
The Curse of .
Adriaan Moors, EPFL

Penn PLClub, 15 July 2011

DOT.

DOTh unto others

• Martin: (for) now at Typesafe

• Geoff: now at LogicBlox

• Donna: now at Microsoft

• [most authors of previous Scala calculi]: now at Google
(it’s not you, DOT, it’s me)

2

Why DO iT?

• Need clean semantics for core Scala

• no definite one for now

• Driver for change in Scala (3.0?)

• we’ll prove soundness first (promise!)

3

Design Goals
1. capture essence of Scala

• structural refinements (with self variable)

• value members

• type members: lower & upper bounds

• path-dependent types

• new, selection, λ abstraction&application

4

Design Goals
2. study way forward

• true intersection types, union types

• get rid of lub approximation

• commutative type composition

• composition accumulates member info,
rather than linearisation picking a
winner among subtypes

5

Design Goals
3. leave out

• inheritance (model it on top)

• methods (have functions already)

• mutable state

• everything else

6

.intro

Sca.la

• DOT in Scala syntax:

• Scala: trait = abstract class

• DOT: abstract type member with unique name

• self: self variable

trait List { self =>
 type Element
 val hd: self.Element
 val tl: List{type Element = self.Element}
}

8

Path-dependent types

• to get equal types, select equal type members
on equal paths (the target of the selection)

• scope of unpacking is to an existential type as
target is to an abstract type member selection

trait List { type Element }

val xs: List = ... ; val ys: List =

// => xs.Element, ys.Element incompatible

9

Refinements

• xs.Element, ys.Element are both Int

trait List { type Element }

val xs: List{ type Element = Int } = ...
val ys: List{ type Element = Int } = ...

10

A propos, in Scala:

• DOT does not have singleton types (xs.type)

• only really need to select a type on a path: p.L

• (in Scala, select type on a type: p.type#L)

trait List { type Element }

val xs: List = ... ; val zs: xs.type = xs

// => xs.Element same type as zs.Element

11

.Scala

• post-DOT Scala will have:

• union types, true intersection types

• type composition pushed down to members

12

Union types as lazy lubs

• in theory, least upper bounds and f-
bounded polymorphism do not mix (easily)

• in practice, real Scala programs regularly
give rise to imprecise (truncated) lubs

13

F-Bounded Lubbing

scala> class F[T <: F[T]]

scala> class A extends F[A]

scala> class B extends F[B]

scala> List(new A, new B)

res0: List[F[_ >: B with A
 <: F[_ >: B with A
 <: ScalaObject]]]
 = List(A@b83621e, B@5e9ea579)

14

True Intersection

• (Scala) mixin composition: A with B

• not commutative: linearisation picks a
winning contribution

• (DOT) true intersection: A ∧ B

• constituents contribute equally to the
members of the resulting type

15

In terms of members

• members of T ∧ T’

• union of members of T and T’

• synonymous members’ types are ∧’ed

• members of T ∨ T’

• intersection of members of T and T’

• members’ types are ∨’ed

16

Example

class Coll { type El }

trait OrderedColl extends Coll {
 type El <: Ordered }

trait GPUColl extends Coll {
 type El <: GPUAble }

// Current Scala: OrderedColl with GPUColl

// DOT: OrderedColl ∧ GPUColl has member
// type El <: Ordered ∧ GPUAble

17

Gr.eek

t : Top{.. val l: T ..}

t.l : Tt

p : Top{.. type L >: S <: U ..}

Sp <: p.L and p.L <: Up

T <: T’ T <: Tp{D} Tp <: Top{Dp}
G, z: T |- (Dpz ∧ Dz) <: D’z

T <: T’{D’}

18

Buffet of Sneakiness

• path equality

• checking type well-formedness

• transitivity of subtyping

19

Path Equality

x: {z => type T; val l: z.T} |- x.l : x.T

imagine `x` evaluates to the object ref `a`

x.l --> a.l

preservation must thus relate these types:

x.T --> a.T

20

Path Equality

• common problem in virtual class calculi

• easy solution:

• embed store in typing context

• reference → (object type, constructor args)

• equate types modulo path equality

• only used in preservation

21

Well-Formed T

• WF T checked when typing new T

• must wait since WF is context-dependent

• no global class table as in FJ

• must ensure we check all of T’s members

22

Well-Formed T

• For all members, check:

• for each type L: T..U, T <: U

• for each val l: T, supplied argument : T

23

All members of T

• members of p.L ?

• first subsume to least structural supertype

• usually called “exposition”

24

Quality of Derivations

• DOT collapses subtyping and exposition

• rules are extremely similar

• track when member info was subsumed
(width/depth)

• cf. exact types, without complicating the
language of types

25

Gr.eek @ q
irrelevant

H @ precise

H @ subsumed

simplify:
quality subsumption

H1 @ q H2 @ q H3 @ q’

H @ q

simplify:
notation

H1 H2 H3

H

H1 @ q1 H2 @ q2 H3 @ q3

H @ q1 ∧ 2
core idea:

track quality flow
q = precise
 | subsumed

26

Gr.eek

t : Top{.. val l: T ..}

t.l : Tt

p : Top{.. type L >: S <: U ..}

Sp <: p.L and p.L <: Up

T <: T’ T <: Tp{D} Tp <: Top{Dp}
G, z: T |- (Dpz ∧ Dz) <: D’z

T <: T’{D’}

27

quality Gr.eek

t : Top{.. val l: T ..}

t.l : Tt

p : Top{.. type L >: S <: U ..}

Sp <: p.L and p.L <: Up

T <: T’ T <: Tp{D} Tp <: Top{Dp}
G, z: T |- (Dpz ∧ Dz) <: D’z

T <: T’{D’}

S ∧ T <: S @ subsumed

T <: S T <: U

T <: S ∧ U
28

Transitivity

• when does T <: p.L <: U imply T <: U ?

• when p’s type is well-formed*

• WF is not an obvious property

• e.g., not monotone wrt intersection

• {L : Bot..Bot} WF and {L : Top..Top} WF

• {L : Bot ∨ Top .. Bot ∧ Top } not WF

29

30

p : Top{L : Top..Bot}
[Sub-Sel-R]---------------------

Top <: p.L

p : Top{L : Top..Bot}
---------------------[Sub-Sel-L]
p.L <: Bot

 -------------------------[Sub-Trans]
Top <: Bot

Sneaky Middleman

Sneaky Middlemen

• intuition: only need transitivity during
preservation; no paths in sight that have type
members with vacuous bounds (dealing with values)

• how about lambda/self-bound variables?

• when preservation “goes under the binder”,
it must have a value, of well-formed type, in
hand for the abstraction

31

Punted on proving
transitivity

• Given the right side conditions, what could
possibly go wrong?

• I have not yet figured out how to make the
(mutual) induction go through

• Must relate subtyping (immediate +
inverted from deeper WF) and typing

32

Plan B

• Prove properties of algorithmic system

• Preservation stated modulo <:*

33

Questions! Thank you!

Besides., working on

• language virtualisation

• = MOP + lightweight, type-directed staging

• “virtualising” pattern matching (specify its
zero-plus monad)

• type-level computation

• implicits are poor man’s type-level prolog

• agree with Haskell: stick to type functions

35

One failed attempt
 expose p.L S U expose p.L S' U'
 -------------- ----------------
 S <: p.L p.L <: U'

NTS: S <: U'

splice: expose p.L S U -> expose p.L S' U' -> expose p.L S U'
decompose into HTyp + HSub + {HSubDecl1, HSubDecl2}
recompose HTyp + HSub + HSubDecl12

invert_expose: expose p.L S U' -> S <: U'
(under suitable side conditions of well-formedness of the
context)

36

Nominality & Soundness

• Axiom “L may label a class if it occurs once
in whole program”, seems awkward to me.

• But it is necessary for soundness.

• Alternative?

37

Nominality & Soundness

• Finding the least structural supertype of p.L is
only part of the challenge

• Without the nominality axiom, a given L may
be bound to incompatible types

• Other attack angle: dynamic vs static type of p

38

Rebinding class labels

• virtual class calculi face the same challenge

• how to check new p.L statically?

• p’s dynamic type must be allowed to
tighten members, otherwise what’s the
point of subclassing?

• but that may render L’s bounds vacuous

39

Exact’ish types

• Easy, radical, solution: new p.L only allowed
if p’s dynamic type is known statically.

• Masked types?

• new p.L allowed if p’s static type indicates
subtypes may not change L’s type

• Virtual classes need something like this

40

