
SIP: Self-cleaning macros

Eugene Burmako
Martin Odersky
Christopher Vogt
Stefan Zeiger
Adriaan Moors
scalamacros.org
https://github.com/scalamacros/kepler

09 March 2012

Motivation

Compile-time metaprogramming has been recognized as a valuable tool for enabling such
programming techniques as:

● Language virtualization (overloading/overriding semantics of the original programming
language to enable deep embedding of DSLs),

● Program reification (providing programs with means to inspect their own code),
● Self-optimization (self-application of domain-specific optimizations based on program

reification),
● Algorithmic program construction (generation of code that is tedious to write with the

abstractions supported by a programming language).

In this proposal we introduce a macro system for Scala. This facility allows programmers to
write macro defs: functions that are transparently loaded by the compiler and executed during
compilation. This realizes the notion of compile-time metaprogramming for Scala.

The proposed macro system holds the middle ground between hygienic and non-hygienic
macros. The core macro expansion algorithm is non-hygienic. However, it is possible to write
a macro def that brings hygiene to other macro defs. Hence, we call our macro system self-
cleaning. This attribute goes along the lines of the fact that Scala macros are, in fact, cats.

Macro defs fit Scala’s ecosystem by addressing problems that currently lack simple solutions.
These include but are not limited to:

● Advanced domain-specific languages design. Macros are able to examine and
restructure the ASTs of the program being compiled. As such, they can transparently
override the semantics of Scala code with custom semantics of a DSL.
For example, operations on collections can be transparently mapped to database
queries.

● Domain-specific optimizations. With macro defs it becomes possible to apply domain-

http://scalamacros.org/
http://scalamacros.org/
http://scalamacros.org/
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
https://github.com/scalamacros/kepler
http://groups.google.com/group/scala-debate/browse_thread/thread/cf33d47984e59e92/949567e466a8ec9b#949567e466a8ec9b

specific knowledge to optimize programs during their compilation. We have optimized
simple for-loops into close-to-metal while loops, removing the overhead of closures
generated by Range.foreach, but retaining the same familiar syntax. Another use case
for macros is elimination of boxing for certain use cases that involve primitive types and
typeclasses.

● Static checking of string literals and external DSLs. This proposal synergizes with SIP:
String interpolation and formatting. By implementing string processors as macro defs,
the programmer can validate and process interpolated strings at compile time. This can
be used to define custom literals (for example, binary numbers) or to deeply embed
external domain-specific languages (for example, integrate HTML+CSS+JS into the
namespace and type system of the main program). One of the potential improvements to
Scala itself is moving XML literals from language level into the standard library, which is
out of the scope of the current proposal, but might be implemented in future versions of
Scala.

Macros are frequently compared with Virtualized Scala, a research project, done at EPFL
and Stanford. At a glance, they look similar because both techniques enable language
virtualization and algorithmic program construction. On the one hand, macros are more flexible
than language virtualization because they do not rely on a universal lifting of types. On the
other hand, language virtualization enforces a strict boundary between staged and unstaged
expressions, which is often desired when implementing full-blown DSLs in Scala.

The intention of the present design is to have macros as a means to simplify things by offering
uniform abstraction capabilities instead of ad-hoc extensions. At the same time, we are
conscious that, like every abstraction, macros can be misused to obscure rather than clarify
programs. Consequently, the design goals of the present proposal are first, minimality of the
needed language abstractions, and second, expressiveness of the technique. Relatively less
important for us was the convenience of writing macros, precisely because we anticipate that
macros should be used only in relatively rare cases, and that they should be reserved to expert
programmers who are familiar with language theory and compiler concepts. Put in a nutshell,
we believe macros will be an attractive alternative to compiler plugins. They will not necessarily
be a good alternative to the current abstraction capabilities such as higher-order functions.

Intuition

Here is a prototypical macro definition:

def m(x: T): R = macro implRef

At first glance macro definitions are equivalent to normal function definitions, except for their
body, which starts with the conditional1 keyword macro and is followed by a possibly qualified
identifier that refers to a static macro implementation method.

If, during type-checking, the compiler encounters an application of the macro m(args), it will
expand that application by invoking the corresponding macro implementation method, with the

1 macro is currently considered to be a keyword only if the compiler flag -Xmacro is turned on. The name
should be deprecated for identifiers in Scala 2.10, so that it can be used as a standard keyword in Scala
2.11.

https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit
https://docs.google.com/document/d/1NdxNxZYodPA-c4MLr33KzwzKFkzm9iW9POexT9PkJsU/edit

abstract-syntax trees of the argument expressions args as arguments. The result of the macro
implementation is another abstract syntax tree, which will be inlined at the call site and will be
type-checked in turn.

Example 1. The following code snippet declares a macro definition assert that references a
macro implementation Asserts.assertImpl.

def assert(cond: Boolean, msg: Any) = macro Asserts.assertImpl

A call assert(x < 10, “limit exceeded”) would then lead at compile time to an invocation

assertImpl(ctx)(<[x < 10]>, <[“limit exceeded”]>)

where ctx is a context argument that contains information collected by the compiler at the call
site, and the other two arguments are abstract syntax trees representing the two expressions x
< 10 and “limit exceeded”.

Remark: In this document, <[expr]> denotes the abstract syntax tree that represents
the expression expr. This notation has no counterpart in our proposed extension of the
Scala language. In reality, the syntax trees would be constructed from the types in trait
scala.reflect.api.Trees and the two expressions above would look like this:

Literal(Constant(“limit exceeded”))

Apply(
 Select(Ident(newTermName(“x”)), newTermName(“$less”),
 List(Literal(Constant(10))))

Here is a possible implementation of the assert macro:

import scala.reflect.makro.Context
object Asserts {
 def raise(msg: Any) = throw new AssertionError(msg)
 def assertImpl(c: Context)

 (cond: c.Expr[Boolean], msg: c.Expr[Any]) : c.Expr[Unit] =
 if (assertionsEnabled)

<[if (!cond) raise(msg)]>
 else

<[()]>
}

As the example shows, a macro implementation takes several parameter lists. First comes a
single parameter, of type Context. This is followed by a list of parameters that have the same
names as the macro definition parameters. But where the original macro parameter has type T,
a macro implementation parameter has type c.Expr[T]. Expr[T] is a type defined in Context that
wraps an abstract syntax tree of type T. The result type of the assertImpl macro implementation

is again a wrapped tree, of type c.Expr[Unit].

Generic Macros

Macro definitions and macro implementations may both be generic. If a macro implementation
has type parameters, actual type arguments must be given explicitly in the macro definition’s
body. Type parameters in an implementation may come with TypeTag context bounds. In that
case the corresponding TypeTags describing the actual type arguments instantiated at the
application site will be passed along when the macro is expanded.

Example 2 The following code snippet declares a macro definition Queryable.map that
references a macro implementation QImpl.map:

class Queryable[T] {
 def map[U](p: T => U): Queryable[U] = macro QImpl.map[T, U]
}

object QImpl {
 def map[T: c.TypeTag, U: c.TypeTag]
 (c: Context)
 (p: c.Expr[T => U]): c.Expr[Queryable[U]] = …
}

Now consider a value q of type Queryable[String] and a macro call

q.map[Int](s => s.length)

The call is expanded to the following reflective macro invocation

QImpl.map(ctx)(<[s => s.length]>)
 (implicitly[TypeTag[String]], implicitly[TypeTag[Int]])

Standard Types

The previous discussion has outlined essentially all that’s needed in the Scala language to
support macros. The next part of the proposal deals with the standard types that are used in the
signatures of macro implementations.

Macro Contexts

The context parameter of a macro implementation fulfils two roles. First, it provides a common
frame of reference for the parameters that follow it. Scala reflection defines concepts such as
abstract syntax trees, types, or symbols as members of a mirror. All mirrors are instances of

the class scala.reflect.api.Universe, which contains inherited type members Tree (for abstract
syntax trees), Symbol (for defined entities), Type (for their types), and several others more.
Each instance of a Scala compiler is itself a reflection mirror. Macros get passed this mirror as
part of the context parameter so that they can operate on trees and other data structures that
are defined in the Scala compiler.

Contexts also provide some info regarding the environment of the macro call site. In particular,
they record (in the field prefix) the abstract syntax tree that preceded the macro if the macro
method is a member of some class or object. For example, a macro call x.y.m(arg) results
in a context where the prefix field points to the abstract syntax tree <[x.y]>. Contexts may
expose information such as the name of the compilation unit, or the line number where the
macro was called. They may also offer selected compiler methods that macros can invoke.
In fact, the specification leaves the door open for a hierarchy of context types that expose
varying levels of capabilities. A macro implementation declares the level of power it needs
by the type of its macro parameter. Details will be specified in the full definition of class
scala.reflect.makro.Context and its subclasses.

Here is a minimal version of class scala.reflect.makro.Context.

abstract class Context {

 /** The mirror that represents the compile-time universe */
 val mirror: api.Universe

 /** Aliases of mirror types */
 type Symbol = mirror.Symbol
 type Type = mirror.Type
 type Name = mirror.Name
 type Tree = mirror.Tree
 type Expr[T] = mirror.Expr[T]
 type TypeTag[T] = mirror.TypeTag[T]

 /** Creator/extractor objects for Expr and TypeTag values */
 val TypeTag = mirror.TypeTag
 val Expr = mirror.Expr

 /** The type of the prefix tree from which the macro is selected */
 type PrefixType

 /** The prefix tree from which the macro is selected */
 val prefix: Expr[PrefixType]

 /** Reification yielding an Expr bound to the current mirror */
 def reify[T](expr: T): Expr[T]

 … // information about the call site and other operations
}

Type tags

A value of type TypeTag[T] encapsulates a representation of type T. It is supposed to replace
the current concept of a Manifest. TypeTags are much better integrated with reflection than
manifests are, and are consequently much simpler. Type tags are organized in a hierarchy of
three classes: ClassTag, TypeTag and GroundTypeTag. These are defined as members of
scala.reflect.api.Universe as follows:

 case class ClassTag[T](erasure: java.lang.Class[_]) {
 def tpe: Type = classToType(erasure)
 }

 case class TypeTag[T](tpe: Type) {
 def erasure: java.lang.Class[_] = typeToClass(tpe)
 }

 class GroundTypeTag[T](tpe: Type) extends TypeTag[T](tpe)

A ClassTag value wraps a Java class, which can be accessed via the erasure method. A
TypeTag value wraps a full Scala type in its tpe field. A GroundTypeTag value is a type tag that
is guaranteed not to contain any references to type parameters or abstract types.

Implicit in the contract for all Tag classes is that the reified type tpe represents the type
parameter T. Tags are typically created by the compiler, which makes sure that this contract is
kept. The creation rules are as follows:

1. If an implicit value of type u.ClassTag[T] is required, and T is a class type, the compiler
will make one up on demand. The implicitly created value contains in its erasure field the
class of type T.

2. If an implicit value of type u.TypeTag[T] is required, the compiler will make one up on
demand. The implicitly created value contains in its tpe field a value of type u.Type that
is a reflective representation of T. In that value, any occurrences of type parameters or
abstract types U which come themselves with a TypeTag are represented by the type
referenced by that TypeTag.

3. If an implicit value of type u.GroundTypeTag[T] is required, the
compiler will make one up on demand following the same procedure as for
TypeTags. However, if the resulting type still contains references to
type parameters or abstract types, a static error results.

An example that illustrates the TypeTag embedding described in item 2, consider the following

function:

import reflect.mirror._
def f[T: TypeTag, U] = {

 type L = T => U
 implicitly[TypeTag[L]]
}

Then a call of f[String, Int] will yield a result of the form

TypeTag(<[String => U]>).

Note that T has been replaced by String, because it comes with a TypeTag in f, whereas U was
left as a type parameter.

TypeTags correspond loosely to Manifests. More precisely, the previous notion of a
ClassManifest corresponds to a ClassTag, the previous notion of a Manifest corresponds to
GroundTypeTag, whereas TypeTag is approximated by the previous notion of OptManifest. It is
planned that the previous names Manifest, ClassManifest and OptManifest are kept around as
deprecated aliases of the corresponding Tag classes.

Expression trees

An expression tree of type Expr[T] encapsulates an abstract syntax tree of type T and its type.
Here’s the definition of Expr as a member of scala.reflect.api.Universe:

 case class Expr[T](tree: Tree) {
 def eval: T = …
 lazy val value: T = eval
 }

Implicit in the contract for Expr is that the type of the reified tree conforms to the type parameter
T. Expr values are typically created by the compiler, which makes sure that this contract is kept.

Note that the method eval which when called on a value of type Expr[T] will yield a result of type
T. The eval method and the value value play a special role in tree splicing (see below).

What about Hygiene?

The macro scheme described so far has the advantage that it is minimal, but also suffers from
two inconveniences: Tree construction is cumbersome and hygiene is not guaranteed.
Consider again a fragment of the body of assertImpl in Example 1:

<[if (!cond) raise(msg)]>

To actually produce the abstract syntax tree representing that expression one might write
something like that:

c.Expr(
 If(Select(cond, newTermName(“unary_$bang”)),
 Apply(Ident(newTermName(“raise”)), List(msg)),
 Literal(Constant(()))))

Cumbersome enough as this is, it is also wrong. Remember that the tree produced from a
macro will be inlined and type-checked at the macro call site. But that means that the identifier
raise will be typechecked at a point where it is most likely not visible, or in the worst case
they might refer to something else. In the macro literature, this insensitivity to bindings is
called “unhygienic”. In the case of assertImpl, the problems can be avoided by generating
instead of an identifier a fully qualified selection

Select(Asserts, newTermName(“raise”))

(to be 100% sure, one would need to select the full path starting with the root package). But
that makes the tree construction even more cumbersome and is very fragile because it is easily
forgotten.

However, it turns out that macros themselves can be used to solve both these problems. A
corner-stone of the technique is a macro called reify that produces its tree one stage later.

Reify

The reify macro plays a crucial role in the proposed macro system. It’s definition as a member of
Context is:

def reify[T](expr: T): Expr[T] = macro ...

Reify accepts a single parameter expr, which can be any well-typed Scala expression, and
creates a tree that, when compiled and evaluated, will recreate the original tree expr. So
reify is like time-travel: Trees get re-constituted at a later stage. If reify is called from normal
compiled code, its effect is that the abstract syntax tree passed to it will be recreated at run
time. Consequently, if reify is called from a macro implementation, its effect is that the abstract
syntax tree passed to it will be recreated at macro-expansion time (which corresponds to run
time for macros). This gives us a convenient way to create syntax trees from Scala code: just
pass the Scala code to reify, and the result will be a syntax tree that represents that very same
code.

What’s more, reify packages the result expression tree with the types and values of all free
references that occur in it. This means in effect that all free references in reify’s result are
already resolved, so that re-typechecking the tree is insensitive to its environment. All identifiers
referred to from an expression passed to reify are bound at the definition site, and not re-bound
at the call site. As a consequence, macros that generate trees only by the means of passing
expressions to reify are hygienic.

So in that sense, the proposed Scala macros are self-cleaning. Their basic form is minimal and
unhygienic, but that simple form is expressive enough to formulate a reify macro, which can be
used in turn to make tree construction in macros concise and hygienic.

Example 3:

Here is an implemention of the assert macro using reify.

import scala.reflect.makro.Context
object Asserts {
 def raise(msg: Any) = throw new AssertionError(msg)
 def assertImpl(c: Context)

 (cond: c.Expr[Boolean], msg: c.Expr[Any]) : c.Expr[Unit] =
 if (assertionsEnabled)

c.reify(if (!cond.eval) raise(msg.eval))
 else

c.reify(())
}

Note the close correspondence with the meta-notation of Example 1.

Splicing

Reify and eval are inverses of each other. Reify takes an expression and produces a tree
that, when evaluated with eval, yields the same result as the original expression. This is also
expressed by their types. reify goes from T to Expr[T], and eval goes from Expr[T] back to T.
The reify macro takes advantage of this relationship by shortcircuiting embedded calls to eval:

reify(expr.eval) translates to expr

This principle is seen in action in Example 3 above. There, the contents of the parameters cond
and msg are “spliced” into the body of the reify.

Along with eval, value also gets special treatment by reify.

reify(expr.value) also translates to expr

Similar to eval, the value method also makes reify splice its tree into the result. The difference
appears when the same expression gets spliced into multiple places inside the same reify block.
With eval, reify will always insert a copy of the corresponding tree (potentially duplicating side-
effects), whereas value will splice itself into a temporary variable that will be referred by its
usages.

The notion of splicing also manifests itself when reify refers to a type that has a TypeTag
associated with it. In that case instead of reproducing the type’s internal structure as usual, reify
inserts a reference to the type tag into its result.

reify(T) translates to TypeTag[T].tpe

Tagging a type can be done either automatically, by writing a c.TypeTag context bound on a
type parameter of a macro implementation, or manually, by introducing an implicit TypeTag
value into the scope visible by reify.

Specification

Syntax

Macro definitions extend the grammar described in “4.6 Function Declarations and Definitions”
of SLS 2.9 with the following syntax:

Def ::= ‘def’ FunDef | ‘def’ MacroDef
FunDef ::= FunSig [‘:’ Type] ‘=’ Expr
MacroDef ::= FunSig [‘:’ Type] ‘=’ ‘macro’ QualId [TypeArgs]

Note We propose to make “macro” a new keyword. This does not break backward compatibility,
because macro definitions can only be compiled under the -Xmacros compiler flag. For the next
version of Scala we suggest prohibiting identifiers named “macro” in programs compiled with -
Xmacros and deprecating such identifiers in programs compiled normally.

Note also that the syntax does not contain clauses for macro declarations. In other words,
macros cannot be abstract.

Typing Rules

The signatures of macro definitions and function definitions are identical. Macro definitions can
be declared in all contexts legal for declaring a function/method, with the following restrictions
on overriding.

A macro may override another macro or a concrete method (in both cases the override modifier
is required as usual), but it may not directly implement an abstract method that is not also
implemented by an inherited concrete method. However, macro selection always depends

on the static type of the receiver object, not the dynamic type. Macros may themselves be
overridden only by macros, not by other methods.

Example 4: Given:

 class C { def m() = 1 }
 class D extends C { override def m() = macro mI }

In that situation, the sequence

val d = new D; d.m()

will lead to the expansion of macro m. However, the sequence

 val c: C = d; c.m()

will lead to the invocation of method m in C, even though the dynamic receiver type is D.

The body of a macro definition consists of a qualified identifier that references a static method,
possibly followed by type arguments. Here, a method definition is static if it is a member of a
static object. An object definition is static if it is a toplevel definition or if it is a member of a static
object.

The macro implementation referenced in the body must be compatible with the macro definition,
as expressed by the following definition.

Definition The macro implementation reference MI or MI[T1, …, Tn] is compatible with the
macro definition MD if the following holds.

1. MI has n type parameters (where n = 0 in the case of a parameterless reference MI),
and the type arguments [T1, …, Tn] are legal instantiations of these type parameters.
Any context bounds of these type parameters are assumed in the following to be already
expanded to implicit parameters.

2. The first parameter list of MI contains a single parameter of a compiler-supported
subtype of scala.reflect.makro.Context. Scala implementations may support
subclasses of Context in this position, which may reveal more detail than the standard
scala.reflect.makro.Context. Also permitted is a refinement on the PrefixType member of
class Context. The permissible refinement is { type PrefixType = σU }, provided MD is a
member of a class or trait with self type U. Let c be the name of the context parameter.

3. The following parameter list(s) of MI correspond one-by-one to the parameter list(s)
of MD. Corresponding lists have the same number of parameters. Corresponding
parameters must have the same name, and where MD’s parameter has type T, the
corresponding MI parameter must have a type U such that c.Expr[σT] conforms to U.

4. Afterwards, MI may optionally have one extra implicit parameter list. All parameters in

that list must be of form c.TypeTag[T], where T is a type parameter of MI. (It follows
that the type parameters of MI may have no context- or view-bounds except TypeTag
bounds)

5. If the (declared or assumed) result type of MD is T then the result type of MI must
conform to c.Expr[σT].

Here, σ is a substitution that maps every type parameter of MI to the corresponding type
argument in the body of the macro call, and that maps every value parameter x of MD to
x’.value, where x’ is the corresponding value parameter in MI (which is also named x). If MD is
defined in a class or trait C, σ also maps every occurrence of C.this to c.prefix.value, where c is
the first context parameter of MI.

Note: σ allows to implement macro definitions with dependent method types. For instance a
macro definition

def selectT(x: C): x.Tpe = macro selectTImpl

would correspond to the macro implementation

def selectTImpl(c: Context)(x: c.Expr[T]): c.Expr[x.value.Tpe]

Without the mediating power of σ, the implementation result type c.Expr[x.value.Tpe] could not
be recognized as compatible with the definition result type x.Tpe.

The result type of MD may be omitted, in which case it is inferred from the result type of MI. If
MI’s result type has a base type of the form c.Expr[T], then MD’s result type is taken to be T.
Otherwise, MD’s result type is taken to be Any.

Macro expansion

Unlike normal functions, macros must always be fully applied; eta expansion is not available
for macros (this includes method value syntax and partial applications). Macro applications are
processed statically and, hence, cannot be manipulated as higher-order functions.

Also, in the present proposal, macro applications cannot have named or default arguments (we
might be able to lift this restriction in the future).

Let q.m[Ts](args1)...(argsn) be a fully applied application of the macro m to the type
arguments Ts and the value argument args (either arguments may be missing). The expression
is typechecked first in exactly the same way as a normal method application, followed by a
macro expansion step. The expansion step performs a reflective invocation
of the implementation method of macro m, with the following arguments in the order they are
given:

1. The first argument list consists of an value of type scala.reflect.makro.Context, which
contains the qualifier q as prefix field.

2. The following argument lists correspond one-by-one to args1 .. argsn. Each value
argument is passed as-is to the macro implementation, wrapped in an expression value

of type Expr.

3. If the macro implementation has implicit TypeTag parameters, this is followed by a final
list which passes for every parameter of type TypeTag[Vi] a value of type TypeTag[Ti].
Here, Vi is a type parameter of MI and Ti is the corresponding type argument in the
macro implementation reference.

It is an error if the macro implementation does not exist or is not accessible at the time the
macro is expanded (this means that macro implementations need to be compiled before macro
uses; whereas no such ordering requirement exists for macro definitions).

If the macro invocation returns with an Expr value, the macro application is replaced by the
abstract syntax tree contained in that value. Otherwise, a static error results. (Scala
implementations may impose a timeout on macro invocations in order to guard against infinitely
looping macro implementations). If an Expr value is returned, its tree is then type-checked in
turn and is expected to conform to the result type of the original macro application.

Note. If the result of macro expansion itself contains macro applications, then the algorithm will
perform recursive expansion upon them, because expansion is integrated into typechecking.
This means that macro expansion is recursive.

Implementation Details

This section covers implementation details of the macro system described in this proposal,
including the details of loading macro implementations, compiler API exposed to macros and
debugging.

● Macro definitions can only be compiled when the -Xmacros compiler flag is passed to
the compiler. However, macro implementations and macro invocations do not need any
special flags.

● When loading a macro implementation, the Scala compiler uses the library classpath
(i.e. the normal classpath of the compilation). This means that to use a macro, one only
needs to add its implementation classes to the classpath.

● As mentioned above, macro implementations must be compiled in a compilation run that

is different from the one that performs macro expansion. REPL makes this a non-issue,
because every command to a REPL gets compiled in a separate compilation run. Hence
it is possible to define and use macros in the same REPL session.

● To debug a macro one needs to run Scala compiler under the debugger (with the

entry point being scala.tools.nsc.Main) and it becomes possible to put breakpoints and
watch local variables in macro bodies. Another option is tracing macro compilation
and expansion by using -Ymacro-debug. If along with -Ymacro-debug, the -Ymacro-
copypaste option is enabled as well, Scala compiler will also dump expansions in the
form that can be copy/pasted into a standalone program or a REPL.

● Debugging programs generated by macros is hard, because there’s no source code that

one can put breakpoints on. This might be improved in future versions of Scala.

● In an IDE, one need to keep the original macro application around even after macro
expansion. Otherwise, macro arguments could no longer be found and semantically
analyzed.

