainty, so we do not include 564 

uncertainty in this damage function. Uncertainty in energy-related damages remain, however, 565 

due to GIVE’s uncertain temperature projections and GDP trajectories. 566 

(3) Temperature-related mortality 567 

The mortality damage functions are based on the results of Cromar et al. (2022)19, who convened 568 

a panel of health experts to conduct a meta-analysis of peer-reviewed research studying the 569 

impacts of temperature on all-cause mortality risk, which includes human health risks related to 570 

a broad set of health outcomes including cardiovascular, respiratory, and infectious disease 571 

categories. The meta-analysis combined studies to produce regionally disaggregated estimates 572 

of the effects on all-cause mortality of each degree of warming across a broad range of baseline 573 

temperatures, including both increased mortality risk at high temperatures and reduced risk at 574 

cooler temperatures. This produced, for each of 10 regions, a point estimate (and its standard 575 

error) representing the net change in all-cause mortality risk per degree Celsius of globally 576 

averaged surface temperatures (see Supplemental Information Table 1). 577 ACCELE
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To reflect uncertainty in these estimates, we sample these parameters  for region  from a 578 

normal distribution centred on the point estimate and set the standard deviation equal to the 579 

reported standard error. We then compute temperature-induced excess deaths in country  in 580 

region  as 581 (    ℎ ) ,= × (  ) × (  ) , , (2) 582 

where we calculate baseline mortality as the regional population level times its baseline mortality 583 

rate from the RFF-SPs, 584 (  ) , = , × (   ) , . (3) 585 

We monetize these excess deaths using the value of a statistical life (VSL) as follows: 586   , = , × (    ℎ ) , . (4) 587 

The baseline VSL value for 2020 for the United States (denoted , ) is derived using EPA’s 588 

1990 Guidance value of $4.8 million and adjusted for income growth and inflation, resulting in a 589 

2020 U.S. VSL of $10.05 million in 2020$ (U.S. EPA, 2010) (see data explainer notebook in 590 

replication code for the full derivation). We then base the VSL for country  in year  on the EPA’s 591 

baseline VSL for 2020, adjusted for country ’s GDP per capita in year , as 592 

, = , ×   ,  , , (5) 593 

where = 1 represents the income elasticity of the VSL. The primary function of  is to adjust 594 

the US VSL to other countries and at uncertain future income levels. We use a unit elasticity which 595 

is in line with the central tendency of values recommended in the literature for such cases92–95. 596 

(4) Agriculture 597 

The agricultural damage function is based on Moore et al. (2017)18, which estimated damages in 598 

two steps using: (1) a meta-analysis of published studies of the effects of temperature, rainfall, 599 

and CO2 on crop yields that builds on previous work by Challinor et al. (2014)96 and Porter et al. 600 

(2014)97; and (2) a computable general equilibrium model to estimate the economic welfare 601 ACCELE
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consequences of these yield shocks while accounting for trade patterns and supply and demand 602 

adjustments in agricultural markets across 16 regions. 603 

Moore et al. (2017) present their results in the form of damage functions that directly relate 604 

global mean surface temperature increase to welfare change in economic terms. Their study 605 

presents three different parameterizations of these damage functions to characterize 606 

uncertainty: a central, low, and high estimate.  607 

They estimated each of these three parameterizations for 1, 2, and 3 degrees Celsius of 608 

temperature increase, resulting in three piecewise linear damage functions for each region (see 609 

Supplemental Information Figure 1). To address uncertainty as part of our Monte Carlo sampling 610 

framework, we sampled a value from a triangular distribution with lower bound 0, mode 0.5, and 611 

upper bound 1 for each draw. Assigning the low, central, and high damage functions to each of 612 

these values respectively, the two nearest functions were linearly interpolated to produce the 613 

damage function for that draw, also interpolating linearly between the resultant 1-degree Celsius 614 

value and the origin since damages at zero temperature increase can be assumed to be zero. 615 

Importantly, this uncertainty sampling scheme preserves the covariance between regions arising 616 

through connections in the global trade network. 617 

Lastly, we incorporated their results into our model via the equation,  618 

, = ag share ( ), 619 

where ,  is the damage in the agricultural sector as a proportion of GDP in region  at 620 

time ;  is the share of agriculture in GDP in 1990 in region ; = 0.31 is the income elasticity 621 

of the agriculture share in GDP98; and  is the piecewise linear function for region  resulting from 622 

the steps described above. 623 

Discounting 624 

Our discounting approach directly follows from NASEM recommendations as developed by 625 

Newell, Pizer, and Prest1,31. Given the long residence time of CO2 in the atmosphere, the damages 626 

from CO2 emitted today persist for centuries. These future damages must be converted to 627 ACCELE
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present dollar equivalents using an appropriate discount rate. The climate economics literature 628 

typically uses Ramsey-style discounting that links the discount rate to future economic growth99. 629 

This linkage leads to the Ramsey-like equation for the discount rate over time, denoted :  =630 + × , where  is the rate of pure time preference,   is the average rate of consumption 631 

growth from the year of the emissions pulse (described in the next section) to year , and ×  632 

reflects the extent to which society discounts damages because future individuals are relatively 633 

wealthier. More specifically,  reflects how much the marginal value of consumption declines as 634 

consumption increases (a 1% increase in consumption corresponds with a % decline in the 635 

marginal value of a dollar). 636 

We evaluate the stochastic discount rate for each realized path of uncertain consumption growth 637 

( = + ), explicitly and structurally modelling the uncertainty in discount rates that is often 638 

summarized by a declining term structure100. This uncertainty in the discount rate leads to a 639 

stochastic discount factor ( ) used to discount future marginal climate damages. The  640 

can also be written equivalently in terms of relative consumption levels54,101 as 641 

= 1(1 + ) . (6) 642 

We use this  to discount marginal climate damages ( ) to a present value. 643 

While the climate economics literature routinely uses a Ramsey-like approach to 644 

discounting32,54,101–105, prior estimates by the US IWG disconnected discounting and future 645 

economic growth by using a constant, deterministic discount rate. That approach implicitly 646 

assumes that = 0, corresponding to no linkage between consumption growth and discounting 647 

as well as zero aversion to risk. Our approach re-establishes the Ramsey-like link between growth 648 

and discount rates. We use  and  values that were empirically calibrated3 to be consistent with 649 

the RFF-SPs and evidence on the observed behaviour of interest rates48. This procedure also 650 

produces near-term risk-free discount rates (defined as the average risk-free discount rate over 651 

the first decade of the time horizon) consistent with the desired values, such as those reported 652 

in Fig. 1. Our preferred SC-CO2 estimate corresponds to a near-term 2% rate, which is consistent 653 

with real risk-free interest rates over the last 30 years, and uses = 0.2% and = 1.243,31. The 654 ACCELE
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( , ) values corresponding to the alternative near-term rates of 1.5%, 2.5%, and 3% are 655 

(0.01%, 1.02), (0.5%, 1.42), and (0.8%, 1.57), respectively. 656 

The Ramsey-like form for the discount rate is a standard approach to value marginal impacts and 657 

account for their risk amid uncertainty in future payoffs and consumption levels in the discounted 658 

expected utility framework53,54. In that framework, the value of the η parameter reflects the 659 

degree of risk aversion as well as the inverse of the intertemporal elasticity of substitution. That 660 

framework is also used for benefit-cost analysis of policy and regulatory analysis under 661 

uncertainty, as it quantifies the risk premium associated with uncertainty and risk aversion in the 662 

valuation of a marginal emission of CO2. While the Ramsey framework is widely used, other 663 

considerations for decision-making under uncertainty in context of climate change, such as the 664 

role of epistemic uncertainty and alternative preference structures including ambiguity aversion, 665 

have also been proposed106. We use the discounted expected utility framework because it is the 666 

most established and widely used framework for regulatory and policy analysis107,108. 667 

Estimating the SC-CO2  668 

We estimate the SC-CO2 in a three-step calculation process. In the first step, we run the GIVE 669 

model out to the year 2300 for two separate cases: a “baseline” case and a “perturbed” case that 670 

adds an extra 0.1 MtC pulse of CO2 emissions in the year 2020 and is otherwise identical. In the 671 

second step, we calculate marginal climate damages in year  as the difference in modeled 672 

damages per tonne between the pulse and baseline runs as 673 

= (  ℎ −  ) , (7) 674 

where we aggregate over each of the four damage sectors  at their respective geographic 675 

resolutions (i.e., countries or regions) . 676 

In the third and final step, we calculate the SC-CO2 by discounting these marginal damages using 677 

the stochastic discount factors  from equation (5) above and then aggregate them over time 678 

into a single present value 679 ACCELE
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˗ 2 = × . (8) 680 

For our preferred results, we calculate 10,000 unique SC-CO2 estimates. For each estimate, we 681 

sample the RFF-SP scenarios to account for uncertainties in global CO2, CH4, and N2O emission 682 

trajectories in addition to country-level population and GDP growth levels. We also sample 683 

parametric uncertainties in the FaIR and BRICK models as well as the agricultural and 684 

temperature-related mortality damage functions (Extended Data Table 2). As described above, 685 

our preferred SC-CO2 estimate uses discounting parameters of = 0.2% and = 1.24 for a 686 

near-term rate of 2%. 687 

When we report partial SC-CO2 estimates for a given damage sector, we follow the estimation 688 

procedure outlined above, but only include the impacts from that individual sector when 689 

calculating marginal damages in equations (7) and (8). We normalize our estimates based on the 690 

emission pulse size and report all results throughout the paper in units of 2020 US dollars per 691 

metric tonne of CO2. We use the implicit GDP price deflator from the U.S. Bureau of Economic 692 

Analysis to convert values to 2020 dollars. 693 

We typically summarize the distribution of our 10,000 SC-CO2 estimates by its mean, i.e., 694 ˗ 2 , where the expectation operator is taken jointly over all uncertain parameters 695 

determining marginal damages ( ) and the stochastic discount factor ( ). This calculation 696 

is consistent with economic theory for pricing investments and other actions with uncertain 697 

payoffs, and therefore properly accounts for the risk premium in the valuation of a marginal 698 

emission of CO2 owing to the many compounding uncertainties we model46. 699 

Software 700 

All our results are computed using open-source software tools. We use the Julia programming 701 

language for the entire replication code of this paper109. All models used in this study are 702 

implemented on the Mimi.jl computational platform for integrated assessment models8. 703 

ACCELE
RATED ARTIC

LE
 PREVIEW



28 
 

Data and Code Availability 704 

The replication code and data for this paper is available at  705 

https://doi.org/10.5281/zenodo.6932028, including instructions on how to rerun the entire 706 

analysis for this paper. 707 
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Extended data figure/table legends 827 

Extended Data Table 1 | Mean SC-CO2 values (with 5th–95th quantile ranges), by damage 828 
function and discount rate ($/t-CO2). Our preferred estimates correspond to the GIVE sectoral 829 
damage functions at a 2% near-term discount rate, shown in bold. All results use the RFF-SP 830 
scenarios, a stochastic growth-linked discounting framework, and sample uncertain climate, sea 831 
level, and damage function parameters, including for DICE-2016R and Howard & Sterner 832 
damage functions. The DICE-2016R damage function is based on Nordhaus 2016 (see page 2 of 833 
Nordhaus 2016 Supplemental Information)32. The Howard & Sterner damage function is based 834 
on the base coefficient in their Table 2, specification (8). All SC-CO2 values are expressed in 835 
2020 US dollars per metric tonne of CO2. 836 

Extended Data Table 2 | Sources of SC-CO2 uncertainty. The left column shows the inputs and 837 
components of the GIVE model that contribute to uncertainty in the SC-CO2. The right column 838 
briefly describes these uncertainties and their sources. 839 

Extended Data Fig. 1 | SC-CO2 distributions are robust to different damage function 840 
specifications ($/t-CO2). Distributions of the SC-CO2 using the damage functions from GIVE 841 
(orange, our preferred specification), DICE-2016R32 (blue), and Howard & Sterner33 (red) for near-842 
term discount rates of 1.5%, 2.0%, 2.5%, and 3.0%. All results use the RFF-SP scenarios, a 843 
stochastic growth-linked discounting framework, and sample uncertain climate, sea level, and 844 
damage function parameters, including for DICE-2016R and Howard & Sterner damage functions. 845 
The DICE-2016R damage function is based on Nordhaus 2016 (see page 2 of Nordhaus 2016 846 
Supplemental Information)32. The Howard & Sterner damage function is based on the base 847 
coefficient in their Table 2, specification (8). All SC-CO2 values are expressed in 2020 US dollars 848 
per metric tonne of CO2. 849 

Extended Data Fig. 2 | Discounted marginal damages by year, preferred 2% near-term discount 850 
rate case. Solid line represents mean discounted marginal damages for a one-tonne CO2 851 
emissions pulse in 2020, dotted line represents the median, with darker shading spanning the 852 
25-75% quantile range and lighter shading spanning the 5-95% quantile range. All SC-CO2 values 853 
are expressed in 2020 US dollars per metric tonne of CO2. 854 
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 Near-term discount rate 
Damage function 1.5% 2% 2.5% 3% 

GIVE sectoral $308 
($94–$626) 

$185 
($44–$413) 

$118 
($23–$280) 

$80 
($12–$197) 

DICE-2016R $275 
($35–$690) 

$152 
($20–$390) 

$91 
($12–$233) 

$59 
($8–$149) 

Howard & Sterner $370 
($106–$828) 

$205 
($56–$468) 

$123 
($33–$286) 

$80 
($22–$183) 

 

Extended Data Table 1
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Model Component Uncertainty Source 

Global CO2, CH4, and N2O emission trajectories RFF-SPs3 

Country-level GDP growth rates RFF-SPs3,10 

Country-level population RFF-SPs9 

FaIR climate-carbon cycle model 2,237-member constrained ensemble of the uncertain parameters (sampled with replacement) 
from IPCC AR6 report74 

BRICK sea-level model 10,000-member ensemble of the uncertain parameters derived from a Bayesian calibration 
framework15,16  

Agriculture damage function Uncertain damage coefficient distributions based on Moore et al.18 

Temperature-related mortality damage function Uncertain damage coefficient distributions based on Cromar et al.19  
 

Extended Data Table 2
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Extended Data Fig. 1
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Model Component Uncertainty Source 

Global CO2, CH4, and N2O emission trajectories RFF-SPs3 

Country-level GDP growth rates RFF-SPs3,10 

Country-level population RFF-SPs9 

FaIR climate-carbon cycle model 2,237-member constrained ensemble of the uncertain parameters (sampled with replacement) 
from IPCC AR6 report74 

BRICK sea-level model 10,000-member ensemble of the uncertain parameters derived from a Bayesian calibration 
framework15,16  

Agriculture damage function Uncertain damage coefficient distributions based on Moore et al.18 

Temperature-related mortality damage function Uncertain damage coefficient distributions based on Cromar et al.19  
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