
in java-api/scalaris.properties.

4.2.2. Python command line interface

%> ./python -api/scalaris_client.py --help

usage: ../ python3 -api/scalaris_client.py [Options]

-r,--read <key >

read an item

-w,--write <key > <value >

write an item

--test -and -set <key > <old_value > <new_value >

atomic test and set , i.e. write <key > to

<new_value > if the current value is <old_value >

-d,--delete <key > [<timeout >]

delete an item (default timeout: 2000ms)

WARNING: This function can lead to inconsistent

data (e.g. deleted items can re-appear ).

Also if an item is re -created , the version

before the delete can re-appear.

-p,--publish <topic > <message >

publish a new message for the given topic

-s,--subscribe <topic > <url >

subscribe to a topic

-g,--getsubscribers <topic >

get subscribers of a topic

-u,--unsubscribe <topic > <url >

unsubscribe from a topic

-h,--help

print this message

-b,--minibench [<ops > [<threads_per_node > [<benchmarks >]]]

run selected mini benchmark(s)

[1|...|9| all] (default: all benchmarks , 500

operations each , 10 threads per Scalaris node)

4.2.3. Ruby command line interface

%> ../ruby -api/scalaris_client.rb --help

Usage: scalaris_client [options]

-r, --read KEY read key KEY

-w, --write KEY ,VALUE write key KEY to VALUE

--test -and -set KEY ,OLDVALUE ,NEWVALUE

write key KEY to NEWVALUE if the current value is OLDVALUE

--add -del -on-list KEY ,TOADD ,TOREMOVE

add and remove elements from the value at key KEY

--add -on-nr KEY ,VALUE add VALUE to the value at key KEY

-h, --help Show this message

4.3. Using Scalaris from Erlang

In this section, we will describe how to use Scalaris with two small examples. After having build

Scalaris as described in 2, Scalaris can be run from the source directory directly.

30 / 87



4.3.1. Running a Scalaris Cluster

In this example, we will set up a simple Scalaris cluster consisting of up to five nodes running on a

single computer.

Adapt the configuration The first step is to adapt the configuration to your needs. We use the

sample local configuration from 3.1, copy it to bin/scalaris.local.cfg and add a number of

different known hosts. Note that the management server will run on the same port as the first node

started in the example, hence we adapt its port as well.

{listen_ip , {127,0,0,1}}.

{mgmt_server , {{127,0,0,1} ,14195, mgmt_server}}.

{known_hosts , [{{127,0,0,1} ,14195, service_per_vm},

{{127,0,0,1} ,14196, service_per_vm},

{{127,0,0,1} ,14197, service_per_vm},

{{127,0,0,1} ,14198, service_per_vm}

% Although we will be using 5 nodes later , only 4 are added as known

% nodes.

]}.

Bootstrapping In a shell (from now on called S1), start the first node ("premier"):

./bin/scalarisctl -m -n premier@127 .0.0.1 -p 14195 -y 8000 -s -f start

The -m and -f options instruct scalarisctl to start the management server and the first_node.

Note that the command above will produce some output about unknown nodes. This is expected,

as some nodes defined in the configuration file above don’t exist yet.

After you run the above command and no further error occurred, you can query the locally available

nodes using scalarisctl. Enter into a new shell (called MS):

./bin/scalarisctl list

epmd: up and running on port 4369 with data:

name premier at port 47235

Scalaris also contains a webserver. You can access by pointing your browser to http://127.0.0.1:

8000 (or the respective IP adress of the node). With the above example, you can see the first node

("premier") and its management role.

Adding Nodes We will now add four additional nodes to the cluster. Use a new shell (S2 to S5)

for each of the following commands. Each newly added node is a "real" Scalaris node and could

run on another physical computer than the other nodes.

./bin/scalarisctl -n second@127 .0.0.1 -p 14196 -y 8001 -s start

./bin/scalarisctl -n n3@127 .0.0.1 -p 14197 -y 8002 -s start

./bin/scalarisctl -n n4@127 .0.0.1 -p 14198 -y 8003 -s start

./bin/scalarisctl -n n5@127 .0.0.1 -p 14199 -y 8004 -s start

Note that the last added nodes should not report a node as not reachable.

The management server should now report that the nodes have indeed joined Scalaris successfully.

Query scalarisctl:

./bin/scalarisctl list

epmd: up and running on port 4369 with data:

31 / 87



name n5 at port 47801

name n4 at port 54614

name n3 at port 41710

name second at port 44329

name premier at port 44862

The actual output might differ, as the port numbers are assigned by the operating system.

Each node offers a web console. Point your browser to any url for http://127.0.0.1:8001 to

http://127.0.0.1:8004. Observe that all nodes claim the cluster ring to consist of 5 nodes.

The web interface of node premier differs from the other interfaces. This is due to the fact that the

management server is running on this node, adding additional information to the web interface.

Entering Data Using the Web Interface A node’s web interface can be used to query and enter

data into Scalaris. To try this, point your browser to http://127.0.0.1:8000 (or any of the other

nodes) and use the provided HTML form.

1. Lookup key hello. This will return {fail,not_found}

2. Add new keys k1 and k2 with values v1 and v2, respectively. Then, lookup that key on the

current and one of the other nodes. This should return {ok,"v1"} and {ok, "v2"} on both nodes.

3. Update the key k1 by adding it on any node with value v1updated.

4. Update the key k2 by adding it on any node with value v2updated. Lookup the key again and

you should receive {ok, v2updated}

Simulating Node Failure To simulate a node failure, we will simply stop n4 using scalarisctl:

./bin/scalarisctl -n n4@127 .0.0.1 stop

Other nodes will notice the crash of n4. By querying the available nodes in the shell MS again, you

will now see only 4 nodes.

Although the node n4 left the system, the data in the system is still consistent. Try to query the keys

you added above. You should receive the values for each.

We will restart n4 again:

./bin/scalarisctl -n n4@127 .0.0.1 -p 14198 -y 8003 -s start

The node list (again, query scalarisctl in shell MS) will report n4 as alive again. You can still

lookup the keys from above and should also receive the same result for the queries.

After running the above, we went from a five-node cluster to a 4-node cluster and back to a five-

node cluster without any data loss due to a leaving node.

Controlling Scalaris Using the Erlang Shell The calls to scalarisctl above which started a new

scalaris node ended within an Erlang shell. Each of those shells can be used to control a local

Scalaris node and issue queries to the distributed database. Enter shell S1 and hit <return> to see

the erlang shell prompt. Now, enter the following commands and check that the output is similar

to the one provided here. You can stop the Erlang shell using quit()..

(premier@127 .0.0.1)1 > api_tx:read("k0").
{fail ,not_found}

32 / 87



(premier@127 .0.0.1)2 > api_tx:read("k1").
{ok ," v1updated "}
(premier@127 .0.0.1)3 > api_tx:read("k2").
{ok ," v2updated "}
(premier@127 .0.0.1)4 > api_tx:read(<<"k1" >>).
{ok ," v1updated "}
(premier@127 .0.0.1)5 > api_tx:read(<<"k2" >>).
{ok ," v2updated "}
(premier@127 .0.0.1)6 > api_tx:write(<<"k3">>,<<"v3" >>).
{ok}

(premier@127 .0.0.1)7 > api_tx:read(<<"k3" >>).
{ok ,<<"v3">>}
(premier@127 .0.0.1)8 > api_tx:read("k3").
{ok ,<<"v3">>}
(premier@127 .0.0.1)9 > api_tx:write(<<"k4">>,{1,2,3,four}).
{ok}

(premier@127 .0.0.1)10 > api_tx:read("k4").
{ok ,{1,2,3,four}}

Attaching a Client to Scalaris Now we will connect a true client to our 5 nodes Scalaris cluster.

This client will not be a Scalaris node itself and thus represents a user application interacting with

Scalaris.

We use a new shell to run an Erlang shell to do remote API calls to the server nodes.

erl -name client@127 .0.0.1 -hidden -setcookie ’chocolate chip cookie ’

The requests to Scalaris will be done using rpc:call/4. A production system would have some

more sophisticated client side module, dispatching requests automatically to server nodes, for ex-

ample.

(client@127 .0.0.1)1 > net_adm:ping( ’ n3@127 . 0 . 0 . 1 ’ ).
pong

(client@127 .0.0.1)2 > rpc:call( ’ n3@127 . 0 . 0 . 1 ’ , api_tx , read , [<<"k0">>]).
{fail ,not_found}

(client@127 .0.0.1)3 > rpc:call( ’ n3@127 . 0 . 0 . 1 ’ , api_tx , read , [<<"k4">>]).
{ok ,{1,2,3,four}}

(client@127 .0.0.1)4 > rpc:call( ’ n4@127 . 0 . 0 . 1 ’ , api_tx , read , [<<"k4">>]).
{ok ,{1,2,3,four}}

(client@127 .0.0.1)5 > rpc:call( ’ n5@127 . 0 . 0 . 1 ’ , api_tx , write ,

[<<"num5" >>,55]).
{ok}

(client@127 .0.0.1)6 > rpc:call( ’ n3@127 . 0 . 0 . 1 ’ , api_tx , read ,

[<<"num5">>]).
{ok ,55}

(client@127 .0.0.1)7 > rpc:call( ’ n2@127 . 0 . 0 . 1 ’ , api_tx , add_on_nr ,

[<<"num5" >>,2]).
{badrpc ,nodedown}

(client@127 .0.0.1)8 > rpc:call( ’ second@127 . 0 . 0 . 1 ’ , api_tx , add_on_nr ,

[<<"num5" >>,2]).
{ok}

(client@127 .0.0.1)9 > rpc:call( ’ n3@127 . 0 . 0 . 1 ’ , api_tx , read , [<<"num5">>]).
{ok ,57}

(client@127 .0.0.1)10 > rpc:call( ’ n4@127 . 0 . 0 . 1 ’ , api_tx , test_and_set ,

[<<"num5" >>,57,59]).
{ok}

(client@127 .0.0.1)11 > rpc:call( ’ n5@127 . 0 . 0 . 1 ’ , api_tx , read , [<<"num5">>]).
{ok ,59}

(client@127 .0.0.1)12 > rpc:call( ’ n4@127 . 0 . 0 . 1 ’ , api_tx , test_and_set ,

[<<"num5" >>,57,55]).
{fail ,{key_changed ,59}}

(client@127 .0.0.1)13 > rpc:call( ’ n3@127 . 0 . 0 . 1 ’ , api_tx , read , [<<"num5">>]).
{ok ,59}

(client@127 .0.0.1)14 > rpc:call( ’ n5@127 . 0 . 0 . 1 ’ , api_tx , test_and_set ,

[<<"k2">>," v2updated ",<<"v2updatedTWICE">>]).

33 / 87



{ok}

(client@127 .0.0.1)15 > rpc:call( ’ n4@127 . 0 . 0 . 1 ’ , api_tx , read , [<<"k2">>]).
{ok ,<<"v2updatedTWICE">>}
(client@127 .0.0.1)16 > rpc:call( ’ n3@127 . 0 . 0 . 1 ’ , api_tx , add_on_nr ,

[<<"num5" >>,-4]).
{ok}

(client@127 .0.0.1)17 > rpc:call( ’ n4@127 . 0 . 0 . 1 ’ , api_tx , read , [<<"num5">>]).
{ok ,55}

(client@127 .0.0.1)18 > q().

ok

To show that the above calls actually worked with Scalaris, connect another client to the cluster

and read updates made by the first:

erl -name clientagain@127 .0.0.1 -hidden -setcookie ’chocolate chip cookie ’

(clientagain@127 .0.0.1)1 > net_adm:ping( ’ n5@127 . 0 . 0 . 1 ’ ).
pong

(clientagain@127 .0.0.1)2 > rpc:call( ’ n4@127 . 0 . 0 . 1 ’ , api_tx , read ,

[<<"k0">>]).
{fail ,not_found}

(clientagain@127 .0.0.1)3 > rpc:call( ’ n4@127 . 0 . 0 . 1 ’ , api_tx , read ,

[<<"k1">>]).
{ok ," v1updated "}
(clientagain@127 .0.0.1)4 > rpc:call( ’ n3@127 . 0 . 0 . 1 ’ , api_tx , read ,

[<<"k2">>]).
{ok ,<<"v2updatedTWICE">>}
(clientagain@127 .0.0.1)5 > rpc:call( ’ second@127 . 0 . 0 . 1 ’ , api_tx , read ,

[<<"num5">>]).
{ok ,55}

Shutting Down Scalaris Firstly, we list the available nodes using scalarisctl using the shell MS.

./bin/scalarisctl list

epmd: up and running on port 4369 with data:

name n4 at port 52504

name n5 at port 47801

name n3 at port 41710

name second at port 44329

name premier at port 44862

Secondly, we shut down each of the nodes:

./bin/scalarisctl -n second@127 .0.0.1 stop

’second@127 .0.0.1 ’

./bin/scalarisctl -n n3@127 .0.0.1 stop

’n3@127 .0.0.1 ’

./bin/scalarisctl -n n4@127 .0.0.1 stop

’n4@127 .0.0.1 ’

./bin/scalarisctl -n n5@127 .0.0.1 stop

’n5@127 .0.0.1 ’

Only the first node remains:

./bin/scalarisctl list

epmd: up and running on port 4369 with data:

name premier at port 44862

./bin/scalarisctl -n premier@127 .0.0.1 stop

’premier@127 .0.0.1 ’

./bin/scalarisctl list

epmd: up and running on port 4369 with data:

(nothing)

34 / 87



The Scalaris API offers more transactional operations than just single-key read and write. The next

part of this section will describe how to build transaction logs for atomical operations and how

Scalaris handles conflicts in concurrently running transactions. See the module api_tx for more

functions to access the data layer of Scalaris.

4.3.2. Transaction

In this section, we will describe how to build transactions on the client side using api_tx:req_list(Tlog, List).

The setup is similar to the five nodes cluster in the previous section. To simplify the example all

API calls are typed inside the Erlang shells of nodes n4 and n5.

Consider two concurrent transactions A and B. A is a long-running operation, whereas B is only a

short transaction. In the example, A starts before B and B ends before A. B is "timely" nested in A

and disturbs A.

Single Read Operations We first issue two read operations on nodes n4, n5 to see that we are

working on the same state for key k1

(n4@127 .0.0.1)10 > api_tx:read(<<"k1" >>).
{ok ,<<"v1">>}
(n5@127 .0.0.1)17 > api_tx:read(<<"k1" >>).
{ok ,<<"v1">>}

Create Transaction Logs and Add Operations Now, we create two transaction logs for the trans-

actions and add the operations which are to be run atomically. A will be created on node n5, B on

n4:

(n5@127 .0.0.1)18 > T5longA0 = api_tx:new_tlog ().

[]

(n5@127 .0.0.1)19 > {T5longA1 , R5longA1} = api_tx:req_list(T5longA0 , [{read ,

<<"k1">>}]).
{[{76,<<"k1" >>,1,75, ’ $empty ’ }],[{ok ,<<"v1">>}]}
(n4@127 .0.0.1)11 > T4shortB0 = api_tx:new_tlog ().

[]

(n4@127 .0.0.1)12 > {T4shortB1 , R4shortB1} = api_tx:req_list(T4shortB0 ,

[{read , <<"k1">>}]).
{[{76,<<"k1" >>,1,75, ’ $empty ’ }],[{ok ,<<"v1">>}]}
(n4@127 .0.0.1)13 > {T4shortB2 , R4shortB2} = api_tx:req_list(T4shortB1 ,

[{write , <<"k1">>, <<" v1Bshor t ">>}]).
{[{77,<<"k1" >>,1,75, <<131,109,0,0,0,8,118,49,66,115,104,111,114 ,116>>}],

[{ok}]}

(n4@127 .0.0.1)14 > {T4shortB3 , R4shortB3} = api_tx:req_list(T4shortB2 ,

[{read , <<"k1">>}]).
{[{77,<<"k1" >>,1,75, <<131,109,0,0,0,8,118,49,66,115,104,111,114 ,116>>}],

[{ok ,<<" v1Bshor t ">>}]}

To finish the transaction log for B, we add {commit}. This operation should return a ok:

(n4@127 .0.0.1)15 > {T4shortB4 , R4shortB4} = api_tx:req_list(T4shortB3 ,

[{commit}]).

{[],[{ok}]}

(n4@127 .0.0.1)16 > [R4shortB1 ,R4shortB2 ,R4shortB3 ,R4shortB4].

[[{ok ,<<"v1">>}],[{ok}],[{ok ,<<" v1Bshor t ">>}],[{ok}]]

This concludes the creation of B. Now we will try to commit the long running transaction A after

reading the key k1 again. This and further attempts to write the key will fail, as the transaction B

wrote this key since A started.

35 / 87



(n5@127 .0.0.1)20 > {T5longA2 , R5longA2} = api_tx:req_list(T5longA1 , [{read ,

<<"k1">>}]).
{[{76,<<"k1" >>,2,{fail ,abort}, ’ $empty ’ }],
[{ok ,<<" v1Bshor t ">>}]} % SEE #### FAIL and ABORT ####

(n5@127 .0.0.1)21 > {T5longA3 , R5longA3} = api_tx:req_list(T5longA2 , [{write ,

<<"k1">>,<<" v1Along ">>}]).
{[{76,<<"k1" >>,2,{fail ,abort}, ’ $empty ’ }],[{ok}]}
(n5@127 .0.0.1)22 > {T5longA4 , R5longA4} = api_tx:req_list(T5longA3 , [{read ,

<<"k1">>}]).
{[{76,<<"k1" >>,2,{fail ,abort}, ’ $empty ’ }],
[{ok ,<<" v1Bshor t ">>}]}

(n5@127 .0.0.1)23 > {T5longA5 , R5longA5} = api_tx:req_list(T5longA4 ,

[{commit}]).

{[],[{fail ,abort ,[<<"k1">>]}]} % SEE #### FAIL and ABORT ####

(n4@127 .0.0.1)17 > api_tx:read(<<"k1" >>).
{ok ,<<" v1Bshor t ">>}
(n5@127 .0.0.1)24 > api_tx:read(<<"k1" >>).
{ok ,<<" v1Bshor t ">>}

As expected, the first coherent commit B constructed on n4 has won.

Note that in a real system, operations in api_tx:req_list(Tlog, List) should be grouped together with

a trailing {commit}. The individual separation of all reads, writes and commits was done here on

purpose to study the transactional behaviour.

36 / 87


