
Slick 3.0 User Manual

Reactive Functional Relational Mapping for Scala

Introduction

What is Slick?
Slick (“Scala Language-Integrated Connection Kit”) is Typesafe‘s Functional
Relational Mapping (FRM) library for Scala that makes it easy to work with
relational databases. It allows you to work with stored data almost as if you were
using Scala collections while at the same time giving you full control over when a
database access happens and which data is transferred. You can also use SQL
directly. Execution of database actions is done asynchronously, making Slick a
perfect fit for your reactive applications based on Play and Akka.

val limit = 10.0

// Your query could look like this:
(for(c <- coffees; if c.price < limit) yield
c.name).result

// Equivalent SQL: select COF_NAME from COFFEES where PRICE
< 10.0

When using Scala instead of raw SQL for your queries you benefit from compile-
time safety and compositionality. Slick can generate queries for different back-end
databases including your own, using its extensible query compiler.

Get started learning Slick in minutes using the Hello Slick template in Typesafe
Activator. See here for an overview of the supported database systems for which
Slick can generate code.

Functional Relational Mapping
Functional programmers have long suffered Object-Relational and Object-Math
impedance mismatches when connecting to relational databases. Slick’s new
Functional Relational Mapping (FRM) paradigm allows mapping to be completed
within Scala, with loose-coupling, minimal configuration requirements, and a
number of other major advantages that abstract the complexities away from
connecting with relational databases.

We don’t try to fight the relational model, we embrace it through a functional
paradigm. Instead of trying to bridge the gap between the object model and the
database model, we’ve brought the database model into Scala so developers
don’t need to write SQL code.

1

http://www.typesafe.com/
http://slick.typesafe.com/doc/3.0.0/
http://slick.typesafe.com/doc/3.0.0/supported-databases.html
https://typesafe.com/activator
https://typesafe.com/activator/template/hello-slick-3.0
http://akka.io/
https://playframework.com/

class Coffees(tag: Tag) extends Table[(String, Double)](tag,
"COFFEES") {
 def name = column[String]("COF_NAME", O.PrimaryKey)
 def price = column[Double]("PRICE")
 def * = (name, price)
}
val coffees = TableQuery[Coffees]

Slick integrates databases directly into Scala, allowing stored and remote data to
be queried and processed in the same way as in-memory data, using ordinary
Scala classes and collections.

// Query that only returns the "name" column
// Equivalent SQL: select NAME from COFFEES
coffees.map(_.name)

// Query that limits results by price < 10.0
// Equivalent SQL: select * from COFFEES where PRICE < 10.0
coffees.filter(_.price < 10.0)

This enables full control over when a database is accessed and which data is
transferred. The language integrated query model in Slick’s FRM is inspired by
the LINQ project at Microsoft and leverages concepts tracing all the way back to
the early work of Mnesia at Ericsson.

Some of the key benefits of Slick’s FRM approach for functional programming
include:

• Efficiency with Pre-Optimization

FRM is more efficient way to connect; unlike ORM it has the ability to pre-
optimize its communication with the database - and with FRM you get this out of
the box. The road to making an app faster is much shorter with FRM than ORM.

• No More Tedious Troubleshooting with Type Safety

FRM brings type safety to building database queries. Developers are more
productive because the compiler finds errors automatically versus the typical
tedious troubleshooting required of finding errors in untyped strings.

// The result of "select PRICE from COFFEES" is a Seq of
Double
// because of the type safe column definitions
val coffeeNames: Future[Seq[Double]] = db.run(
 coffees.map(_.price).result
)

// Query builders are type safe:
coffees.filter(_.price < 10.0)

2

// Using a string in the filter would result in a
compilation error

Misspelled the column name price? The compiler will tell you:

GettingStartedOverview.scala:89: value prices is not a
member of
com.typesafe.slick.docs.GettingStartedOverview.Coffees
 coffees.map(_.prices).result
 ^

The same goes for type errors:

GettingStartedOverview.scala:89: type mismatch;
 found :
slick.driver.H2Driver.StreamingDriverAction[Seq[String],Stri
ng,slick.dbio.Effect.Read]
 (which expands to)
slick.profile.FixedSqlStreamingAction[Seq[String],String,sli
ck.dbio.Effect.Read]
 required:
slick.dbio.DBIOAction[Seq[Double],slick.dbio.NoStream,Nothin
g]
 coffees.map(_.name).result
 ^

• A More Productive, Composable Model for Building Queries

FRM supports a composable model for building queries. It’s a very natural model
to compose pieces together to build a query, and then reuse pieces across your
code base.

// Create a query for coffee names with a price less than
10, sorted by name
coffees.filter(_.price < 10.0).sortBy(_.name).map(_.name)
// The generated SQL is equivalent to:
// select name from COFFEES where PRICE < 10.0 order by NAME

Reactive Applications
Slick is easy to use in asynchronous, non-blocking application designs, and
supports building applications according to the Reactive Manifesto. Unlike simple
wrappers around traditional, blocking database APIs, Slick gives you:

• Clean separation of I/O and CPU-intensive code: Isolating I/O allows you to
keep your main thread pool busy with CPU-intensive parts of the application
while waiting for I/O in the background.

• Resilience under load: When a database cannot keep up with the load of

3

http://www.reactivemanifesto.org/

your application, Slick will not create more and more threads (thus making
the situation worse) or lock out all kinds of I/O. Back-pressure is controlled
efficiently through a queue (of configurable size) for database I/O actions,
allowing a certain number of requests to build up with very little resource
usage and failing immediately once this limit has been reached.

• Reactive Streams for asynchronous streaming.
• Efficient utilization of database resources: Slick can be tuned easily and

precisely for the parallelism (number of concurrent active jobs) and resource
ussage (number of currently suspended database sessions) of your
database server.

Plain SQL Support
The Scala-based query API for Slick allows you to write database queries like
queries for Scala collections. Please see Getting Started for an introduction. Most
of this user manual focuses on this API.

If you want to write your own SQL statements and still execute them
asynchronously like a normal Slick queries, you can use the Plain SQL API:

val limit = 10.0

sql"select COF_NAME from COFFEES where PRICE <
$limit".as[String]

// Automatically using a bind variable to be safe from SQL
injection:
// select COF_NAME from COFFEES where PRICE < ?

License
Slick is released under a BSD-Style free and open source software license. See
the chapter on the commercial Slick Extensions add-on package for details on
licensing the Slick drivers for the big commercial database systems.

Supported Databases
• DB2 (via slick-extensions)
• Derby/JavaDB
• H2
• HSQLDB/HyperSQL
• Microsoft Access
• Microsoft SQL Server (via slick-extensions)
• MySQL
• Oracle (via slick-extensions)
• PostgreSQL

4

http://slick.typesafe.com/doc/3.0.0/extensions.html
http://slick.typesafe.com/doc/3.0.0/extensions.html
http://slick.typesafe.com/doc/3.0.0/extensions.html
http://slick.typesafe.com/doc/3.0.0/extensions.html
https://github.com/slick/slick/blob/3.0.0/LICENSE.txt
http://slick.typesafe.com/doc/3.0.0/sql.html
http://slick.typesafe.com/doc/3.0.0/gettingstarted.html
http://www.reactive-streams.org/

• SQLite

Other SQL databases can be accessed right away with a reduced feature set.
Writing a fully featured plugin for your own SQL-based backend can be achieved
with a reasonable amount of work. Support for other backends (like NoSQL) is
under development but not yet available.

The following capabilities are supported by the drivers. “Yes” means that a
capability is fully supported. In other cases it may be partially supported or not at
all. See the individual driver’s API documentation for details.

Driver Capabilities (core drivers only) (external link)

Getting Started
The easiest way to get started is with a working application in Typesafe Activator.
The following templates are created by the Slick team, with updated versions
being made for new Slick releases:

• To learn the basics of Slick, start with the Hello Slick template. It contains an
extended version of the tutorial and code from this page.

• The Slick Plain SQL Queries template shows you how to do SQL queries
with Slick.

• The Slick Multi-DB Patterns template shows you how to write Slick
applications that can use different database systems and how to use custom
database functions in Slick queries.

• The Slick TestKit Example template shows you how to use Slick TestKit to
test your own Slick drivers.

There are more Slick templates created by the community, as well as versions of
our own templates for other Slick releases. You can find all Slick templates on the
Typesafe web site.

Adding Slick to Your Project
To include Slick in an existing project use the library published on Maven Central.
For sbt projects add the following to your build definition - build.sbt or
project/Build.scala:

libraryDependencies ++= Seq(
 "com.typesafe.slick" %% "slick" % "3.0.0",
 "org.slf4j" % "slf4j-nop" % "1.6.4"
)

For Maven projects add the following to your <dependencies> (make sure to
use the correct Scala version prefix, _2.10 or _2.11, to match your project’s
Scala version):

5

https://typesafe.com/activator/templates#filter:slick
https://typesafe.com/activator/template/slick-testkit-example-3.0
http://typesafe.com/activator/template/slick-multidb-3.0
https://typesafe.com/activator/template/slick-plainsql-3.0
https://typesafe.com/activator/template/hello-slick-3.0
https://typesafe.com/activator
http://slick.typesafe.com/doc/3.0.0/supported-databases.html

<dependency>
 <groupId>com.typesafe.slick</groupId>
 <artifactId>slick_2.10</artifactId>
 <version>3.0.0</version>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-nop</artifactId>
 <version>1.6.4</version>
</dependency>

Slick uses SLF4J for its own debug logging so you also need to add an SLF4J
implementation. Here we are using slf4j-nop to disable logging. You have to
replace this with a real logging framework like Logback if you want to see log
output.

The Reactive Streams API is pulled in automatically as a transitive dependency.

If you want to use Slick’s connection pool support, you need to add HikariCP as a
dependency.

Quick Introduction
Note

The rest of this chapter is based on the Hello Slick template. The prefered way of
reading this introduction is in Activator, where you can edit and run the code
directly while reading the tutorial.

To use Slick you first need to import the API for the database you will be using,
like:

// Use H2Driver to connect to an H2 database
import slick.driver.H2Driver.api._

import scala.concurrent.ExecutionContext.Implicits.global

Since we are using H2 as our database system, we need to import features from
Slick’s H2Driver. A driver’s api object contains all commonly needed imports
from the driver and other parts of Slick such as database handling.

Slick’s API is fully asynchronous and runs database call in a separate thread
pool. For running user code in composition of DBIOAction and Future values,
we import the global ExecutionContext. When using Slick as part of a larger
application (e.g. with Play or Akka) the framework may provide a better
alternative to this default ExecutionContext.

Database Configuration
In the body of the application we create a Database object which specifies how

6

http://akka.io/
https://playframework.com/
http://slick.typesafe.com/doc/3.0.0/database.html
http://h2database.com/
https://typesafe.com/activator
https://typesafe.com/activator/template/hello-slick-3.0
http://brettwooldridge.github.io/HikariCP/
http://logback.qos.ch/
http://www.slf4j.org/

to connect to a database. In most cases you will want to configure database
connections with Typesafe Config in your application.conf, which is also
used by Play and Akka for their configuration:

h2mem1 = {
 url = "jdbc:h2:mem:test1"
 driver = org.h2.Driver
 connectionPool = disabled
 keepAliveConnection = true
}

For the purpose of this example we disable the connection pool (there is no point
in using one for an embedded in-memory database) and request a keep-alive
connection (which ensures that the database does not get dropped while we are
using it). The database can be easily instantiated from the configuration like this:

val db = Database.forConfig("h2mem1")
try {
 // ...
} finally db.close

Note

A Database object usually manages a thread pool and a connection pool. You
should always shut it down properly when it is no longer needed (unless the JVM
process terminates anyway).

Schema
Before we can write Slick queries, we need to describe a database schema with
Table row classes and TableQuery values for our tables. You can either use
the code generator to automatically create them for your database schema or you
can write them by hand:

// Definition of the SUPPLIERS table
class Suppliers(tag: Tag) extends Table[(Int, String,
String, String, String, String)](tag, "SUPPLIERS") {
 def id = column[Int]("SUP_ID", O.PrimaryKey) // This is
the primary key column
 def name = column[String]("SUP_NAME")
 def street = column[String]("STREET")
 def city = column[String]("CITY")
 def state = column[String]("STATE")
 def zip = column[String]("ZIP")
 // Every table needs a * projection with the same type as
the table's type parameter
 def * = (id, name, street, city, state, zip)
}

7

http://slick.typesafe.com/doc/3.0.0/code-generation.html
http://akka.io/
https://playframework.com/
https://github.com/typesafehub/config

val suppliers = TableQuery[Suppliers]

// Definition of the COFFEES table
class Coffees(tag: Tag) extends Table[(String, Int, Double,
Int, Int)](tag, "COFFEES") {
 def name = column[String]("COF_NAME", O.PrimaryKey)
 def supID = column[Int]("SUP_ID")
 def price = column[Double]("PRICE")
 def sales = column[Int]("SALES")
 def total = column[Int]("TOTAL")
 def * = (name, supID, price, sales, total)
 // A reified foreign key relation that can be navigated to
create a join
 def supplier = foreignKey("SUP_FK", supID, suppliers)
(_.id)
}
val coffees = TableQuery[Coffees]

All columns get a name (usually in camel case for Scala and upper case with
underscores for SQL) and a Scala type (from which the SQL type can be derived
automatically). The table object also needs a Scala name, SQL name and type.
The type argument of the table must match the type of the special * projection. In
simple cases this is a tuple of all columns but more complex mappings are
possible.

The foreignKey definition in the coffees table ensures that the supID field
can only contain values for which a corresponding id exists in the suppliers
table, thus creating an n to one relationship: A Coffees row points to exactly one
Suppliers row but any number of coffees can point to the same supplier. This
constraint is enforced at the database level.

Populating the Database
The connection to the embedded H2 database engine provides us with an empty
database. Before we can execute queries, we need to create the database
schema (consisting of the coffees and suppliers tables) and insert some test
data:

val setup = DBIO.seq(
 // Create the tables, including primary and foreign keys
 (suppliers.schema ++ coffees.schema).create,

 // Insert some suppliers
 suppliers += (101, "Acme, Inc.", "99 Market Street",
"Groundsville", "CA", "95199"),
 suppliers += (49, "Superior Coffee", "1 Party Place",

8

"Mendocino", "CA", "95460"),
 suppliers += (150, "The High Ground", "100 Coffee Lane",
"Meadows", "CA", "93966"),
 // Equivalent SQL code:
 // insert into SUPPLIERS(SUP_ID, SUP_NAME, STREET, CITY,
STATE, ZIP) values (?,?,?,?,?,?)

 // Insert some coffees (using JDBC's batch insert feature,
if supported by the DB)
 coffees ++= Seq(
 ("Colombian", 101, 7.99, 0, 0),
 ("French_Roast", 49, 8.99, 0, 0),
 ("Espresso", 150, 9.99, 0, 0),
 ("Colombian_Decaf", 101, 8.99, 0, 0),
 ("French_Roast_Decaf", 49, 9.99, 0, 0)
)
 // Equivalent SQL code:
 // insert into COFFEES(COF_NAME, SUP_ID, PRICE, SALES,
TOTAL) values (?,?,?,?,?)
)

val setupFuture = db.run(setup)

The TableQuery‘s ddl method creates DDL (data definition language) objects
with the database-specific code for creating and dropping tables and other
database entities. Multiple DDL values can be combined with ++ to allow all
entities to be created and dropped in the correct order, even when they have
circular dependencies on each other.

Inserting the tuples of data is done with the += and ++= methods, similar to how
you add data to mutable Scala collections.

The create, += and ++= methods return an Action which can be executed on
a database at a later time to produce a result. There are several different
combinators for combining multiple Actions into sequences, yielding another
Action. Here we use the simplest one, Action.seq, which can concatenate any
number of Actions, discarding the return values (i.e. the resulting Action produces
a result of type Unit). We then execute the setup Action asynchronously with
db.run, yielding a Future[Unit].

Note

Database connections and transactions are managed automatically by Slick. By
default connections are acquired and released on demand and used in auto-
commit mode. In this mode we have to populate the suppliers table first
because the coffees data can only refer to valid supplier IDs. We could also

9

use an explicit transaction bracket encompassing all these statements
(db.run(setup.transactionally)). Then the order would not matter
because the constraints are only enforced at the end when the transaction is
committed.

Querying
The simplest kind of query iterates over all the data in a table:

// Read all coffees and print them to the console
println("Coffees:")
db.run(coffees.result).map(_.foreach {
 case (name, supID, price, sales, total) =>
 println(" " + name + "\t" + supID + "\t" + price + "\t"
+ sales + "\t" + total)
})
// Equivalent SQL code:
// select COF_NAME, SUP_ID, PRICE, SALES, TOTAL from COFFEES

This corresponds to a SELECT * FROM COFFEES in SQL (except that the * is
the table’s * projection we defined earlier and not whatever the database sees as
*). The type of the values we get in the loop is, unsurprisingly, the type parameter
of Coffees.

Let’s add a projection to this basic query. This is written in Scala with the map
method or a for comprehension:

// Why not let the database do the string conversion and
concatenation?
val q1 = for(c <- coffees)
 yield LiteralColumn(" ") ++ c.name ++ "\t" ++
c.supID.asColumnOf[String] ++
 "\t" ++ c.price.asColumnOf[String] ++ "\t" ++
c.sales.asColumnOf[String] ++
 "\t" ++ c.total.asColumnOf[String]
// The first string constant needs to be lifted manually to
a LiteralColumn
// so that the proper ++ operator is found

// Equivalent SQL code:
// select ' ' || COF_NAME || '\t' || SUP_ID || '\t' ||
PRICE || '\t' SALES || '\t' TOTAL from COFFEES

db.stream(q1.result).foreach(println)

The output will be the same: For each row of the table, all columns get converted
to strings and concatenated into one tab-separated string. The difference is that

10

all of this now happens inside the database engine, and only the resulting
concatenated string is shipped to the client. Note that we avoid Scala’s + operator
(which is already heavily overloaded) in favor of ++ (commonly used for
sequence concatenation). Also, there is no automatic conversion of other
argument types to strings. This has to be done explicitly with the type conversion
method asColumnOf.

This time we also use Reactive Streams to get a streaming result from the
database and print the elements as they come in instead of materializing the
whole result set upfront.

Joining and filtering tables is done the same way as when working with Scala
collections:

// Perform a join to retrieve coffee names and supplier
names for
// all coffees costing less than $9.00
val q2 = for {
 c <- coffees if c.price < 9.0
 s <- suppliers if s.id === c.supID
} yield (c.name, s.name)
// Equivalent SQL code:
// select c.COF_NAME, s.SUP_NAME from COFFEES c, SUPPLIERS s
where c.PRICE < 9.0 and s.SUP_ID = c.SUP_ID

Warning

Note the use of === instead of == for comparing two values for equality and
=!= instead of != for inequality. This is necessary because these operators
are already defined (with unsuitable types and semantics) on the base type
Any, so they cannot be replaced by extension methods. The other
comparison operators are the same as in standard Scala code: <, <=, >=, >.

The generator expression suppliers if s.id === c.supID follows the
relationship established by the foreign key Coffees.supplier. Instead of
repeating the join condition here we can use the foreign key directly:

val q3 = for {
 c <- coffees if c.price < 9.0
 s <- c.supplier
} yield (c.name, s.name)
// Equivalent SQL code:
// select c.COF_NAME, s.SUP_NAME from COFFEES c, SUPPLIERS s
where c.PRICE < 9.0 and s.SUP_ID = c.SUP_ID

Database Configuration
You can tell Slick how to connect to the JDBC database of your choice by

11

http://www.reactive-streams.org/

creating a Database object, which encapsulates the information. There are
several factory methods on slick.jdbc.JdbcBackend.Database that you can use
depending on what connection data you have available.

Using Typesafe Config
The prefered way to configure database connections is through Typesafe Config
in your application.conf, which is also used by Play and Akka for their
configuration.

mydb = {
 dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"
 properties = {
 databaseName = "mydb"
 user = "myuser"
 password = "secret"
 }
 numThreads = 10
}

Such a configuration can be loaded with Database.forConfig (see the API
documentation of this method for details on the configuration parameters).

val db = Database.forConfig("mydb")

Using a JDBC URL
You can pass a JDBC URL to forURL. (see your database’s JDBC driver’s
documentation for the correct URL syntax).

val db = Database.forURL("jdbc:h2:mem:test1;DB_CLOSE_DELAY=-
1", driver="org.h2.Driver")

Here we are connecting to a new, empty, in-memory H2 database called test1
and keep it resident until the JVM ends (DB_CLOSE_DELAY=-1, which is H2
specific).

Using a DataSource
You can pass a DataSource object to forDataSource. If you got it from the
connection pool of your application framework, this plugs the pool into Slick.

val db = Database.forDataSource(dataSource:
javax.sql.DataSource)

Using a JNDI Name
If you are using JNDI you can pass a JNDI name to forName under which a
DataSource object can be looked up.

12

http://docs.oracle.com/javase/7/docs/api/javax/sql/DataSource.html
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend$DatabaseFactoryDef@forName(String,AsyncExecutor):DatabaseDef
http://en.wikipedia.org/wiki/JNDI
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend$DatabaseFactoryDef@forDataSource(DataSource,AsyncExecutor):DatabaseDef
http://docs.oracle.com/javase/7/docs/api/javax/sql/DataSource.html
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend$DatabaseFactoryDef@forURL(String,String,String,Properties,String,AsyncExecutor,Boolean):DatabaseDef
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend$DatabaseFactoryDef@forConfig(String,Config,Driver):Database
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend$DatabaseFactoryDef@forConfig(String,Config,Driver):Database
http://akka.io/
https://playframework.com/
https://github.com/typesafehub/config
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend$DatabaseFactoryDef
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend@Database:Database

val db = Database.forName(jndiName: String)

Database thread pool
Every Database contains an AsyncExecutor that manages the thread pool for
asynchronous execution of Database I/O Actions. Its size is the main parameter
to tune for the best performance of the Database object. It should be set to the
value that you would use for the size of the connection pool in a traditional,
blocking application (see About Pool Sizing in the HikariCP documentation for
further information). When using Database.forConfig, the thread pool is
configured directly in the external configuration file together with the connection
parameters. If you use any other factory method to get a Database, you can
either use a default configuration or specify a custom AsyncExecutor:

val db = Database.forURL("jdbc:h2:mem:test1;DB_CLOSE_DELAY=-
1", driver="org.h2.Driver",
 executor = AsyncExecutor("test1", numThreads=10,
queueSize=1000))

Connection pools
When using a connection pool (which is always recommended in production
environments) the minimum size of the connection pool should also be set to at
least the same size. The maximum size of the connection pool can be set much
higher than in a blocking application. Any connections beyond the size of the
thread pool will only be used when other connections are required to keep a
database session open (e.g. while waiting for the result from an asynchronous
computation in the middle of a transaction) but are not actively doing any work on
the database.

Note that reasonable defaults for the connection pool sizes are calculated from
the thread pool size when using Database.forConfig.

Slick uses prepared statements wherever possible but it does not cache them on
its own. You should therefore enable prepared statement caching in the
connection pool’s configuration.

DatabaseConfig
On top of the configuration syntax for Database, there is another layer in the
form of DatabaseConfig which allows you to configure a Slick driver plus a
matching Database together. This makes it easy to abstract over different kinds
of database systems by simply changing a configuration file.

Here is a typical DatabaseConfig with a Slick driver object in driver and the
database configuration in db:

tsql {
 driver = "slick.driver.H2Driver$"

13

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.backend.DatabaseConfig
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend$DatabaseFactoryDef@forConfig(String,Config,Driver):Database
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.JdbcBackend$DatabaseFactoryDef@forConfig(String,Config,Driver):Database
http://brettwooldridge.github.io/HikariCP/
https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.util.AsyncExecutor

 db {
 connectionPool = disabled
 driver = "org.h2.Driver"
 url = "jdbc:h2:mem:tsql1;INIT=runscript from
'src/main/resources/create-schema.sql'"
 }
}

Database I/O Actions
Anything that you can execute on a database, whether it is a getting the result of
a query (myQuery.result), creating a table (myTable.schema.create),
inserting data (myTable += item) or something else, is an instance of
DBIOAction, parameterized by the result type it will produce when you execute it.

Database I/O Actions can be combined with several different combinators (see
the DBIOAction class and DBIO object for details), but they will always be
executed strictly sequentially and (at least conceptually) in a single database
session.

In most cases you will want to use the type aliases DBIO and StreamingDBIO for
non-streaming and streaming Database I/O Actions. They omit the optional effect
types supported by DBIOAction.

Executing Database I/O Actions
DBIOActions can be executed either with the goal of producing a fully
materialized result or streaming data back from the database.

Materialized
You can use run to execute a DBIOAction on a Database and produce a
materialized result. This can be, for example, a scalar query result
(myTable.length.result), a collection-valued query result
(myTable.to[Set].result), or any other action. Every DBIOAction
supports this mode of execution.

Execution of the action starts when run is called, and the materialized result is
returned as a Future which is completed asynchronously as soon as the result
is available:

val q = for (c <- coffees) yield c.name
val a = q.result
val f: Future[Seq[String]] = db.run(a)

f.onSuccess { case s => println(s"Result: $s") }

14

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.package@StreamingDBIO[+R,+T]:StreamingDBIO[R,T]
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.package@DBIO[+R]:DBIO[R]
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIO$
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction

Streaming
Collection-valued queries also support streaming results. In this case, the actual
collection type is ignored and elements are streamed directly from the result set
through a Reactive Streams Publisher, which can be processed and
consumed by Akka Streams.

Execution of the DBIOAction does not start until a Subscriber is attached to
the stream. Only a single Subscriber is supported, and any further attempts to
subscribe again will fail. Stream elements are signaled as soon as they become
available in the streaming part of the DBIOAction. The end of the stream is
signaled only after the entire action has completed. For example, when streaming
inside a transaction and all elements have been delivered successfully, the
stream can still fail afterwards if the transaction cannot be committed.

val q = for (c <- coffees) yield c.name
val a = q.result
val p: DatabasePublisher[String] = db.stream(a)

// .foreach is a convenience method on DatabasePublisher.
// Use Akka Streams for more elaborate stream processing.
p.foreach { s => println(s"Element: $s") }

When streaming a JDBC result set, the next result page will be buffered in the
background if the Subscriber is not ready to receive more data, but all elements
are signaled synchronously and the result set is not advanced before
synchronous processing is finished. This allows synchronous callbacks to low-
level JDBC values like Blob which depend on the state of the result set. The
convenience method mapResult is provided for this purpose:

val q = for (c <- coffees) yield c.image
val a = q.result
val p1: DatabasePublisher[Blob] = db.stream(a)
val p2: DatabasePublisher[Array[Byte]] = p1.mapResult { b =>
 b.getBytes(0, b.length().toInt)
}

Transactions and Pinned Sessions
When executing a DBIOAction which is composed of several smaller actions,
Slick acquires sessions from the connection pool and releases them again as
needed so that a session is not kept in use unnecessarily while waiting for the
result from a non-database computation (e.g. the function passed to flatMap that
determines the next Action to run). All DBIOAction combinators which combine
two database actions without any non-database computations in between (e.g.
andThen or zip) can fuse these actions for more efficient execution, with the side-
effect that the fused action runs inside a single session. You can use

15

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction@zip[R2,E2%3C:Effect](DBIOAction[R2,NoStream,E2]):DBIOAction[(R,R2),NoStream,EwithE2]
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction@andThen[R2,S2%3C:NoStream,E2%3C:Effect](DBIOAction[R2,S2,E2]):DBIOAction[R2,S2,EwithE2]
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction@flatMap[R2,S2%3C:NoStream,E2%3C:Effect]((R)%E2%87%92DBIOAction[R2,S2,E2])(ExecutionContext):DBIOAction[R2,S2,EwithE2]
http://akka.io/docs/
http://www.reactive-streams.org/

withPinnedSession to force the use of a single session, keeping the existing
session open even when waiting for non-database computations.

There is a similar combinator called transactionally to force the use of a
transaction. This guarantees that the entire DBIOAction that is executed will
either succeed or fail atomically.

Warning

Failure is not guaranteed to be atomic at the level of an individual
DBIOAction that is wrapped with transactionally, so you should not
apply error recovery combinators at that point. An actual database
transaction is inly created and committed / rolled back for the outermost
transactionally action.

val a = (for {
 ns <-
coffees.filter(_.name.startsWith("ESPRESSO")).map(_.name).re
sult
 _ <- DBIO.seq(ns.map(n => coffees.filter(_.name ===
n).delete): _*)
} yield ()).transactionally

val f: Future[Unit] = db.run(a)

JDBC Interoperability
In order to drop down to the JDBC level for functionality that is not available in
Slick, you can use a SimpleDBIO action which is run on a database thread and
gets access to the JDBC Connection:

val getAutoCommit = SimpleDBIO[Boolean]
(_.connection.getAutoCommit)

Schemas
This chapter describes how to work with database schemas in Scala code, in
particular how to write them manually, which is useful when you start writing an
application without a pre-existing database. If you already have a schema in the
database, you can also use the code generator to take this work off your hands.

Table Rows
In order to use the Scala API for type-safe queries, you need to define Table row
classes for your database schema. These describe the structure of the tables:

class Coffees(tag: Tag) extends Table[(String, Int, Double,
Int, Int)](tag, "COFFEES") {

16

http://slick.typesafe.com/doc/3.0.0/code-generation.html
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.driver.JdbcActionComponent$JdbcActionExtensionMethods@transactionally:DBIOAction[R,S,EwithTransactional]
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction@withPinnedSession:DBIOAction[R,S,E]

 def name = column[String]("COF_NAME", O.PrimaryKey)
 def supID = column[Int]("SUP_ID")
 def price = column[Double]("PRICE")
 def sales = column[Int]("SALES", O.Default(0))
 def total = column[Int]("TOTAL", O.Default(0))
 def * = (name, supID, price, sales, total)
}

All columns are defined through the column method. Each column has a Scala
type and a column name for the database (usually in upper-case). The following
primitive types are supported out of the box for JDBC-based databases in
JdbcProfile (with certain limitations imposed by the individual database
drivers):

• Numeric types: Byte, Short, Int, Long, BigDecimal, Float, Double
• LOB types: java.sql.Blob, java.sql.Clob, Array[Byte]
• Date types: java.sql.Date, java.sql.Time, java.sql.Timestamp
• Boolean
• String
• Unit
• java.util.UUID

Nullable columns are represented by Option[T] where T is one of the
supported primitive types.

Note

Currently all operations on Option values use the database’s null propagation
semantics which may differ from Scala’s Option semantics. In particular, None
=== None evaluates to None. This behaviour may change in a future major
release of Slick.

After the column name, you can add optional column options to a column
definition. The applicable options are available through the table’s O object. The
following ones are defined for JdbcProfile:

PrimaryKey
Mark the column as a (non-compound) primary key when creating the DDL
statements.

Default[T](defaultValue: T)
Specify a default value for inserting data into the table without this column.
This information is only used for creating DDL statements so that the
database can fill in the missing information.

DBType(dbType: String)
Use a non-standard database-specific type for the DDL statements (e.g.
DBType("VARCHAR(20)") for a String column).

17

AutoInc
Mark the column as an auto-incrementing key when creating the DDL
statements. Unlike the other column options, this one also has a meaning
outside of DDL creation: Many databases do not allow non-AutoInc columns
to be returned when inserting data (often silently ignoring other columns), so
Slick will check if the return column is properly marked as AutoInc where
needed.

NotNull, Nullable
Explicitly mark the column as nullable or non-nullable when creating the DDL
statements for the table. Nullability is otherwise determined from the type
(Option or non-Option). There is usually no reason to specify these options.

Every table requires a * method containing a default projection. This describes
what you get back when you return rows (in the form of a table row object) from a
query. Slick’s * projection does not have to match the one in the database. You
can add new columns (e.g. with computed values) or omit some columns as you
like. The non-lifted type corresponding to the * projection is given as a type
parameter to Table. For simple, non-mapped tables, this will be a single column
type or a tuple of column types.

If your database layout requires schema names, you can specify the schema
name for a table in front of the table name, wrapped in Some():

class Coffees(tag: Tag)
 extends Table[(String, Int, Double, Int, Int)](tag,
Some("MYSCHEMA"), "COFFEES") {
 //...
}

Table Query
Alongside the Table row class you also need a TableQuery value which
represents the actual database table:

val coffees = TableQuery[Coffees]

The simple TableQuery[T] syntax is a macro which expands to a proper
TableQuery instance that calls the table’s constructor (new TableQuery(new
T(_))).

You can also extend TableQuery to use it as a convenient namespace for
additional functionality associated with the table:

object coffees extends TableQuery(new Coffees(_)) {
 val findByName = this.findBy(_.name)
}

18

Mapped Tables
It is possible to define a mapped table that uses a custom type for its * projection
by adding a bi-directional mapping with the <> operator:

case class User(id: Option[Int], first: String, last:
String)

class Users(tag: Tag) extends Table[User](tag, "users") {
 def id = column[Int]("id", O.PrimaryKey, O.AutoInc)
 def first = column[String]("first")
 def last = column[String]("last")
 def * = (id.?, first, last) <> (User.tupled, User.unapply)
}
val users = TableQuery[Users]

It is optimized for case classes (with a simple apply method and an unapply
method that wraps its result in an Option) but it can also be used with arbitrary
mapping functions. In these cases it can be useful to call .shaped on a tuple on
the left-hand side in order to get its type inferred properly. Otherwise you may
have to add full type annotations to the mapping functions.

For case classes with hand-written companion objects, .tupled only works if
you manually extend the correct Scala function type. Alternatively you can use
(User.apply _).tupled. See SI-3664 and SI-4808.

Constraints
A foreign key constraint can be defined with a Table’s foreignKey method. It first
takes a name for the constraint, the referencing column(s) and the referenced
table. The second argument list takes a function from the referenced table to its
referenced column(s) as well as ForeignKeyAction for onUpdate and onDelete,
which are optional and default to NoAction. When creating the DDL statements
for the table, the foreign key definition is added to it.

class Suppliers(tag: Tag) extends Table[(Int, String,
String, String, String, String)](tag, "SUPPLIERS") {
 def id = column[Int]("SUP_ID", O.PrimaryKey)
 //...
}
val suppliers = TableQuery[Suppliers]

class Coffees(tag: Tag) extends Table[(String, Int, Double,
Int, Int)](tag, "COFFEES") {
 def supID = column[Int]("SUP_ID")
 //...
 def supplier = foreignKey("SUP_FK", supID, suppliers)

19

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.model.ForeignKeyAction$$NoAction$
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.model.ForeignKeyAction$
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.profile.RelationalTableComponent$Table@foreignKey[P,PU,TT%3C:AbstractTable[_],U](String,P,TableQuery[TT])((TT)%E2%87%92P,ForeignKeyAction,ForeignKeyAction)(Shape[_%3C:FlatShapeLevel,TT,U,_],Shape[_%3C:FlatShapeLevel,P,PU,_]):ForeignKeyQuery[TT,U]
https://issues.scala-lang.org/browse/SI-4808
https://issues.scala-lang.org/browse/SI-3664

(_.id, onUpdate=ForeignKeyAction.Restrict,
onDelete=ForeignKeyAction.Cascade)
 // compiles to SQL:
 // alter table "COFFEES" add constraint "SUP_FK" foreign
key("SUP_ID")
 // references "SUPPLIERS"("SUP_ID")
 // on update RESTRICT on delete CASCADE
}
val coffees = TableQuery[Coffees]

Independent of the actual constraint defined in the database, such a foreign key
can be used to navigate to the referenced data with a join. For this purpose, it
behaves the same as a manually defined utility method for finding the joined data:

def supplier = foreignKey("SUP_FK", supID, suppliers)(_.id,
onUpdate=ForeignKeyAction.Restrict,
onDelete=ForeignKeyAction.Cascade)
def supplier2 = suppliers.filter(_.id === supID)

A primary key constraint can be defined in a similar fashion by adding a method
that calls primaryKey. This is useful for defining compound primary keys (which
cannot be done with the O.PrimaryKey column option):

class A(tag: Tag) extends Table[(Int, Int)](tag, "a") {
 def k1 = column[Int]("k1")
 def k2 = column[Int]("k2")
 def * = (k1, k2)
 def pk = primaryKey("pk_a", (k1, k2))
 // compiles to SQL:
 // alter table "a" add constraint "pk_a" primary
key("k1","k2")
}

Other indexes are defined in a similar way with the index method. They are non-
unique by default unless you set the unique parameter:

class A(tag: Tag) extends Table[(Int, Int)](tag, "a") {
 def k1 = column[Int]("k1")
 def k2 = column[Int]("k2")
 def * = (k1, k2)
 def idx = index("idx_a", (k1, k2), unique = true)
 // compiles to SQL:
 // create unique index "idx_a" on "a" ("k1","k2")
}

All constraints are discovered reflectively by searching for methods with the
appropriate return types which are defined in the table. This behavior can be

20

customized by overriding the tableConstraints method.

Data Definition Language
DDL statements for a table can be created with its TableQuery‘s schema
method. Multiple DDL objects can be concatenated with ++ to get a compound
DDL object which can create and drop all entities in the correct order, even in the
presence of cyclic dependencies between tables. The create and drop
methods produce the Actions for executing the DDL statements:

val schema = coffees.schema ++ suppliers.schema
db.run(DBIO.seq(
 schema.create,
 //...
 schema.drop
))

You can use the the statements method to get the SQL code, like for most
other SQL-based Actions. Schema Actions are currently the only Actions that can
produce more than one statement.

schema.create.statements.foreach(println)
schema.drop.statements.foreach(println)

Queries
This chapter describes how to write type-safe queries for selecting, inserting,
updating and deleting data with Slick’s Scala-based query API.

It is also called the Lifted Embedding, due to the fact that you are not working
with standard Scala types but with types that are lifted into a Rep type
constructor. This becomes clearer when you compare the types of a simple Scala
collections example

case class Coffee(name: String, price: Double)
val coffees: List[Coffee] = //...

val l = coffees.filter(_.price > 8.0).map(_.name)
// ^ ^ ^
// Double Double String

... with the types of similar code in Slick:

class Coffees(tag: Tag) extends Table[(String, Double)](tag,
"COFFEES") {
 def name = column[String]("COF_NAME")
 def price = column[Double]("PRICE")
 def * = (name, price)
}

21

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.Rep

val coffees = TableQuery[Coffees]

val q = coffees.filter(_.price > 8.0).map(_.name)
// ^ ^ ^
// Rep[Double] Rep[Double] Rep[String]

All plain types are lifted into Rep. The same is true for the table row type
Coffees which is a subtype of Rep[(String, Double)]. Even the literal 8.0
is automatically lifted to a Rep[Double] by an implicit conversion because that
is what the > operator on Rep[Double] expects for the right-hand side. This
lifting is necessary because the lifted types allow us to generate a syntax tree that
captures the query computations. Getting plain Scala functions and values would
not give us enough information for translating those computations to SQL.

Expressions
Scalar (non-record, non-collection) values are represented by type Rep[T] for
which an implicit TypedType[T] exists.

The operators and other methods which are commonly used in queries are added
through implicit conversions defined in ExtensionMethodConversions. The
actual methods can be found in the classes AnyExtensionMethods,
ColumnExtensionMethods, NumericColumnExtensionMethods,
BooleanColumnExtensionMethods and
StringColumnExtensionMethods (cf. ExtensionMethods).

Warning

Most operators mimic the plain Scala equivalents, but you have to use ===
instead of == for comparing two values for equality and =!= instead of !=
for inequality. This is necessary because these operators are already
defined (with unsuitable types and semantics) on the base type Any, so they
cannot be replaced by extension methods.

Collection values are represented by the Query class (a Rep[Seq[T]]) which
contains many standard collection methods like flatMap, filter, take and
groupBy. Due to the two different component types of a Query (lifted and plain,
e.g. Query[(Rep[Int), Rep[String]), (Int, String), Seq]), the
signatures for these methods are very complex but the semantics are essentially
the same as for Scala collections.

Additional methods for queries of scalar values are added via an implicit
conversion to SingleColumnQueryExtensionMethods.

Sorting and Filtering
There are various methods with sorting/filtering semantics (i.e. they take a Query
and return a new Query of the same type), for example:

22

https://github.com/slick/slick/blob/3.0.0/src/main/scala/slick/lifted/ExtensionMethods.scala

val q1 = coffees.filter(_.supID === 101)
// compiles to SQL (simplified):
// select "COF_NAME", "SUP_ID", "PRICE", "SALES", "TOTAL"
// from "COFFEES"
// where "SUP_ID" = 101

val q2 = coffees.drop(10).take(5)
// compiles to SQL (simplified):
// select "COF_NAME", "SUP_ID", "PRICE", "SALES", "TOTAL"
// from "COFFEES"
// limit 5 offset 10

val q3 = coffees.sortBy(_.name.desc.nullsFirst)
// compiles to SQL (simplified):
// select "COF_NAME", "SUP_ID", "PRICE", "SALES", "TOTAL"
// from "COFFEES"
// order by "COF_NAME" desc nulls first

// building criteria using a "dynamic filter" e.g. from a
webform.
val criteriaColombian = Option("Colombian")
val criteriaEspresso = Option("Espresso")
val criteriaRoast:Option[String] = None

val q4 = coffees.filter { coffee =>
 List(
 criteriaColombian.map(coffee.name === _),
 criteriaEspresso.map(coffee.name === _),
 criteriaRoast.map(coffee.name === _) // not a
condition as `criteriaRoast` evaluates to `None`
).collect({case Some(criteria) =>
criteria}).reduceLeftOption(_ ||
_).getOrElse(true:Column[Boolean])
}
// compiles to SQL (simplified):
// select "COF_NAME", "SUP_ID", "PRICE", "SALES", "TOTAL"
// from "COFFEES"
// where ("COF_NAME" = 'Colombian' or "COF_NAME" =
'Espresso')

Joining and Zipping
Joins are used to combine two different tables or queries into a single query.
There are two different ways of writing joins: Applicative and monadic.

23

Applicative joins
Applicative joins are performed by calling a method that joins two queries into a
single query of a tuple of the individual results. They have the same restrictions
as joins in SQL, i.e. the right-hand side may not depend on the left-hand side.
This is enforced naturally through Scala’s scoping rules.

val crossJoin = for {
 (c, s) <- coffees join suppliers
} yield (c.name, s.name)
// compiles to SQL (simplified):
// select x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2
// inner join "SUPPLIERS" x3

val innerJoin = for {
 (c, s) <- coffees join suppliers on (_.supID === _.id)
} yield (c.name, s.name)
// compiles to SQL (simplified):
// select x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2
// inner join "SUPPLIERS" x3
// on x2."SUP_ID" = x3."SUP_ID"

val leftOuterJoin = for {
 (c, s) <- coffees joinLeft suppliers on (_.supID === _.id)
} yield (c.name, s.map(_.name))
// compiles to SQL (simplified):
// select x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2
// left outer join "SUPPLIERS" x3
// on x2."SUP_ID" = x3."SUP_ID"

val rightOuterJoin = for {
 (c, s) <- coffees joinRight suppliers on (_.supID ===
_.id)
} yield (c.map(_.name), s.name)
// compiles to SQL (simplified):
// select x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2
// right outer join "SUPPLIERS" x3
// on x2."SUP_ID" = x3."SUP_ID"

val fullOuterJoin = for {
 (c, s) <- coffees joinFull suppliers on (_.supID === _.id)
} yield (c.map(_.name), s.map(_.name))
// compiles to SQL (simplified):
// select x2."COF_NAME", x3."SUP_NAME" from "COFFEES" x2
// full outer join "SUPPLIERS" x3

24

// on x2."SUP_ID" = x3."SUP_ID"

Note the use of map in the yield clauses of the outer joins. Since these joins
can introduce additional NULL values (on the right-hand side for a left outer join,
on the left-hand sides for a right outer join, and on both sides for a full outer join),
the respective sides of the join are wrapped in an Option (with None
representing a row that was not matched).

Monadic joins
Monadic joins are created with flatMap. They are theoretically more powerful
than applicative joins because the right-hand side may depend on the left-hand
side. However, this is not possible in standard SQL, so Slick has to compile them
down to applicative joins, which is possible in many useful cases but not in all of
them (and there are cases where it is possible in theory but Slick cannot perform
the required transformation yet). If a monadic join cannot be properly translated, it
will fail at runtime.

A cross-join is created with a flatMap operation on a Query (i.e. by introducing
more than one generator in a for-comprehension):

val monadicCrossJoin = for {
 c <- coffees
 s <- suppliers
} yield (c.name, s.name)
// compiles to SQL:
// select x2."COF_NAME", x3."SUP_NAME"
// from "COFFEES" x2, "SUPPLIERS" x3

If you add a filter expression, it becomes an inner join:

val monadicInnerJoin = for {
 c <- coffees
 s <- suppliers if c.supID === s.id
} yield (c.name, s.name)
// compiles to SQL:
// select x2."COF_NAME", x3."SUP_NAME"
// from "COFFEES" x2, "SUPPLIERS" x3
// where x2."SUP_ID" = x3."SUP_ID"

The semantics of these monadic joins are the same as when you are using
flatMap on Scala collections.

Note

Slick currently generates implicit joins in SQL (select ... from a, b where
...) for monadic joins, and explicit joins (select ... from a join b
on ...) for applicative joins. This is subject to change in future versions.

25

Zip joins
In addition to the usual applicative join operators supported by relational
databases (which are based off a cross join or outer join), Slick also has zip joins
which create a pairwise join of two queries. The semantics are again the same as
for Scala collections, using the zip and zipWith methods:

val zipJoinQuery = for {
 (c, s) <- coffees zip suppliers
} yield (c.name, s.name)

val zipWithJoin = for {
 res <- coffees.zipWith(suppliers, (c: Coffees, s:
Suppliers) => (c.name, s.name))
} yield res

A particular kind of zip join is provided by zipWithIndex. It zips a query result
with an infinite sequence starting at 0. Such a sequence cannot be represented
by an SQL database and Slick does not currently support it, either. The resulting
zipped query, however, can be represented in SQL with the use of a row number
function, so zipWithIndex is supported as a primitive operator:

val zipWithIndexJoin = for {
 (c, idx) <- coffees.zipWithIndex
} yield (c.name, idx)

Unions
Two queries can be concatenated with the ++ (or unionAll) and union
operators if they have compatible types:

val q1 = coffees.filter(_.price < 8.0)
val q2 = coffees.filter(_.price > 9.0)

val unionQuery = q1 union q2
// compiles to SQL (simplified):
// select x8."COF_NAME", x8."SUP_ID", x8."PRICE",
x8."SALES", x8."TOTAL"
// from "COFFEES" x8
// where x8."PRICE" < 8.0
// union select x9."COF_NAME", x9."SUP_ID", x9."PRICE",
x9."SALES", x9."TOTAL"
// from "COFFEES" x9
// where x9."PRICE" > 9.0

val unionAllQuery = q1 ++ q2
// compiles to SQL (simplified):

26

// select x8."COF_NAME", x8."SUP_ID", x8."PRICE",
x8."SALES", x8."TOTAL"
// from "COFFEES" x8
// where x8."PRICE" < 8.0
// union all select x9."COF_NAME", x9."SUP_ID",
x9."PRICE", x9."SALES", x9."TOTAL"
// from "COFFEES" x9
// where x9."PRICE" > 9.0

Unlike union which filters out duplicate values, ++ simply concatenates the
results of the individual queries, which is usually more efficient.

Aggregation
The simplest form of aggregation consists of computing a primitive value from a
Query that returns a single column, usually with a numeric type, e.g.:

val q = coffees.map(_.price)

val q1 = q.min
// compiles to SQL (simplified):
// select min(x4."PRICE") from "COFFEES" x4

val q2 = q.max
// compiles to SQL (simplified):
// select max(x4."PRICE") from "COFFEES" x4

val q3 = q.sum
// compiles to SQL (simplified):
// select sum(x4."PRICE") from "COFFEES" x4

val q4 = q.avg
// compiles to SQL (simplified):
// select avg(x4."PRICE") from "COFFEES" x4

Note that these aggregate queries return a scalar result, not a collection. Some
aggregation functions are defined for arbitrary queries (of more than one column):

val q1 = coffees.length
// compiles to SQL (simplified):
// select count(1) from "COFFEES"

val q2 = coffees.exists
// compiles to SQL (simplified):
// select exists(select * from "COFFEES")

Grouping is done with the groupBy method. It has the same semantics as for

27

Scala collections:

val q = (for {
 c <- coffees
 s <- c.supplier
} yield (c, s)).groupBy(_._1.supID)

val q2 = q.map { case (supID, css) =>
 (supID, css.length, css.map(_._1.price).avg)
}
// compiles to SQL:
// select x2."SUP_ID", count(1), avg(x2."PRICE")
// from "COFFEES" x2, "SUPPLIERS" x3
// where x3."SUP_ID" = x2."SUP_ID"
// group by x2."SUP_ID"

The intermediate query q contains nested values of type Query. These would
turn into nested collections when executing the query, which is not supported at
the moment. Therefore it is necessary to flatten the nested queries immediately
by aggregating their values (or individual columns) as done in q2.

Querying
A Query can be converted into an Action by calling its result method. The
Action can then be executed directly in a streaming or fully materialized way, or
composed further with other Actions:

val q = coffees.map(_.price)
val action = q.result
val result: Future[Seq[Double]] = db.run(action)
val sql = action.statements.head

If you only want a single result value, you can call head or headOption on the
result Action.

Deleting
Deleting works very similarly to querying. You write a query which selects the
rows to delete and then get an Action by calling the delete method on it:

val q = coffees.filter(_.supID === 15)
val action = q.delete
val affectedRowsCount: Future[Int] = db.run(action)
val sql = action.statements.head

A query for deleting must only select from a single table. Any projection is ignored
(it always deletes full rows).

28

http://slick.typesafe.com/doc/3.0.0/dbio.html#executing-actions
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction

Inserting
Inserts are done based on a projection of columns from a single table. When you
use the table directly, the insert is performed against its * projection. Omitting
some of a table’s columns when inserting causes the database to use the default
values specified in the table definition, or a type-specific default in case no
explicit default was given. All methods for building insert Actions are defined in
CountingInsertActionComposer and ReturningInsertActionComposer.

val insertActions = DBIO.seq(
 coffees += ("Colombian", 101, 7.99, 0, 0),

 coffees ++= Seq(
 ("French_Roast", 49, 8.99, 0, 0),
 ("Espresso", 150, 9.99, 0, 0)
),

 // "sales" and "total" will use the default value 0:
 coffees.map(c => (c.name, c.supID, c.price)) +=
("Colombian_Decaf", 101, 8.99)
)

// Get the statement without having to specify a value to
insert:
val sql = coffees.insertStatement

// compiles to SQL:
// INSERT INTO "COFFEES"
("COF_NAME","SUP_ID","PRICE","SALES","TOTAL") VALUES
(?,?,?,?,?)

When you include an AutoInc column in an insert operation, it is silently
ignored, so that the database can generate the proper value. In this case you
usually want to get back the auto-generated primary key column. By default, +=
gives you a count of the number of affected rows (which will usually be 1) and +
+= gives you an accumulated count in an Option (which can be None if the
database system does not provide counts for all rows). This can be changed with
the returning method where you specify the columns to be returned (as a
single value or tuple from += and a Seq of such values from ++=):

val userId =
 (users returning users.map(_.id)) += User(None, "Stefan",
"Zeiger")

Note

Many database systems only allow a single column to be returned which must be
29

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.driver.JdbcActionComponent@ReturningInsertActionComposer[U,RU]:JdbcDriver.ReturningInsertActionComposer[U,RU]
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.driver.JdbcActionComponent@CountingInsertActionComposer[U]:JdbcDriver.CountingInsertActionComposer[U]

the table’s auto-incrementing primary key. If you ask for other columns a
SlickException is thrown at runtime (unless the database actually supports it).

You can follow the returning method with the into method to map the
inserted values and the generated keys (specified in returning) to a desired value.
Here is an example of using this feature to return an object with an updated id:

val userWithId =
 (users returning users.map(_.id)
 into ((user,id) => user.copy(id=Some(id)))
) += User(None, "Stefan", "Zeiger")

Instead of inserting data from the client side you can also insert data created by a
Query or a scalar expression that is executed in the database server:

class Users2(tag: Tag) extends Table[(Int, String)](tag,
"users2") {
 def id = column[Int]("id", O.PrimaryKey)
 def name = column[String]("name")
 def * = (id, name)
}
val users2 = TableQuery[Users2]

val actions = DBIO.seq(
 users2.schema.create,
 users2 forceInsertQuery (users.map { u => (u.id, u.first +
+ " " ++ u.last) }),
 users2 forceInsertExpr (users.length + 1, "admin")
)

In these cases, AutoInc columns are not ignored.

Updating
Updates are performed by writing a query that selects the data to update and
then replacing it with new data. The query must only return raw columns (no
computed values) selected from a single table. The relevant methods for updating
are defined in UpdateExtensionMethods.

val q = for { c <- coffees if c.name === "Espresso" } yield
c.price
val updateAction = q.update(10.49)

// Get the statement without having to specify an updated
value:
val sql = q.updateStatement

// compiles to SQL:

30

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.driver.JdbcActionComponent@UpdateActionExtensionMethodsImpl[T]:JdbcDriver.UpdateActionExtensionMethodsImpl[T]

// update "COFFEES" set "PRICE" = ? where
"COFFEES"."COF_NAME" = 'Espresso'

There is currently no way to use scalar expressions or transformations of the
existing data in the database for updates.

Compiled Queries
Database queries typically depend on some parameters, e.g. an ID for which you
want to retrieve a matching database row. You can write a regular Scala function
to create a parameterized Query object each time you need to execute that
query but this will incur the cost of recompiling the query in Slick (and possibly
also on the database if you don’t use bind variables for all parameters). It is more
efficient to pre-compile such parameterized query functions:

def userNameByIDRange(min: Rep[Int], max: Rep[Int]) =
 for {
 u <- users if u.id >= min && u.id < max
 } yield u.first

val userNameByIDRangeCompiled = Compiled(userNameByIDRange
_)

// The query will be compiled only once:
val namesAction1 = userNameByIDRangeCompiled(2, 5).result
val namesAction2 = userNameByIDRangeCompiled(1, 3).result
// Also works for .insert, .update and .delete

This works for all functions that take parameters consisting only of individual
columns or or records of columns and return a Query object or a scalar query.
See the API documentation for Compiled and its subclasses for details on
composing compiled queries.

Be aware that take and drop take ConstColumn[Long] parameters. Unlike
Rep[Long]], which could be substituted by another value computed by a query,
a ConstColumn can only be literal value or a parameter of a compiled query. This
is necessary because the actual value has to be known by the time the query is
prepared for execution by Slick.

val userPaged = Compiled((d: ConstColumn[Long], t:
ConstColumn[Long]) => users.drop(d).take(t))

val usersAction1 = userPaged(2, 1).result
val usersAction2 = userPaged(1, 3).result

You can use a compiled query for querying, inserting, updating and deleting data.
For backwards-compatibility with Slick 1.0 you can still create a compiled query

31

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.Compiled
http://slick.typesafe.com/doc/3.0.0/userdefined.html#record-types

by calling flatMap on a Parameters object. In many cases this enables you to
write a single for comprehension for a compiled query:

val userNameByID = for {
 id <- Parameters[Int]
 u <- users if u.id === id
} yield u.first

val nameAction = userNameByID(2).result.head

val userNameByIDRange = for {
 (min, max) <- Parameters[(Int, Int)]
 u <- users if u.id >= min && u.id < max
} yield u.first

val namesAction = userNameByIDRange(2, 5).result

Schema Code Generation
The Slick code generator is a convenient tool for working with an existing or
evolving database schema. It can be run stand-alone or integrated into you sbt
build for creating all code Slick needs to work.

Overview
By default, the code generator generates Table classes, corresponding
TableQuery values, which can be used in a collection-like manner, as well as
case classes for holding complete rows of values. For tables with more than 22
columns the generator automatically switches to Slick’s experimental HList
implementation for overcoming Scala’s tuple size limit. (In Scala <= 2.10.3 use
HCons instead of :: as a type contructor due to performance issues during
compilation, which are fixed in 2.10.4 and later.)

Parts of the generator are also explained in our talk at Scala eXchange 2013.

Standalone use
To include Slick’s code generator use the published library. For sbt projects add
following to your build definition - build.sbt or project/Build.scala:

libraryDependencies += "com.typesafe.slick" %% "slick-
codegen" % "3.0.0"

For Maven projects add the following to your <dependencies>:

<dependency>
 <groupId>com.typesafe.slick</groupId>
 <artifactId>slick-codegen_2.10</artifactId>

32

http://slick.typesafe.com/docs/#20131203_patterns_for_slick_database_applications_at_scala_exchange_2013
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.Parameters

 <version>3.0.0</version>
</dependency>

Slick’s code generator comes with a default runner that can be used from the
command line or from Java/Scala. You can simply execute

slick.codegen.SourceCodeGenerator.main(
 Array(slickDriver, jdbcDriver, url, outputFolder, pkg)
)

or

slick.codegen.SourceCodeGenerator.main(
 Array(slickDriver, jdbcDriver, url, outputFolder, pkg,
user, password)
)

and provide the following values

• slickDriver Fully qualified name of Slick driver class, e.g.
“slick.driver.H2Driver”

• jdbcDriver Fully qualified name of jdbc driver class, e.g. “org.h2.Driver”
• url jdbc url, e.g. “jdbc:postgresql://localhost/test”
• outputFolder Place where the package folder structure should be put
• pkg Scala package the generated code should be places in
• user database connection user name
• password database connection password

Integrated into sbt
The code generator can be run before every compilation or manually in sbt. An
example project showing both can be found here.

Generated Code
By default, the code generator places a file Tables.scala in the given folder in
a subfolder corresponding to the package. The file contains an object Tables
from which the code can be imported for use right away. Make sure you use the
same Slick driver. The file also contains a trait Tables which can be used in
the cake pattern.

Warning

When using the generated code, be careful not to mix different database
drivers accidentally. The default object Tables uses the driver used
during code generation. Using it together with a different driver for queries
will lead to runtime errors. The generated trait Tables can be used with
a different driver, but be aware, that this is currently untested and not
officially supported. It may or may not work in your case. We will officially

33

https://github.com/slick/slick-codegen-example
http://www.scala-sbt.org/

support this at some point in the future.

Customization
The generator can be flexibly customized by overriding methods to
programmatically generate any code based on the data model. This can be used
for minor customizations as well as heavy, model driven code generation, e.g. for
framework bindings in Play, other data-related, repetitive sections of applications,
etc.

This example shows a customized code-generator and how to setup up a multi-
project sbt build, which compiles and runs it before compiling the main sources.

The implementation of the code generator is structured into a small hierarchy of
sub-generators responsible for different fragments of the complete output. The
implementation of each sub-generator can be swapped out for a customized one
by overriding the corresponding factory method. SourceCodeGenerator contains
a factory method Table, which it uses to generate a sub-generator for each table.
The sub-generator Table in turn contains sub-generators for Table classes, entity
case classes, columns, key, indices, etc. Custom sub-generators can easily be
added as well.

Within the sub-generators the relevant part of the Slick data model can be
accessed to drive the code generation.

Please see the api documentation for info on all of the methods that can be
overridden for customization.

Here is an example for customizing the generator:

import slick.codegen.SourceCodeGenerator
// fetch data model
val modelAction =
H2Driver.createModel(Some(H2Driver.defaultTables)) // you
can filter specific tables here
val modelFuture = db.run(modelAction)
// customize code generator
val codegenFuture = modelFuture.map(model => new
SourceCodeGenerator(model) {
 // override mapped table and class name
 override def entityName =
 dbTableName =>
dbTableName.dropRight(1).toLowerCase.toCamelCase
 override def tableName =
 dbTableName => dbTableName.toLowerCase.toCamelCase

 // add some custom import
 override def code = "import foo.
{MyCustomType,MyCustomTypeMapper}" + "\n" + super.code

34

http://slick.typesafe.com/doc/3.0.0/codegen-api/index.html#slick.codegen.SourceCodeGenerator
http://slick.typesafe.com/doc/3.0.0/codegen-api/index.html#slick.codegen.SourceCodeGenerator
https://github.com/slick/slick-codegen-customization-example
https://playframework.com/

 // override table generator
 override def Table = new Table(_){
 // disable entity class generation and mapping
 override def EntityType = new EntityType{
 override def classEnabled = false
 }

 // override contained column generator
 override def Column = new Column(_){
 // use the data model member of this column to change
the Scala type,
 // e.g. to a custom enum or anything else
 override def rawType =
 if(model.name == "SOME_SPECIAL_COLUMN_NAME")
"MyCustomType" else super.rawType
 }
 }
})
codegenFuture.onSuccess { case codegen =>
 codegen.writeToFile(

"slick.driver.H2Driver","some/folder/","some.packag","Tables
","Tables.scala"
)
}

User-Defined Features
This chapter describes how to use custom data types and database functions
with Slick’s Scala API.

Scalar Database Functions
If your database system supports a scalar function that is not available as a
method in Slick you can define it as a SimpleFunction. There are predefined
methods for creating unary, binary and ternary functions with fixed parameter and
return types.

// H2 has a day_of_week() function which extracts the day of
week from a timestamp
val dayOfWeek = SimpleFunction.unary[Date, Int]
("day_of_week")

// Use the lifted function in a query to group by day of
week

35

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.SimpleFunction

val q1 = for {
 (dow, q) <- salesPerDay.map(s => (dayOfWeek(s.day),
s.count)).groupBy(_._1)
} yield (dow, q.map(_._2).sum)

If you need more flexibility regarding the types (e.g. for varargs, polymorphic
functions, or to support Option and non-Option types in a single function), you
can use SimpleFunction.apply to get an untyped instance and write your
own wrapper function with the proper type-checking:

def dayOfWeek2(c: Rep[Date]) =
 SimpleFunction[Int]("day_of_week").apply(Seq(c))

SimpleBinaryOperator and SimpleLiteral work in a similar way. For even more
flexibility (e.g. function-like expressions with unusual syntax), you can use
SimpleExpression.

val current_date = SimpleLiteral[java.sql.Date]
("CURRENT_DATE")
salesPerDay.map(_ => current_date)

Other Database Functions And Stored Procedures
For database functions that return complete tables or stored procedures please
use Plain SQL Queries. Stored procedures that return multiple result sets are
currently not supported.

Using Custom Scalar Types in Queries
If you need a custom column type you can implement ColumnType. The most
common scenario is mapping an application-specific type to an already supported
type in the database. This can be done much simpler by using
MappedColumnType which takes care of all the boilerplate. It comes with the
usual import from the driver. Do not import it from the JdbcDriver singleton object.

// An algebraic data type for booleans
sealed trait Bool
case object True extends Bool
case object False extends Bool

// And a ColumnType that maps it to Int values 1 and 0
implicit val boolColumnType = MappedColumnType.base[Bool,
Int](
 { b => if(b == True) 1 else 0 }, // map Bool to Int
 { i => if(i == 1) True else False } // map Int to Bool
)

// You can now use Bool like any built-in column type (in

36

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.driver.JdbcDriver$
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.driver.JdbcProfile@MappedColumnType:JdbcDriver.MappedJdbcType.type
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.driver.JdbcProfile@ColumnType[T]:JdbcDriver.ColumnType[T]
http://slick.typesafe.com/doc/3.0.0/sql.html
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.SimpleExpression
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.SimpleLiteral
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.SimpleBinaryOperator

tables, queries, etc.)

You can also subclass MappedJdbcType for a bit more flexibility.

If you have a wrapper class (which can optionally be a case class and/or value
class) for an underlying value of some supported type, you can make it extend
MappedTo to get a macro-generated implicit ColumnType for free. Such wrapper
classes are commonly used for type-safe table-specific primary key types:

// A custom ID type for a table
case class MyID(value: Long) extends MappedTo[Long]

// Use it directly for this table's ID -- No extra
boilerplate needed
class MyTable(tag: Tag) extends Table[(MyID, String)](tag,
"MY_TABLE") {
 def id = column[MyID]("ID")
 def data = column[String]("DATA")
 def * = (id, data)
}

Using Custom Record Types in Queries
Record types are data structures containing a statically known number of
components with individually declared types. Out of the box, Slick supports Scala
tuples (up to arity 22) and Slick’s own HList implementation. Record types can be
nested and mixed arbitrarily.

In order to use custom record types (case classes, custom HLists, tuple-like
types, etc.) in queries you need to tell Slick how to map them between queries
and results. You can do that using a Shape extending
MappedScalaProductShape.

Polymorphic Types (e.g. Custom Tuple Types or HLists)
The distinguishing feature of a polymorphic record type is that it abstracts over its
element types, so you can use the same record type for both, lifted and plain
element types. You can add support for custom polymorphic record types using
an appropriate implicit Shape.

Here is an example for a type Pair:

// A custom record class
case class Pair[A, B](a: A, b: B)

// A Shape implementation for Pair
final class PairShape[Level <: ShapeLevel, M <: Pair[_,_], U
<: Pair[_,_] : ClassTag, P <: Pair[_,_]](
 val shapes: Seq[Shape[_, _, _, _]])

37

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.Shape
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.MappedScalaProductShape
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.Shape
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.collection.heterogeneous.HList
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.MappedTo
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.driver.JdbcProfile@MappedJdbcType

extends MappedScalaProductShape[Level, Pair[_,_], M, U, P] {
 def buildValue(elems: IndexedSeq[Any]) = Pair(elems(0),
elems(1))
 def copy(shapes: Seq[Shape[_ <: ShapeLevel, _, _, _]]) =
new PairShape(shapes)
}

implicit def pairShape[Level <: ShapeLevel, M1, M2, U1, U2,
P1, P2](
 implicit s1: Shape[_ <: Level, M1, U1, P1], s2: Shape[_ <:
Level, M2, U2, P2]
) = new PairShape[Level, Pair[M1, M2], Pair[U1, U2],
Pair[P1, P2]](Seq(s1, s2))

The implicit method pairShape in this example provides a Shape for a Pair of
two element types whenever Shapes for the individual element types are
available.

With these definitions in place, we can use the Pair record type in every location
in Slick where a tuple or HList would be acceptable:

// Use it in a table definition
class A(tag: Tag) extends Table[Pair[Int, String]](tag,
"shape_a") {
 def id = column[Int]("id", O.PrimaryKey)
 def s = column[String]("s")
 def * = Pair(id, s)
}
val as = TableQuery[A]

// Insert data with the custom shape
val insertAction = DBIO.seq(
 as += Pair(1, "a"),
 as += Pair(2, "c"),
 as += Pair(3, "b")
)

// Use it for returning data from a query
val q2 = as
 .map { case a => Pair(a.id, (a.s ++ a.s)) }
 .filter { case Pair(id, _) => id =!= 1 }
 .sortBy { case Pair(_, ss) => ss }
 .map { case Pair(id, ss) => Pair(id, Pair(42 , ss)) }
// returns: Vector(Pair(3,Pair(42,"bb")),
Pair(2,Pair(42,"cc")))

38

Monomorphic Case Classes
Custom case classes are frequently used as monomorphic record types (i.e.
record types where the element types are fixed). In order to use them in Slick,
you need to define the case class for a record of plain values (as usual) plus an
additional case class for a matching record of lifted values.

In order to provide a Shape for a custom case class, you can use
CaseClassShape:

// two custom case class variants
case class LiftedB(a: Rep[Int], b: Rep[String])
case class B(a: Int, b: String)

// custom case class mapping
implicit object BShape extends
CaseClassShape(LiftedB.tupled, B.tupled)

class BRow(tag: Tag) extends Table[B](tag, "shape_b") {
 def id = column[Int]("id", O.PrimaryKey)
 def s = column[String]("s")
 def * = LiftedB(id, s)
}
val bs = TableQuery[BRow]

val insertActions = DBIO.seq(
 bs += B(1, "a"),
 bs.map(b => (b.id, b.s)) += ((2, "c")),
 bs += B(3, "b")
)

val q3 = bs
 .map { case b => LiftedB(b.id, (b.s ++ b.s)) }
 .filter { case LiftedB(id, _) => id =!= 1 }
 .sortBy { case LiftedB(_, ss) => ss }

// returns: Vector(B(3,"bb"), B(2,"cc"))

Note that this mechanism can be used as an alternative to client-side mappings
with the <> operator. It requires a bit more boilerplate but allows you to use the
same field names in both, plain and lifted records.

Combining Mapped Types
In the following example we are combining a mapped case class and the mapped
Pair type in another mapped case class.

// Combining multiple mapped types

39

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.CaseClassShape
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.Shape

case class LiftedC(p: Pair[Rep[Int],Rep[String]], b:
LiftedB)
case class C(p: Pair[Int,String], b: B)

implicit object CShape extends
CaseClassShape(LiftedC.tupled, C.tupled)

class CRow(tag: Tag) extends Table[C](tag, "shape_c") {
 def id = column[Int]("id")
 def s = column[String]("s")
 def projection = LiftedC(
 Pair(column("p1"),column("p2")), // (cols defined
inline, type inferred)
 LiftedB(id,s)
)
 def * = projection
}
val cs = TableQuery[CRow]

val insertActions2 = DBIO.seq(
 cs += C(Pair(7,"x"), B(1,"a")),
 cs += C(Pair(8,"y"), B(2,"c")),
 cs += C(Pair(9,"z"), B(3,"b"))
)

val q4 = cs
 .map { case c => LiftedC(c.projection.p, LiftedB(c.id,(c.s
++ c.s))) }
 .filter { case LiftedC(_, LiftedB(id,_)) => id =!= 1 }
 .sortBy { case LiftedC(Pair(_,p2), LiftedB(_,ss)) => ss+
+p2 }

// returns: Vector(C(Pair(9,"z"),B(3,"bb")),
C(Pair(8,"y"),B(2,"cc")))

Plain SQL Queries
Sometimes you may need to write your own SQL code for an operation which is
not well supported at a higher level of abstraction. Instead of falling back to the
low level of JDBC, you can use Slick’s Plain SQL queries with a much nicer
Scala-based API.

Note

The rest of this chapter is based on the Slick Plain SQL Queries template. The
prefered way of reading this introduction is in Activator, where you can edit and

40

https://typesafe.com/activator
https://typesafe.com/activator/template/slick-plainsql-3.0
http://en.wikipedia.org/wiki/Java_Database_Connectivity

run the code directly while reading the tutorial.

Scaffolding
The database connection is opened in the usual way. All Plain SQL queries result
in DBIOActions that can be composed and run like any other action.

String Interpolation
Plain SQL queries in Slick are built via string interpolation using the sql, sqlu
and tsql interpolators. They are available through the standard api._ import
from a Slick driver:

import slick.driver.H2Driver.api._

You can see the simplest use case in the following methods where the sqlu
interpolator is used with a literal SQL string:

def createCoffees: DBIO[Int] =
 sqlu"""create table coffees(
 name varchar not null,
 sup_id int not null,
 price double not null,
 sales int not null,
 total int not null,
 foreign key(sup_id) references suppliers(id))"""

def createSuppliers: DBIO[Int] =
 sqlu"""create table suppliers(
 id int not null primary key,
 name varchar not null,
 street varchar not null,
 city varchar not null,
 state varchar not null,
 zip varchar not null)"""

def insertSuppliers: DBIO[Unit] = DBIO.seq(
 // Insert some suppliers
 sqlu"insert into suppliers values(101, 'Acme, Inc.', '99
Market Street', 'Groundsville', 'CA', '95199')",
 sqlu"insert into suppliers values(49, 'Superior Coffee',
'1 Party Place', 'Mendocino', 'CA', '95460')",
 sqlu"insert into suppliers values(150, 'The High Ground',
'100 Coffee Lane', 'Meadows', 'CA', '93966')"
)

The sqlu interpolator is used for DML statements which produce a row count

41

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIOAction
http://slick.typesafe.com/doc/3.0.0/gettingstarted.html#gettingstarted-dbconnection

instead of a result set. Therefore they are of type DBIO[Int].

Any variable or expression injected into a query gets turned into a bind variable in
the resulting query string. It is not inserted directly into a query string, so there is
no danger of SQL injection attacks. You can see this used in here:

def insert(c: Coffee): DBIO[Int] =
 sqlu"insert into coffees values (${c.name}, ${c.supID}, $
{c.price}, ${c.sales}, ${c.total})"

The SQL statement produced by this method is always the same:

insert into coffees values (?, ?, ?, ?, ?)

Note the use of the DBIO.sequence combinator which is useful for this kind of
code:

val inserts: Seq[DBIO[Int]] = Seq(
 Coffee("Colombian", 101, 7.99, 0, 0),
 Coffee("French_Roast", 49, 8.99, 0, 0),
 Coffee("Espresso", 150, 9.99, 0, 0),
 Coffee("Colombian_Decaf", 101, 8.99, 0, 0),
 Coffee("French_Roast_Decaf", 49, 9.99, 0, 0)
).map(insert)

val combined: DBIO[Seq[Int]] = DBIO.sequence(inserts)
combined.map(_.sum)

Unlike the simpler DBIO.seq combinator which runs a (varargs) sequence of
database I/O actions in the given order and discards the return values,
DBIO.sequence turns a Seq[DBIO[T]] into a DBIO[Seq[T]], thus preserving
the results of all individual actions. It is used here to sum up the affected row
counts of all inserts.

Result Sets
The following code uses tbe sql interpolator which returns a result set produced
by a statement. The interpolator by itself does not produce a DBIO value. It needs
to be followed by a call to .as to define the row type:

sql"""select c.name, s.name
 from coffees c, suppliers s
 where c.price < $price and s.id =
c.sup_id""".as[(String, String)]

This results in a DBIO[Seq[(String, String)]]. The call to as takes an
implicit GetResult parameter which extracts data of the requested type from a
result set. There are predefined GetResult implicits for the standard JDBC
types, for Options of those (to represent nullable columns) and for tuples of types

42

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.jdbc.GetResult
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIO$@sequence[R,M[+_]%3C:TraversableOnce[_],E%3C:Effect](M[DBIOAction[R,NoStream,E]])(CanBuildFrom[M[DBIOAction[R,NoStream,E]],R,M[R]]):DBIOAction[M[R],NoStream,E]
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIO$@seq[E%3C:Effect](DBIOAction[_,NoStream,E]*):DBIOAction[Unit,NoStream,E]
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.dbio.DBIO$@sequence[R,M[+_]%3C:TraversableOnce[_],E%3C:Effect](M[DBIOAction[R,NoStream,E]])(CanBuildFrom[M[DBIOAction[R,NoStream,E]],R,M[R]]):DBIOAction[M[R],NoStream,E]

which have a GetResult. For non-standard return types you have to define your
own converters:

// Case classes for our data
case class Supplier(id: Int, name: String, street: String,
city: String, state: String, zip: String)
case class Coffee(name: String, supID: Int, price: Double,
sales: Int, total: Int)

// Result set getters
implicit val getSupplierResult = GetResult(r =>
Supplier(r.nextInt, r.nextString, r.nextString,
 r.nextString, r.nextString, r.nextString))
implicit val getCoffeeResult = GetResult(r => Coffee(r.<<,
r.<<, r.<<, r.<<, r.<<))

GetResult[T] is simply a wrapper for a function PositionedResult => T.
The implicit val for Supplier uses the explicit PositionedResult methods
getInt and getString to read the next Int or String value in the current
row. The second one uses the shortcut method << which returns a value of
whatever type is expected at this place. (Of course you can only use it when the
type is actually known like in this constructor call.

Splicing Literal Values
While most parameters should be inserted into SQL statements as bind variables,
sometimes you need to splice literal values directly into the statement, for
example to abstract over table names or to run dynamically generated SQL code.
You can use #$ instead of $ in all interpolators for this purpose, as shown in the
following piece of code:

val table = "coffees"
sql"select * from #$table where name =
$name".as[Coffee].headOption

Type-Checked SQL Statements
The interpolators you have seen so far only construct a SQL statement at
runtime. This provides a safe and easy way of building statements but they are
still just embedded strings. If you have a syntax error in a statement or the types
don’t match up between the database and your Scala code, this cannot be
detected at compile-time. You can use the tsql interpolator instead of sql to get
just that:

def getSuppliers(id: Int): DBIO[Seq[(Int, String, String,
String, String, String)]] =
 tsql"select * from suppliers where id > $id"

43

Note that tsql directly produces a DBIOAction of the correct type without
requiring a call to .as.

In order to give the compiler access to the database, you have to provide a
configuration that can be resolved at compile-time. This is done with the
StaticDatabaseConfig annotation:

@StaticDatabaseConfig("file:src/main/resources/application.c
onf#tsql")

In this case it points to the path “tsql” in a local application.conf file, which
must contain an appropriate configiration for a StaticDatabaseConfig object, not
just a Database.

Note

You can get application.conf resolved via the classpath (as usual) by
omitting the path and only specifying a fragment in the URL, or you can use a
resource: URL scheme for referencing an arbitrary classpath resouce, but in
both cases, they have to be on the compiler’s own classpath, not just the source
path or the runtime classpath. Depending on the build tool this may not be
possible, so it’s usually better to use a relative file: URL.

You can also retrieve the statically configured DatabaseConfig at runtime:

val dc = DatabaseConfig.forAnnotation[JdbcProfile]
import dc.driver.api._
val db = dc.db

This gives you the Slick driver for the standard api._ import and the Database.
Note that it is not mandatory to use the same configuration. You can get a Slick
driver and Database at runtime in any other way you like and only use the
StaticDatabaseConfig for compile-time checking.

Coming from ORM to Slick
Introduction
Slick is not an object-relational mapper (ORM) like Hibernate or other JPA-based
products. Slick is a data persistence solution like ORMs and naturally shares
some concepts, but it also has significant differences. This chapter explains the
differences in order to help you get the best out of Slick and avoid confusion for
those familiar with ORMs. We explain how Slick manages to avoid many of the
problems often referred to as the object-relational impedance mismatch.

A good term to describe Slick is functional-relational mapper. Slick allows working
with relational data much like with immutable collections and focuses on flexible
query composition and strongly controlled side-effects. ORMs usually expose
mutable object-graphs, use side-effects like read- and write-caches and hard-

44

http://en.wikipedia.org/wiki/Java_Persistence_API
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.backend.DatabaseConfig
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.backend.StaticDatabaseConfig
http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.backend.StaticDatabaseConfig

code support for anticipated use-cases like inheritance or relationships via
association tables. Slick focuses on getting the best out of accessing a relational
data store. ORMs focus on persisting an object-graph.

ORMs are a natural approach when using databases from object-oriented
languages. They try to allow working with persisted object-graphs partly as if they
were completely in memory. Objects can be modified, associations can be
changed and the object graph can be traversed. In practice this is not exactly
easy to achieve due to the so called object-relational impedance mismatch. It
makes ORMs hard to implement and often complicated to use for more than
simple cases and if performance matters. Slick in contrast does not expose an
object-graph. It is inspired by SQL and the relational model and mostly just maps
their concepts to the most closely corresponding, type-safe Scala features.
Database queries are expressed using a restricted, immutable, purely-functional
subset of Scala much like collections. Slick also offer first-class SQL support as
an alternative.

In practice, ORMs often suffer from conceptual problems of what they try to
achieve, from mere problems of the implementations and from mis-use, because
of their complexity. In the following we look at many features of ORMs and what
you would use with Slick instead. We’ll first look at how to work with the object
graph. We then look at a series of particular features and use cases and how to
handle them with Slick.

Configuration
Some ORMs use extensive configuration files. Slick is configured using small
amounts of Scala code. You have to provide information about how to connect to
the database and write or auto-generate a database-schema description if you
want Slick to type-check your queries. Everything else like relationship definitions
beyond foreign keys are ordinary Scala code, which can use familiar abstraction
methods for re-use.

Mapping configuration.
The later examples use the following database schema

mapped to Slick using the following code:

type Person = (Int,String,Int,Int)

45

http://slick.typesafe.com/doc/3.0.0/orm-to-slick.html#orm-relationships
http://slick.typesafe.com/doc/3.0.0/schemas.html
http://slick.typesafe.com/doc/3.0.0/database.html
http://slick.typesafe.com/doc/3.0.0/database.html
http://slick.typesafe.com/doc/3.0.0/sql.html

class People(tag: Tag) extends Table[Person](tag, "PERSON")
{
 def id = column[Int]("ID", O.PrimaryKey, O.AutoInc)
 def name = column[String]("NAME")
 def age = column[Int]("AGE")
 def addressId = column[Int]("ADDRESS_ID")
 def * = (id,name,age,addressId)
 def address = foreignKey("ADDRESS",addressId,addresses)
(_.id)
}
lazy val people = TableQuery[People]

type Address = (Int,String,String)
class Addresses(tag: Tag) extends Table[Address](tag,
"ADDRESS") {
 def id = column[Int]("ID", O.PrimaryKey, O.AutoInc)
 def street = column[String]("STREET")
 def city = column[String]("CITY")
 def * = (id,street,city)
}
lazy val addresses = TableQuery[Addresses]

Tables can alternatively be mapped to case classes. Similar code can be auto-
generated or hand-written.

In ORMs you often provide your mapping specification in a configuration file. In
Slick you provide it as Scala types like above, which are used to type-check Slick
queries. A difference is that the Slick mapping is conceptually very simple. It only
describes database tables and optionally maps rows to case classes or
something else using arbitrary factories and extractors. It does contain
information about foreign keys, but nothing else about relationships or other
patterns. These are mapped using re-usable queries fragments instead.

Navigating the object graph

Using plain old method calls
This chapter could also be called strict vs. lazy or imperative vs. declarative. One
common feature ORMs provide is using a persisted object graph just as if it was
in-memory. And since it is not, artifacts like members or related objects are
usually loaded ad-hoc only when they are needed. To make this happen, ORMs
implement or intercept method calls, which look like they happen in-memory, but
instead execute database queries as needed to return the desired results. Let’s
look at an example using a hypothetical ORM:

val people: Seq[Person] =
PeopleFinder.getByIds(Seq(2,99,17,234))

46

http://slick.typesafe.com/doc/3.0.0/orm-to-slick.html#orm-relationships
http://slick.typesafe.com/doc/3.0.0/schemas.html
http://slick.typesafe.com/doc/3.0.0/code-generation.html
http://slick.typesafe.com/doc/3.0.0/code-generation.html

val addresses: Seq[Address] = people.map(_.address)

How many database round trips does this require? In fact reasoning about this
question for different code is one of the things you need to devote the most time
to when learning the collections-like API of an ORM. What usually happens is,
that the ORM would do an immediate database round trip for getByIds and
return the resulting people. Then map would be a Scala List method and
.map(_.address) accesses the address of each person. An ORM would
witness the address accesses one-by-one not knowing upfront that they happen
in a loop. This often leads to an additional database round trip for each person,
which is not ideal (n+1 problem), because database round trips are expensive. To
solve the problem, ORMs often provide means to work around this, by basically
telling them about the future, so they can aggregate multiple upcoming round
trips into fewer more efficient ones.

 // tell the ORM to load all
related addresses at once
val people: Seq[Person] =
PeopleFinder.getByIds(Seq(2,99,17,234)).prefetch(_.address)
val addresses: Seq[Address] = people.map(_.address)

Here the prefetch method instructs the hypothetical ORM to load all addresses
immediately with the people, often in only one or two database round trips. The
addresses are then stored in a cache many ORMs maintain. The later
.map(_.address) call could then be fully served from the cache. Of course this
is redundant as you basically need to provide the mapping to addresses twice
and if you forget to prefetch you will have poor performance. How you specify the
pre-fetching rules depends on the ORM, often using external configuration or
inline like here.

Slick works differently. To do the same in Slick you would write the following. The
type annotations are optional but shown here for clarity.

val peopleQuery: Query[People,Person,Seq] =
people.filter(_.id inSet(Set(2,99,17,234)))
val addressesQuery: Query[Addresses,Address,Seq] =
peopleQuery.flatMap(_.address)

As we can see it looks very much like collection operations but the values we get
are of type Query. They do not store results, only a plan of the operations that
are needed to create a SQL query that produces the results when needed. No
database round trips happen at all in our example. To actually fetch results, we
can have to compile the query to a database Action with .result and then run
it on the Database.

val addressesAction: DBIO[Seq[Address]] =
addressesQuery.result

47

http://slick.typesafe.com/doc/3.0.0/database.html

val addresses: Future[Seq[Address]] =
db.run(addressesAction)

A single query is executed and the results returned. This makes database round
trips very explicit and easy to reason about. Achieving few database round trips is
easy.

As you can see with Slick we do not navigate the object graph (i.e. results)
directly. We navigate it by composing queries instead, which are just place-holder
values for potential database round trip yet to happen. We can lazily compose
queries until they describe exactly what we need and then use a single
Database.run call for execution.

Navigating the object graph directly in an ORM is problematic as explained
earlier. Slick gets away without that feature. ORMs often solve the problem by
offering a declarative query language as an alternative, which is similar to how
you work with Slick.

Query languages
ORMs often come with declarative query languages like JPA’s JQL or Criteria
API. Similar to SQL or Slick, they allow expressing queries yet to happen and
make execution explicit.

String based embeddings
Quite commonly, these languages, for example HQL, but also SQL are
embedded into programs as Strings. Here is an example for HQL.

val hql: String = "FROM Person p WHERE p.id in (:ids)"
val q: Query = session.createQuery(hql)
q.setParameterList("ids", Array(2,99,17,234))

Strings are a very simple way to embed an arbitrary language and in many
programming languages the only way without changing the compiler, for example
in Java. While simple, this kind of embedding has significant limitations.

One issue is that tools often have no knowledge about the embedded language
and treat queries as ordinary Strings. The compilers or interpreters of the host
languages do not detect syntactical mistakes upfront or if the query produces a
different type of result than expected. Also IDEs often do not provide syntax
highlighting, code completion, inline error hints, etc.

More importantly, re-use is very hard. You would need to compose Strings in
order to re-use certain parts of queries. As an exercise, try to make the id filtering
part of our above HQL example re-useable, so we can use it for table person as
well as address. It is really cumbersome.

In Java and many other languages, strings are the only way to embed a concise
query language. As we will see in the next sections, Scala is more flexible.

48

Method based APIs
Instead of getting the ultimate flexibility for the embedded language, an
alternative approach is to go with the extensibility features of the host language
and use those. Object-oriented languages like Java and Scala allow extensibility
through the definition of APIs consisting of objects and methods. JPA’s Criteria
API use this concept and so does Slick. This allows the host language tools to
partially understand the embedded language and provide better support for the
features mentioned earlier. Here is an example using Criteria Queries.

val id = Property.forName("id")
val q = session.createCriteria(classOf[Person])
 .add(id in Array(2,99,17,234))

A method based embedding makes queries compositional. Factoring out filtering
by ids becomes easy:

def byIds(c: Criteria, ids: Array[Int]) = c.add(id in ids)

val c = byIds(
 session.createCriteria(classOf[Person]),
 Array(2,99,17,234)
)

Of course ids are a trivial example, but this becomes very useful for more
complex queries.

Java APIs like JPA’s Criteria API do not use Scala’s operator overloading
capabilities. This can lead to more cumbersome and less familiar code when
expressing queries. Let’s query for all people younger 5 or older than 65 for
example.

val age = Property.forName("age")
val q = session.createCriteria(classOf[Person])
 .add(
 Restrictions.disjunction
 .add(age lt 5)
 .add(age gt 65)
)

With Scala’s operator overloading we can do better and that’s what Slick uses.
Queries are very concise. The same query in Slick would look like this:

val q = people.filter(p => p.age < 5 || p.age > 65)

There are some limitations to Scala’s overloading capabilities that affect Slick. In
queries, one has to use === instead of ==, =!= instead of != and ++ for string
concatenation instead of +. Also it is not possible to overload if expressions in
Scala. Instead Slick comes with a small DSL for SQL case expressions.

49

http://slick.typesafe.com/doc/3.0.0/sql-to-slick.html#case

As already mentioned, we are working with placeholder values, merely describing
the query, not executing it. Here’s the same expression again with added type
annotations to allow us looking behind the scenes a bit:

val q = (people: Query[People, Person, Seq]).filter(
 (p: People) =>
 (
 ((p.age: Rep[Int]) < 5 || p.age > 65)
 : Rep[Boolean]
)
)

Query marks collection-like query expressions, e.g. a whole table. People is the
Slick Table subclass defined for table person. In this context it may be confusing
that the value is used rather as a prototype for a row here. It has members of type
Rep representing the individual columns. Expressions based on these columns
result in other expressions of type Rep. Here we are using several Rep[Int] to
compute a Rep[Boolean], which we are using as the filter expression.
Internally, Slick builds a tree from this, which represents the operations and is
used to produce the corresponding SQL code. We often call this process of
building up expression trees encapsulated in place-holder values as lifting
expressions, which is why we also call this query interface the lifted embedding in
Slick.

It is important to note that Scala allows to be very type-safe here. E.g. Slick
supports a method .substring for Rep[String] but not for Rep[Int]. This
is impossible in Java and Java APIs like Criteria Queries, but possible in Scala
using type-parameter based method extensions via implicits. This allows tools
like the Scala compiler and IDEs to understand the code much more precisely
and offer better checking and support.

A nice property of a Slick-like query language is, that it can be used with Scala’s
comprehension syntax, which is just Scala-builtin syntactic sugar for collections
operations. The above example can alternatively be written as

for(p <- people if p.age < 5 || p.age > 65) yield p

Scala’s comprehension syntax looks much like SQL or ORM query languages. It
however lacks syntactic support for some constructs like sorting and grouping, for
which one has to use the method-based api, e.g.

(for(p <- people if p.age < 5 || p.age > 65) yield
p).sortBy(_.name)

Despite the syntactic limitations, the comprehension syntax is convenient when
dealing with multiple inner joins.

It is important to note that the problems of method-based query apis like Criteria
Queries described above are not a conceptual limitation of ORM query languages

50

but merely an artifact of many ORMs being Java frameworks. In principle, a Scala
ORMs could offer a query language just like Slick’s and they should. Comfortably
compositional queries allow for a high degree of code re-use. They seem to be
Slick’s favorite feature for many developers.

Macro-based embeddings
Scala macros allow other approaches for embedding queries. They can be used
to check queries embedded as Strings at compile time. They can also be used to
translate Scala code written without Query and Rep place holder types to SQL.
Both approaches are being prototyped and evaluated for Slick but are not ready
for prime-time yet. There are other database libraries out there that already use
macros for their query language.

Query granularity
With ORMs it is not uncommon to treat objects or complete rows as the smallest
granularity when loading data. This is not necessarily a limitation of the
frameworks, but a habit of using them. With Slick it is very much encouraged to
only fetch the data you actually need. While you can map rows to classes with
Slick, it is often more efficient to not use that feature, but to restrict your query to
the data you actually need in that moment. If you only need a person’s name and
age, just map to those and return them as a tuple.

people.map(p => (p.name, p.age))

This allows you to be very precise about what data is actually transferred.

Read caching
Slick doesn’t cache query results. Working with Slick is like working with JDBC in
this regard. Many ORMs come with read and write caches. Caches are side-
effects. They can be hard to reason about. It can be tricky to manage cache
consistency and lifetime.

PeopleFinder.getById(5)

This call may be served from the database or from a cache. It is not clear at the
call site what the performance is. With Slick it is very clear that executing a query
leads to a database round trip and that Slick doesn’t interfere with member
accesses on objects.

db.run(people.filter(_.id === 5).result)

Slick returns a consistent, immutable snapshot of a fraction of the database at
that point in time. If you need consistency over multiple queries, use transactions.

Writes (and caching)
Writes in many ORMs require write caching to be performant.

51

val person = PeopleFinder.getById(5)
person.name = "C. Vogt"
person.age = 12345
session.save

Here our hypothetical ORM records changes to the object and the .save method
syncs back changes into the database in a single round trip rather than one per
member. In Slick you would do the following instead:

val personQuery = people.filter(_.id === 5)
personQuery.map(p => (p.name,p.age)).update("C. Vogt",
12345)

Slick embraces declarative transformations. Rather than modifying individual
members of objects one after the other, you state all modifications at once and
Slick creates a single database round trip from it without using a cache. New
Slick users seem to be often confused by this syntax, but it is actually very neat.
Slick unifies the syntax for queries, inserts, updates and deletes. Here
personQuery is just a query. We could use it to fetch data. But instead, we can
also use it to update the columns specified by the query. Or we can use it do
delete the rows.

personQuery.delete // deletes person with id 5

For inserts, we insert into the query, that resembles the whole table and can
select individual columns in the same way.

people.map(p => (p.name,p.age)) += ("S. Zeiger", 54321)

Relationships
ORMs usually provide built-in, hard-coded support for 1-to-many and many-to-
many relationships. They can be set up centrally in the configuration. In SQL on
the other hand you would specify them using joins in every single query. You
have a lot of flexibility what you join and how. With Slick you get the best of both
worlds. Slick queries are as flexible as SQL, but also compositional. You can
store fragements like join conditions in central places and use language-level
abstraction. Relationships of any sort are just one thing you can naturally abstract
over like in any Scala code. There is no need for Slick to hard-code support for
certain use cases. You can easily implement arbitrary use cases yourself, e.g. the
common 1-n or n-n relationships or even relationships spanning over multiple
tables, relationships with additional discriminators, polymorphic relationships, etc.

Here is an example for person and addresses.

implicit class PersonExtensions[C[_]](q: Query[People,
Person, C]) {
 // specify mapping of relationship to address
 def withAddress = q.join(addresses).on(_.addressId ===

52

_.id)
}

val chrisQuery = people.filter(_.id === 2)
val stefanQuery = people.filter(_.id === 3)

val chrisWithAddress: Future[(Person, Address)] =
 db.run(chrisQuery.withAddress.result.head)
val stefanWithAddress: Future[(Person, Address)] =
 db.run(stefanQuery.withAddress.result.head)

A common question for new Slick users is how they can follow a relationships on
a result. In an ORM you could do something like this:

val chris: Person = PeopleFinder.getById(2)
val address: Address = chris.address

As explained earlier, Slick does not allow navigating the object-graph as if data
was in memory, because of the problem that comes with it. Instead of navigating
relationships on results you write new queries instead.

val chrisQuery: Query[People,Person,Seq] =
people.filter(_.id === 2)
val addressQuery: Query[Addresses,Address,Seq] =
chrisQuery.withAddress.map(_._2)
val address = db.run(addressQuery.result.head)

If you leave out the optional type annotation and some intermediate vals it is very
clean. And it is very clear where database round trips happen.

A variant of this question Slick new comers often ask is how they can do
something like this in Slick:

case class Address(…)
case class Person(…, address: Address)

The problem is that this hard-codes that a Person requires an Address. It can not
be loaded without it. This does’t fit to Slick’s philosophy of giving you fine-grained
control over what you load exactly. With Slick it is advised to map one table to a
tuple or case class without them having object references to related objects.
Instead you can write a function that joins two tables and returns them as a tuple
or association case class instance, providing an association externally, not
strongly tied one of the classes.

val tupledJoin: Query[(People,Addresses),(Person,Address),
Seq]
 = people join addresses on (_.addressId === _.id)

53

case class PersonWithAddress(person: Person, address:
Address)
val caseClassJoinResults =
db.run(tupledJoin.result).map(_.map(PersonWithAddress.tupled
))

An alternative approach is giving your classes Option-typed members referring to
related objects, where None means that the related objects have not been loaded
yet. However this is less type-safe then using a tuple or case class, because it
cannot be statically checked, if the related object is loaded.

Modifying relationships
When manipulating relationships with ORMs you usually work on mutable
collections of associated objects and inserts or remove related objects. Changes
are written to the database immediately or recorded in a write cache and
commited later. To avoid stateful caches and mutability, Slick handles relationship
manipulations just like SQL - using foreign keys. Changing relationships means
updating foreign key fields to new ids, just like updating any other field. As a
bonus this allows establishing and removing associations with objects that have
not been loaded into memory. Having their ids is sufficient.

Inheritance
Slick does not persist arbitrary object-graphs. It rather exposes the relational data
model nicely integrated into Scala. As the relational schema doesn’t contain
inheritance so doesn’t Slick. This can be unfamiliar at first. Usually inheritance
can be simply replaced by relationalships thinking along the lines of roles. Instead
of foo is a bar think foo has role bar. As Slick allows query composition and
abstraction, inheritance-like query-snippets can be easily implemented and put
into functions for re-use. Slick doesn’t provide any out of the box but allows you to
flexibly come up with the ones that match your problem and use them in your
queries.

Code-generation
Many of the concepts described above can be abstracted over using Scala code
to avoid repetition. There cases however, where you reach the limits of Scala’s
type system’s abstraction capabilities. Code generation offers a solution to this.
Slick comes with a very flexible and fully customizable code generator, which can
be used to avoid repetition in these cases. The code generator operates on the
meta data of the database. Combine it with your own extra meta data if needed
and use it to generate Slick types, relationship accessors, association classes,
etc. For more info see our Scala Days 2014 talk at
http://slick.typesafe.com/docs/ .

54

http://slick.typesafe.com/docs/
http://slick.typesafe.com/doc/3.0.0/code-generation.html

Coming from SQL to Slick
Coming from JDBC/SQL to Slick is pretty straight forward in many ways. Slick
can be considered as a drop-in replacement with a nicer API for handling
connections, fetching results and using a query language, which is integrated
more nicely into Scala than writing queries as Strings. The main obstacle for
developers coming from SQL to Slick seems to be the semantic differences of
seemingly similar operations between SQL and Scala’s collections API which
Slick’s API imitates. The following sections give a quick overview over the
differences. They start with conceptual differences and then list examples of
many SQL operators and their Slick equivalents. For a more detailed
explanations of Slick’s API please refer to chapter queries and the equivalent
methods in the the Scala collections API.

Schema
The later examples use the following database schema

mapped to Slick using the following code:

type Person = (Int,String,Int,Int)
class People(tag: Tag) extends Table[Person](tag, "PERSON")
{
 def id = column[Int]("ID", O.PrimaryKey, O.AutoInc)
 def name = column[String]("NAME")
 def age = column[Int]("AGE")
 def addressId = column[Int]("ADDRESS_ID")
 def * = (id,name,age,addressId)
 def address = foreignKey("ADDRESS",addressId,addresses)
(_.id)
}
lazy val people = TableQuery[People]

type Address = (Int,String,String)
class Addresses(tag: Tag) extends Table[Address](tag,
"ADDRESS") {
 def id = column[Int]("ID", O.PrimaryKey, O.AutoInc)

55

http://www.scala-lang.org/api/2.10.0/#scala.collection.immutable.Seq
http://slick.typesafe.com/doc/3.0.0/queries.html
http://slick.typesafe.com/doc/3.0.0/sql-to-slick.html#sql-to-slick-operators

 def street = column[String]("STREET")
 def city = column[String]("CITY")
 def * = (id,street,city)
}
lazy val addresses = TableQuery[Addresses]

Tables can alternatively be mapped to case classes. Similar code can be auto-
generated or hand-written.

Queries in comparison

JDBC Query
A JDBC query with error handling could look like this:

import java.sql._

Class.forName("org.h2.Driver")
val conn = DriverManager.getConnection("jdbc:h2:mem:test1")
val people = new
scala.collection.mutable.MutableList[(Int,String,Int)]()
try{
 val stmt = conn.createStatement()
 try{

 val rs = stmt.executeQuery("select ID, NAME, AGE from
PERSON")
 try{
 while(rs.next()){
 people += ((rs.getInt(1), rs.getString(2),
rs.getInt(3)))
 }
 }finally{
 rs.close()
 }

 }finally{
 stmt.close()
 }
}finally{
 conn.close()
}

Slick gives us two choices how to write queries. One is SQL strings just like
JDBC. The other are type-safe, composable queries.

56

http://slick.typesafe.com/doc/3.0.0/schemas.html
http://slick.typesafe.com/doc/3.0.0/code-generation.html
http://slick.typesafe.com/doc/3.0.0/code-generation.html

Slick Plain SQL queries
This is useful if you either want to continue writing queries in SQL or if you need a
feature not (yet) supported by Slick otherwise. Executing the same query using
Slick Plain SQL, which has built-in error-handling and resource management
optimized for asynchronous execution, looks like this:

import slick.driver.H2Driver.api._

val db = Database.forConfig("h2mem1")

val action = sql"select ID, NAME, AGE from
PERSON".as[(Int,String,Int)]
db.run(action)

.list returns a list of results. .first a single result. .foreach can be used to
iterate over the results without ever materializing all results at once.

Slick type-safe, composable queries
Slick’s key feature are type-safe, composable queries. Slick comes with a Scala-
to-SQL compiler, which allows a (purely functional) sub-set of the Scala language
to be compiled to SQL queries. Also available are a subset of the standard library
and some extensions, e.g. for joins. The familiarity allows Scala developers to
instantly write many queries against all supported relational databases with little
learning required and without knowing SQL or remembering the particular dialect.
Such Slick queries are composable, which means that you can write and re-use
fragments and functions to avoid repetitive code like join conditions in a much
more practical way than concatenating SQL strings. The fact that such queries
are type-safe not only catches many mistakes early at compile time, but also
eliminates the risk of SQL injection vulnerabilities.

The same query written as a type-safe Slick query looks like this:

import slick.driver.H2Driver.api._

val db = Database.forConfig("h2mem1")

val query = people.map(p => (p.id,p.name,p.age))
db.run(query.result)

.run automatically returns a Seq for collection-like queries and a single value for
scalar queries. .list, .first and .foreach are also available.

A key benefit compared to SQL strings is, that you can easily transform the query
by calling more methods on it. E.g. query.filter(_.age > 18) returns
transformed query which further restricts the results. This allows to build libraries
of queries, which re-use each other become much more maintainable. You can
abstract over join conditions, pagination, filters, etc.

57

It is important to note that Slick needs the type-information to type-check these
queries. This type information closely corresponds to the database schema and is
provided to Slick in the form of Table sub classes and TableQuery values shown
above.

Main obstacle: Semantic API differences
Some methods of the Scala collections work a bit differently than their SQL
counter parts. This seems to be one of the main causes of confusion for people
newly coming from SQL to Slick. Especially groupBy seems to be tricky.

The best approach to write queries using Slick’s type-safe api is thinking in terms
of Scala collections. What would the code be if you had a Seq of tuples or case
classes instead of a Slick TableQuery object. Use that exact code. If needed
adapt it with workarounds where a Scala library feature is currently not supported
by Slick or if Slick is slightly different. Some operations are more strongly typed in
Slick than in Scala for example. Arithmetic operation in different types require
explicit casts using .asColumnOf[T]. Also Slick uses 3-valued logic for Option
inference.

Scala-to-SQL compilation during runtime
Slick runs a Scala-to-SQL compiler to implement its type-safe query feature. The
compiler runs at Scala run-time and it does take its time which can even go up to
second or longer for complex queries. It can be very useful to run the compiler
only once per defined query and upfront, e.g. at app startup instead of each
execution over and over. Compiled queries allow you to cache the generated SQL
for re-use.

Limitations
When you use Slick extensively you will run into cases, where Slick’s type-safe
query language does not support a query operator or JDBC feature you may
desire to use or produces non-optimal SQL code. There are several ways to deal
with that.

Missing query operators
Slick is extensible to some degree, which means you can add some kinds of
missing operators yourself.

Definition in terms of others
If the operator you desire is expressible using existing Slick operations you can
simply write a Scala function or implicit class that implements the operator as a
method in terms of existing operators. Here we implement squared using
multiplication.

implicit class MyStringColumnExtensions(i: Rep[Int]){
 def squared = i * i

58

http://slick.typesafe.com/doc/3.0.0/queries.html#compiled-queries
http://slick.typesafe.com/doc/3.0.0/sql-to-slick.html#groupby

}

// usage:
people.map(p => p.age.squared)

Definition using a database function
If you need a fundamental operator, which is not supported out-of-the-box you
can add it yourself if it operates on scalar values. For example Slick currently
does not have a power method out of the box. Here we are mapping it to a
database function.

val power = SimpleFunction.binary[Int,Int,Int]("POWER")

// usage:
people.map(p => power(p.age,2))

More information can be found in the chapter about Scalar database functions.

You can however not add operators operating on queries using database
functions. The Slick Scala-to-SQL compiler requires knowledge about the
structure of the query in order to compile it to the most simple SQL query it can
produce. It currently couldn’t handle custom query operators in that context.
(There are some ideas how this restriction can be somewhat lifted in the future,
but it needs more investigation). An example for such operator is a MySQL index
hint, which is not supported by Slick’s type-safe api and it cannot be added by
users. If you require such an operator you have to write your whole query using
Plain SQL. If the operator does not change the return type of the query you could
alternatively use the workaround described in the following section.

Non-optimal SQL code
Slick generates SQL code and tries to make it as simple as possible. The
algorithm doing that is not perfect and under continuous improvement. There are
cases where the generated queries are more complicated than someone would
write them by hand. This can lead to bad performance for certain queries with
some optimizers and DBMS. For example, Slick occasionally generates
unnecessary sub-queries. In MySQL <= 5.5 this easily leads to unnecessary table
scans or indices not being used. The Slick team is working towards generating
code better factored to what the query optimizers can currently optimize, but that
doesn’t help you now. To work around it you have to write the more optimal SQL
code by hand. You can either run it as a Slick Plain SQL query or you can use a
hack, which allows you to simply swap out the SQL code Slick uses for a type-
safe query.

people.map(p => (p.id,p.name,p.age))
 .result
 // inject hand-written SQL, see

59

https://gist.github.com/cvogt/d9049c63fc395654c4b4
https://gist.github.com/cvogt/d9049c63fc395654c4b4
http://slick.typesafe.com/doc/3.0.0/userdefined.html#scalar-db-functions

https://gist.github.com/cvogt/d9049c63fc395654c4b4
 .overrideSql("SELECT id, name, age FROM Person")

SQL vs. Slick examples
This section shows an overview over the most important types of SQL queries
and a corresponding type-safe Slick query.

SELECT *

SQL
sql"select * from PERSON".as[Person]

Slick
The Slick equivalent of SELECT * is the result of the plain TableQuery:

people.result

SELECT

SQL
sql"""
 select AGE, concat(concat(concat(NAME,' ('),ID),')')
 from PERSON
""".as[(Int,String)]

Slick
Scala’s equivalent for SELECT is map. Columns can be referenced similarly and
functions operating on columns can be accessed using their Scala eqivalents (but
allowing only ++ for String concatenation, not +).

people.map(p => (p.age, p.name ++ " (" ++
p.id.asColumnOf[String] ++ ")")).result

WHERE

SQL
sql"select * from PERSON where AGE >= 18 AND NAME = 'C.
Vogt'".as[Person]

Slick
Scala’s equivalent for WHERE is filter. Make sure to use === instead of == for
comparison.

people.filter(p => p.age >= 18 && p.name === "C.

60

Vogt").result

ORDER BY

SQL
sql"select * from PERSON order by AGE asc, NAME".as[Person]

Slick
Scala’s equivalent for ORDER BY is sortBy. Provide a tuple to sort by multiple
columns. Slick’s .asc and .desc methods allow to affect the ordering. Be aware
that a single ORDER BY with multiple columns is not equivalent to multiple
.sortBy calls but to a single .sortBy call passing a tuple.

people.sortBy(p => (p.age.asc, p.name)).result

Aggregations (max, etc.)

SQL
sql"select max(AGE) from PERSON".as[Option[Int]].head

Slick
Aggregations are collection methods in Scala. In SQL they are called on a
column, but in Slick they are called on a collection-like value e.g. a complete
query, which people coming from SQL easily trip over. They return a scalar value,
which can be run individually. Aggregation methods such as max that can return
NULL return Options in Slick.

people.map(_.age).max.result

GROUP BY
People coming from SQL often seem to have trouble understanding Scala’s and
Slick’s groupBy, because of the different signatures involved. SQL’s GROUP BY
can be seen as an operation that turns all columns that weren’t part of the
grouping key into collections of all the elements in a group. SQL requires the use
of it’s aggregation operations like avg to compute single values out of these
collections.

SQL
sql"""
 select ADDRESS_ID, AVG(AGE)
 from PERSON
 group by ADDRESS_ID
""".as[(Int,Option[Int])]

61

Slick
Scala’s groupBy returns a Map of grouping keys to Lists of the rows for each
group. There is no automatic conversion of individual columns into collections.
This has to be done explicitly in Scala, by mapping from the group to the desired
column, which then allows SQL-like aggregation.

people.groupBy(p => p.addressId)
 .map{ case (addressId, group) => (addressId,
group.map(_.age).avg) }
 .result

SQL requires to aggregate grouped values. We require the same in Slick for now.
This means a groupBy call must be followed by a map call or will fail with an
Exception. This makes Slick’s grouping syntax a bit more complicated than
SQL’s.

HAVING

SQL
sql"""
 select ADDRESS_ID
 from PERSON
 group by ADDRESS_ID
 having avg(AGE) > 50
""".as[Int]

Slick
Slick does not have different methods for WHERE and HAVING. For achieving
semantics equivalent to HAVING, just use filter after groupBy and the
following map.

people.groupBy(p => p.addressId)
 .map{ case (addressId, group) => (addressId,
group.map(_.age).avg) }
 .filter{ case (addressId, avgAge) => avgAge > 50 }
 .map(_._1)
 .result

Implicit inner joins

SQL
sql"""
 select P.NAME, A.CITY
 from PERSON P, ADDRESS A
 where P.ADDRESS_ID = a.id

62

""".as[(String,String)]

Slick
Slick generates SQL using implicit joins for flatMap and map or the
corresponding for-expression syntax.

people.flatMap(p =>
 addresses.filter(a => p.addressId === a.id)
 .map(a => (p.name, a.city))
).result

// or equivalent for-expression:
(for(p <- people;
 a <- addresses if p.addressId === a.id
) yield (p.name, a.city)
).result

Explicit inner joins

SQL
sql"""
 select P.NAME, A.CITY
 from PERSON P
 join ADDRESS A on P.ADDRESS_ID = a.id
""".as[(String,String)]

Slick
Slick offers a small DSL for explicit joins.

(people join addresses on (_.addressId === _.id))
 .map{ case (p, a) => (p.name, a.city) }.result

Outer joins (left/right/full)

SQL
sql"""
 select P.NAME,A.CITY
 from ADDRESS A
 left join PERSON P on P.ADDRESS_ID = a.id
""".as[(Option[String],String)]

Slick
Outer joins are done using Slick’s explicit join DSL. Be aware that in case of an
outer join SQL changes the type of outer joined, non-nullable columns into

63

nullable columns. In order to represent this in a clean way even in the presence
of mapped types, Slick lifts the whole side of the join into an Option. This goes a
bit further than the SQL semantics because it allows you to distinguish a row
which was not matched in the join from a row that was matched but already
contained nothign but NULL values.

(addresses joinLeft people on (_.id === _.addressId))
 .map{ case (a, p) => (p.map(_.name), a.city) }.result

Subquery

SQL
sql"""
 select *
 from PERSON P
 where P.ID in (select ID
 from ADDRESS
 where CITY = 'New York City')
""".as[Person]

Slick
Slick queries are composable. Subqueries can be simply composed, where the
types work out, just like any other Scala code.

val address_ids = addresses.filter(_.city === "New York
City").map(_.id)
people.filter(_.id in address_ids).result // <- run as one
query

The method .in expects a sub query. For an in-memory Scala collection, the
method .inSet can be used instead.

Scalar value subquery / custom function

SQL
sql"""
 select * from PERSON P,
 (select rand() * MAX(ID) as ID from
PERSON) RAND_ID
 where P.ID >= RAND_ID.ID
 order by P.ID asc
 limit 1
""".as[Person].head

64

Slick
This code shows a subquery computing a single value in combination with a
user-defined database function.

val rand = SimpleFunction.nullary[Double]("RAND")

val rndId = (people.map(_.id).max.asColumnOf[Double] *
rand).asColumnOf[Int]

people.filter(_.id >= rndId)
 .sortBy(_.id)
 .result.head

insert

SQL
sqlu"""
 insert into PERSON (NAME, AGE, ADDRESS_ID) values ('M
Odersky', 12345, 1)
"""

Slick
Inserts can be a bit surprising at first, when coming from SQL, because unlike
SQL, Slick re-uses the same syntax that is used for querying to select which
columns should be inserted into. So basically, you first write a query and instead
of creating an Action that gets the result of this query, you call += on with value to
be inserted, which gives you an Action that performs the insert. ++= allows
insertion of a Seq of rows at once. Columns that are auto-incremented are
automatically ignored, so inserting into them has no effect. Using forceInsert
allows actual insertion into auto-incremented columns.

people.map(p => (p.name, p.age, p.addressId)) += ("M
Odersky",12345,1)

update

SQL
sqlu"""
 update PERSON set NAME='M. Odersky', AGE=54321 where
NAME='M Odersky'
"""

Slick
Just like inserts, updates are based on queries that select and filter what should

65

http://slick.typesafe.com/doc/3.0.0/userdefined.html

be updated and instead of running the query and fetching the data .update is
used to replace it.

people.filter(_.name === "M Odersky")
 .map(p => (p.name,p.age))
 .update(("M. Odersky",54321))

delete

SQL
sqlu"""
 delete PERSON where NAME='M. Odersky'
"""

Slick
Just like inserts, deletes are based on queries that filter what should be deleted.
Instead of getting the query result of the query, .delete is used to obtain an
Action that deletes the selected rows.

people.filter(p => p.name === "M. Odersky")
 .delete

CASE

SQL
sql"""
 select
 case
 when ADDRESS_ID = 1 then 'A'
 when ADDRESS_ID = 2 then 'B'
 end
 from PERSON P
""".as[Option[String]]

Slick
Slick uses a small DSL to allow CASE like case distinctions.

people.map(p =>
 Case
 If(p.addressId === 1) Then "A"
 If(p.addressId === 2) Then "B"
).result

66

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.Case$

Upgrade Guides
Compatibility Policy
Slick requires Scala 2.10 or 2.11. (For Scala 2.9 please use ScalaQuery, the
predecessor of Slick).

Slick version numbers consist of an epoch, a major and minor version, and
possibly a qualifier (for milestone, RC and SNAPSHOT versions).

For release versions (i.e. versions without a qualifier), backward binary
compatibility is guaranteed between releases with the same epoch and major
version (e.g. you could use 2.1.2 as a drop-in relacement for 2.1.0 but not for
2.0.0). Slick Extensions requires at least the same minor version of Slick (e.g.
Slick Extensions 2.1.2 can be used with Slick 2.1.2 but not with Slick 2.1.1).
Binary compatibility is not preserved for slick-codegen, which is generally used at
compile-time.

We do not guarantee source compatibility but we try to preserve it within the
same major release. Upgrading to a new major release may require some
changes to your sources. We generally deprecate old features and keep them
around for a full major release cycle (i.e. features which become deprecated in
2.1.0 will not be removed before 2.2.0) but this is not possible for all kinds of
changes.

Release candidates have the same compatibility guarantees as the final versions
to which they lead. There are no compatibility guarantees whatsoever for
milestones and snapshots.

Upgrade from 2.1 to 3.0

Package Structure
Slick has moved from package scala.slick to slick. A package object in
scala.slick provides deprecated aliases for many common types and values.

Database I/O Actions
The simple and Implicits imports from drivers are deprecated and will be
removed in Slick 3.1. You should use api instead, which will give you the same
features, except for the old Invoker and Executor APIs for blocking execution
of database calls. These have been replaced by a new monadic database I/O
actions API. See Database I/O Actions for details of the new API.

Join Operators
The old outer join operators did not handle null values correctly, requiring
complicated mappings in user code, especially when using nested outer joins or
outer joins over mapped entities. This is no longer necessary with the new outer

67

http://slick.typesafe.com/doc/3.0.0/dbio.html
http://slick.typesafe.com/doc/3.0.0/extensions.html
http://scalaquery.org/

join operators that lift one (left or right outer join) or both sides (full outer join) of
the join into an Option. This is made possible by the new nested Options and
non-primitive Options support in Slick.

The old operators are deprecated but still available. Deprecation warnings will
point you to the right replacement:

• leftJoin -> joinLeft
• rightJoin -> joinRight
• outerJoin -> joinFull
• innerJoin -> join

Passing an explicit JoinType to the generic join operator does not make
sense anymore with the new join semantics and is therefore deprecated, too.
join is now used exclusively for inner joins.

first
The old Invoker API used the first and firstOption methods to get the first
element of a collection-valued query. The same operations for streaming Actions
in the new API are called head and headOption respectively, consistent with
the names used by the Scala Collections API.

Column Type
The type Column[T] has been subsumed into its supertype Rep[T]. For
operations which are only available for individual columns, an implicit
TypedType[T] evidence is required. The more flexible handling of Option
columns requires Option and non-Option columns to be treated differently when
creating an implicit Shape. In this case the evidence needs to be of type
OptionTypedType[T] or BaseTypedType[T], respectively. If you want to
abstract over both, it may be more convenient to pass the required Shape as an
implicit parameter and let it be instantiated at the call site where the concrete type
is known.

Column[T] is still available as a deprecated alias for Rep[T]. Due to the
required implicit evidence, it cannot provide complete backwards compatibility in
all cases.

Closing Databases
Since a Database instance can now have an associated connection pool and
thread pool, it is important to call shutdown or close when you are done using
it, so that these pools can be shut down properly. You should take care to do this
when you migrate to the new action-based API. As long as you exclusively use
the deprecated synchronous API, it is not strictly necessary.

Warning

Do not rely on the lazy initialization! Slick 3.1 will require Database objects

68

to always be closed and may create connection and thread pool
immediately.

Metadata API and Code Generator
The JDBC metadata API in package slick.jdbc.meta has been switched to
the new API, producing Actions instead of Invokers. The code generator, which
uses this API, has been completely rewritten for the asynchronous API. It still
supports the same functionality and the same concepts but any customization of
the code generator will have to be changed. See the code generator tests and the
Schema Code Generation chapter for examples.

Inserting from Queries and Expressions
In Slick 2.0, soft inserts (where auto-incrementing columns are ignored) became
the default for inserting raw values. Inserting from another query or a computed
expression still uses force-insert semantics (i.e. trying to insert even into auto-
incrementing columns, whether or not the database supports it). The new DBIO
API properly reflects this by renaming insert(Query) to
forceInsertQuery(Query) and insertExpr to forceInsertExpr.

Default String Types
The default type for String columns of unconstrained length in JdbcProfile has
traditionally been VARCHAR(254). Some drivers (like H2Driver) already changed
it into an unconstrained string type. Slick 3.0 now also uses VARCHAR on
PostgreSQL and TEXT on MySQL. The former should be harmless but MySQL’s
TEXT type is similar to CLOB and has some limitations (e.g. no default values and
no index without a prefix length). You can use an explicit O.Length(254)
column option to go back to the previous behavior or change the default in the
application.conf key slick.driver.MySQL.defaultStringType.

JdbcDriver
The JdbcDriver object has been deprecated. You should always use the
correct driver for your database system.

Upgrade from 2.0 to 2.1

Query type parameters
Query now takes 3 type parameters instead of two. 2.0’s Query[T,E] is
equivalent to Slick 2.1’s Query[T,E,Seq]. The third parameter is the collection
type to be returned when executing the query using .run, which always returned
a Seq in Slick 2.0. This is the only place where it is used right now. In the future
we will work on making queries correspond to the behavior of the corresponding

69

http://slick.typesafe.com/doc/3.0.0/api/index.html#slick.lifted.Query
http://slick.typesafe.com/doc/3.0.0/code-generation.html

Scala collection types, i.e. Query[_,_,Set] having the uniqueness property,
Query[_,_,List] being order preserving, etc. The collecton type can be
changed to C by calling .to[C] on a query.

To upgrade your code to 2.1 you can either rename the new Query type to
something else in the import, i.e. importsimple.
{Query=>NewQuery,_} and then write a type alias type Query[T,E] =
NewQuery[T,E,Seq]. Or you can add Seq as the third type argument in your
code. This regex should work for most places: replace ([^a-zA-Z])Query\
[([^\]]+), ?([^\]]+)\] with \1Query[\2, \3, Seq].

.list and .first
These methods had an empty argument list before the implicit argument list in
2.0. This has been dropped for uniformity. Calls like .list() need to be
replaced with .list and .first() by .first.

.where
This method has been deprecated in favor of the Scala collections conformant
.filter method.

.isNull and .isNotNull
These methods have been deprecated in favor of new Scala standard library
conformant isEmpty and isDefined methods. They can now only be used on
Option columns. Otherwise you get a type error. A quick workaround for using
them on non-Option columns is casting them into Option columns using .?, e.g.
someCol.?.isDefined. The reason that you have to do this points to using a
wrong type for your column however, i.e. non-Option for a nullable column and
should really be fixed in your Table definition.

Static Plain SQL Queries
The interface for using argument placeholders has been changed. Where in 2.0
you could write

StaticQuery.query[T,…]("select ...").list(someT)

you now have to write

StaticQuery.query[T,…]("select ...").apply(someT).list

Slick code generator / Slick model
The code generator has been moved into a separate artifact in order to evolve it
faster than Slick core. it moved from package slick.model.codegen to
package slick.codegen. Binary compatibility will not be guaranteed, as it is
supposed to be used before compile time. Add

"com.typesafe.slick" %% "slick-codegen" % "3.0.0"
70

to the dependencies of your code generator sbt project.

Method SourceCodeGenerator#Table#compound has been replaced by two
methods compoundValue and compoundType generating potentially differently
shaped code for values and types of compound values.

Method getTables of the Slick drivers, which returns an Invoker for listing all
default database tables has been deprecated in favor of new method
defautTables, which returns the tables directly in order to allow Slick to
exclude meta tables at this point.

Method slick.jdbc.meta.createModel(tables) has been moved into the
drivers and can now be invoked using e.g.
H2Driver.createModel(Some(tables))

The model generated by Slick now contains improved information like the
database column type, length of string columns, default values for strings in
MySQL. The code generator will embed the portable length into generated code
and can optionally embed the non-portable database column type into generated
code when overriding SlickCodeGenerator#Table#Column#dbType with
true.

The new ModelBuilder can be extended to customize model creation from jdbc
meta data, similar to how the code generator can be customized. This allows
working around differences and bugs in jdbc drivers, when creating the model or
making up for missing features in Slick, e.g supporting specific types of your
dbms of choice.

Slick Extensions
Slick Extensions, a closed-source package with commercial support provided by
Typesafe, Inc contains Slick drivers for:

• Oracle (com.typesafe.slick.driver.oracle.OracleDriver)
• IBM DB2 (com.typesafe.slick.driver.db2.DB2Driver)
• Microsoft SQL Server

(com.typesafe.slick.driver.ms.SQLServerDriver)

Note

You may use it for development and testing purposes under the terms and
conditions of the Typesafe Subscription Agreement (PDF). Production use
requires a Typesafe Subscription.

If you are using sbt, you can add slick-extensions and the Typesafe repository
(which contains the required artifacts) to your build definition like this:

libraryDependencies += "com.typesafe.slick" %% "slick-
extensions" % "3.0.0"

resolvers += "Typesafe Releases" at

71

http://www.scala-sbt.org/
http://typesafe.com/subscription
http://typesafe.com/public/legal/TypesafeSubscriptionAgreement.pdf

"http://repo.typesafe.com/typesafe/maven-releases/"

Slick TestKit
Note

This chapter is based on the Slick TestKit Example template. The prefered way of
reading this introduction is in Activator, where you can edit and run the code
directly while reading the tutorial.

When you write your own database driver for Slick, you need a way to run all the
standard unit tests on it (in addition to any custom tests you may want to add) to
ensure that it works correctly and does not claim to support any capabilities which
are not actually implemented. For this purpose the Slick unit tests have been
factored out into a separate Slick TestKit project.

To get started, you can clone the Slick TestKit Example template which contains a
copy of Slick’s standard PostgreSQL driver and all the infrastructure required to
build and test it.

Scaffolding
Its build.sbt file is straight-forward. Apart from the usual name and version
settings, it adds the dependencies for Slick, the TestKit, junit-interface, Logback
and the PostgreSQL JDBC driver, and it sets some options for the test runs:

libraryDependencies ++= Seq(
 "com.typesafe.slick" %% "slick" % "3.0.0",
 "com.typesafe.slick" %% "slick-testkit" % "3.0.0" %
"test",
 "com.novocode" % "junit-interface" % "0.10" % "test",
 "ch.qos.logback" % "logback-classic" % "0.9.28" % "test",
 "postgresql" % "postgresql" % "9.1-901.jdbc4" % "test"
)

testOptions += Tests.Argument(TestFrameworks.JUnit, "-q", "-
v", "-s", "-a")

parallelExecution in Test := false

logBuffered := false

There is a copy of Slick’s logback configuration in
src/test/resources/logback-test.xml but you can swap out the logging
framework if you prefer a different one.

Driver
The actual driver implementation can be found under src/main/scala.

72

https://typesafe.com/activator/template/slick-testkit-example-3.0
https://typesafe.com/activator
https://typesafe.com/activator/template/slick-testkit-example-3.0
http://repo.typesafe.com/typesafe/maven-releases/

Test Harness
In order to run the TestKit tests, you need to add a class that extends
DriverTest, plus an implementation of TestDB which tells the TestKit how to
connect to a test database, get a list of tables, clean up between tests, etc.

In the case of the PostgreSQL test harness (in
src/test/slick/driver/test/MyPostgresTest.scala) most of the
default implementations can be used out of the box. Only localTables and
getLocalSequences require custom implementations. We also modify the
driver’s capabilities to indicate that our driver does not support the JDBC
getFunctions call:

@RunWith(classOf[Testkit])
class MyPostgresTest extends DriverTest(MyPostgresTest.tdb)

object MyPostgresTest {
 def tdb = new ExternalJdbcTestDB("mypostgres") {
 val driver = MyPostgresDriver
 override def localTables(implicit ec: ExecutionContext):
DBIO[Vector[String]] =
 ResultSetAction[(String,String,String, String)]
(_.conn.getMetaData().getTables("", "public", null,
null)).map { ts =>
 ts.filter(_._4.toUpperCase ==
"TABLE").map(_._3).sorted
 }
 override def getLocalSequences(implicit session:
profile.Backend#Session) = {
 val tables = ResultSetInvoker[(String,String,String,
String)](_.conn.getMetaData().getTables("", "public", null,
null))
 tables.buildColl[List].filter(_._4.toUpperCase ==
"SEQUENCE").map(_._3).sorted
 }
 override def capabilities = super.capabilities -
TestDB.capabilities.jdbcMetaGetFunctions
 }
}

The name of a configuration prefix, in this case mypostgres, is passed to
ExternalJdbcTestDB:

def tdb =
 new ExternalJdbcTestDB("mypostgres") ...

73

Database Configuration
Since the PostgreSQL test harness is based on ExternalJdbcTestDB, it needs
to be configured in test-dbs/testkit.conf:

mypostgres.enabled = true
mypostgres.user = myuser
mypostgres.password = secret

There are several other configuration options that need to be set for an
ExternalJdbcTestDB. These are defined with suitable defaults in testkit-
reference.conf so that testkit.conf can be kept very simple in most
cases.

Testing
Running sbt test discovers MyPostgresTest and runs it with TestKit’s JUnit
runner. This in turn causes the database to be set up through the test harness
and all tests which are applicable for the driver (as determined by the
capabilities setting in the test harness) to be run.

74

	Slick 3.0 User Manual
	Introduction
	What is Slick?
	Functional Relational Mapping
	Reactive Applications
	Plain SQL Support
	License

	Supported Databases
	Getting Started
	Adding Slick to Your Project
	Quick Introduction
	Database Configuration
	Schema
	Populating the Database
	Querying

	Database Configuration
	Using Typesafe Config
	Using a JDBC URL
	Using a DataSource
	Using a JNDI Name
	Database thread pool
	Connection pools
	DatabaseConfig

	Database I/O Actions
	Executing Database I/O Actions
	Materialized
	Streaming
	Transactions and Pinned Sessions

	JDBC Interoperability

	Schemas
	Table Rows
	Table Query
	Mapped Tables
	Constraints
	Data Definition Language

	Queries
	Expressions
	Sorting and Filtering
	Joining and Zipping
	Applicative joins
	Monadic joins
	Zip joins

	Unions
	Aggregation
	Querying
	Deleting
	Inserting
	Updating
	Compiled Queries

	Schema Code Generation
	Overview
	Standalone use
	Integrated into sbt
	Generated Code
	Customization

	User-Defined Features
	Scalar Database Functions
	Other Database Functions And Stored Procedures
	Using Custom Scalar Types in Queries
	Using Custom Record Types in Queries
	Polymorphic Types (e.g. Custom Tuple Types or HLists)
	Monomorphic Case Classes
	Combining Mapped Types

	Plain SQL Queries
	Scaffolding
	String Interpolation
	Result Sets
	Splicing Literal Values
	Type-Checked SQL Statements

	Coming from ORM to Slick
	Introduction
	Configuration
	Mapping configuration.
	Navigating the object graph
	Using plain old method calls
	Query languages
	String based embeddings
	Method based APIs
	Macro-based embeddings

	Query granularity
	Read caching
	Writes (and caching)
	Relationships
	Modifying relationships

	Inheritance
	Code-generation

	Coming from SQL to Slick
	Schema
	Queries in comparison
	JDBC Query
	Slick Plain SQL queries
	Slick type-safe, composable queries

	Main obstacle: Semantic API differences
	Scala-to-SQL compilation during runtime
	Limitations
	Missing query operators
	Definition in terms of others
	Definition using a database function

	Non-optimal SQL code

	SQL vs. Slick examples
	SELECT *
	SQL
	Slick

	SELECT
	SQL
	Slick

	WHERE
	SQL
	Slick

	ORDER BY
	SQL
	Slick

	Aggregations (max, etc.)
	SQL
	Slick

	GROUP BY
	SQL
	Slick

	HAVING
	SQL
	Slick

	Implicit inner joins
	SQL
	Slick

	Explicit inner joins
	SQL
	Slick

	Outer joins (left/right/full)
	SQL
	Slick

	Subquery
	SQL
	Slick

	Scalar value subquery / custom function
	SQL
	Slick

	insert
	SQL
	Slick

	update
	SQL
	Slick

	delete
	SQL
	Slick

	CASE
	SQL
	Slick

	Upgrade Guides
	Compatibility Policy
	Upgrade from 2.1 to 3.0
	Package Structure
	Database I/O Actions
	Join Operators
	first
	Column Type
	Closing Databases
	Metadata API and Code Generator
	Inserting from Queries and Expressions
	Default String Types
	JdbcDriver

	Upgrade from 2.0 to 2.1
	Query type parameters
	.list and .first
	.where
	.isNull and .isNotNull
	Static Plain SQL Queries
	Slick code generator / Slick model

	Slick Extensions
	Slick TestKit
	Scaffolding
	Driver
	Test Harness
	Database Configuration
	Testing

