
Java to Scala

Cédric Lavanchy

January 11, 2009

Contents

1 Goal of the project 3

2 Previous work 5

3 Grammar and correspondences 6
3.1 The Java grammar . 6

3.1.1 Short if . 6
3.1.2 Infinite loop in the Primary rule 7

3.2 Correspondences with the Scala AST 7
3.2.1 While and do-while statements 8
3.2.2 For loops . 8
3.2.3 Break and continue statements 9

4 Implementation 11
4.1 Comparison and cast . 11
4.2 Field access, method invocation and types 12
4.3 Break and continue statement . 12
4.4 Binary expressions . 13

5 Limitations 14
5.1 Limitations for both translation and compilation 14

5.1.1 Override . 14
5.1.2 Constructors . 15

5.2 Translate Java programs into Scala language 16
5.2.1 While, do-while statements 16
5.2.2 For statement . 17
5.2.3 Break and continue statements 17

5.3 Compiling Java source files . 17
5.3.1 Type checker . 17

6 Future work 18

A Original Java grammar 20
A.1 Expressions . 20
A.2 Statements . 21

B Transformed Java grammar 23
B.1 Expressions . 23
B.2 Statements . 24

2

Chapter 1

Goal of the project

The Scala programming language coexists with the Java language. Here, “co-
exist” means that a Scala project can contain both Scala and Java source files.
The Scala compiler can compile Scala files that access elements defined in some
Java files. Unfortunately, the Scala compiler does not produce the class file for
these Java files. The way to compile a mixed project is:

1. Submit all the Java/Scala sources to the Scala compiler.1

2. Compile the Java sources (with the java compiler) using the Scala gener-
ated .class files.1

3. Compile again the Scala sources using the Java generated .class files.1

In fact, the Scala compiler only parses the definitions of the classes, the
interfaces, the enumerations, the fields and the methods. That is the reason
why we must compile the Java sources with the Java compiler.

The goal of this project is to extend the Java source parser of the Scala
compiler to parse the Java statements and expressions. The extended parser
would build the abstract syntax tree that corresponds to the Java code it has
read. We expect two applications of the implementation of this extension of the
Java parser:

1. Translate some Java sources into the Scala language.

2. Compile the Java sources with the Scala compiler in the case of mixed
projects.

The translator works as follows. The improved Java source parser builds
the abstract syntax trees that correspond to the Java sources and then prints
these trees with the tree printer already present in the Scala compiler. The tree
printer prints the tree in the corresponding Scala code. Therefore this works as
a translator from Java to Scala.

To compile the Java sources with the Scala compiler, the parser produces the
abstract syntax trees and give them to the next phases of the compiler (namer,
type checker, generator) that checks that it is correct (according to the Scala

1Source: http://www.scala-lang.org/node/348

3

typing rules!) and generate the .class files. The advantage of this application is
to simplify the way to compile a mixed project. The procedure presented above
would be replaced by only one step: Submit all the Java/Scala sources to the
Scala compiler that generates the .class files.

4

Chapter 2

Previous work

Previously, we explained that the way to compile a mixed Java/Scala project
and that the Scala compiler has a Java source parser. This parser only parses the
declarations (classes, interfaces, enumerations, fields and methods) but skips all
the statements and the expressions. The declarations are necessary to compile
the Scala sources of the mixed project because the type checker must ensure that
the dependencies between the Java and the Scala sources are correct. Because
the Scala compiler does not compile the Java sources (this is the Java compiler’s
job), it does not need to have the method bodies and the initialisation expression
of the fields. This is the reason why the Java parser skips all these parts of the
code. Therefore it can not generate any .class files for the Java sources.

The work of translating the Java sources into Scala falls in two categories.
First some people have defined a set of correspondances between the Java ele-
ments and the Scala ones. This is the case of Emir Burak1 and A. Sundarara-
jan2. Unfortunately all the work must be done by hand because they only give
the way to translate this or that element from Java to Scala. Then some other
people have implemented a translator from Java to Scala: Scalafy3 and Jatran4.
These two translators build their own abstract syntax tree from the Java source
files. That means they have defined and optimised the tree to translate the
Java code into Scala. This is a main difference with our project because our
implementation of the parser builds an abstract syntax tree that is optimised
to compile the Scala code.

1http://lamp.epfl.ch/˜emir/bqbase/2005/01/21/java2scala.html
2http://blogs.sun.com/sundararajan/entry/scala for java programmers
3Author: Paul Philips

http://wiki.jvmlangsummit.com/Scalify and http://github.com/paulp/scalify/tree/master
4http://code.google.com/p/jatran/ and

http://eokyere.blogspot.com/2007/07/jatran-java-to-scala-and-actionscript.html

5

Chapter 3

Grammar and
correspondences

3.1 The Java grammar

The first step of this project is to get the Java grammar and analyse it. We use
the grammar provided by Sun in the Java specification third edition [1]. Because
we just have to add the parsing of the expressions and the statements, we only
treat these parts of the grammar (and the ones pointed from these parts). The
first part of the current chapter presents the elements of the grammar that have
been modified to simplify the implementation of a parser. The second part
explains which are the correspondences between the transformed grammar and
the Scala abstract syntax tree.

We can see the original grammar in appendix A and the grammar after the
transformations in appendix B.

3.1.1 Short if

The first element that can be changed is the “...If” and “...ShortIf” separate
rules. A copy of the relevant part of the grammar is given in the figure 3.1.1.
They are different for only one reason: In Java it is allowed to write:

i f (cond i t i on1)
i f (cond i t i on2)

statement1
else

statement2

In this case, the else corresponds to the inner if. The Java specification
defines that the else is related to the innermost if. The grammar is designed to
take care of this problem. The solution is two have two kind of nodes. The first
one can contain some short if (if-else without braces) in its substatements while
the second that can not. In the implementation of a parser, the fact that the
else is related to the innermost if is trivial to handle: when we see an if token,
we get the condition, the then statement and if we see an else we recover it and
link it to the current if. Hence if there is another if in the then statement that

6

is not surrounded by braces, it consumes the else part automatically. Therefore
we simply can remove the “...ShortIf” rules from the grammar.

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf
IfThenStatement:
if (Expression) Statement

StatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
AssertStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

Figure 3.1: Relevant part of the grammar about the short if rules

3.1.2 Infinite loop in the Primary rule

Another problem that appears in this grammar concerns the Primary, Field-
Access, MethodInvocation and ArrayAccess rules (see A. There is an infinite
loop with these rules that does not consume any token. These loops are used
to chain field accesses, method invocations and array accesses (ex: a.b[3].c(1,
2).d). To make them parsable we must modify the grammar.

The PrimaryNoNewArray rule (without FieldAccess, MethodInvocation and
ArrayAccess alternatives) contains the set of elements that can start an expres-
sion. Thus, we remove the FieldAccess, MethodInvocation and ArrayAccess
alternatives from the PrimaryNoNewArray rule. We adapt the Primary rule to
start with this updated PrimaryNoNewArray rule and continue with a new rule
(PrimaryRest) that consumes (and create the corresponding AST) the FieldAc-
cess, the MethodInvocation and the ArrayAccess rules.

Primary:
PrimaryNoNewArray
...

PrimaryNoNewArray:
... (other alternatives

not relevant here)
FieldAccess
MethodInvocation
ArrayAccess

FieldAccess:
Primary . Identifier
...

MethodInvocation:
...
Primary . NonWildTypeArgumentsopt
...

ArrayAccess:
...
PrimaryNoNewArray [Expression]

3.2 Correspondences with the Scala AST

In the next step the correspondences between the Java grammar rules (state-
ment and expressions in our case) and the Scala abstract syntax tree must be

7

formalised. Most of the grammar rules can can be translated directly but some
other are more tricky to translate. I presents these special cases in the next
subsections.

3.2.1 While and do-while statements

In the Scala abstract syntax tree, there is no single node that represents the
while statement and the do-while statement. They are represented in a more
complex manner. To build the while (resp. do-while) node, we use the labels.
The advantage of the labels is that we can jump to them. When we jump to a
label, the body of the label is executed. Thus a while is transformed into a label.
Its body is an if node that checks the condition of the while. If the condition
is true then we can execute the body of the original while (resp. do-while)
statement and, at the end, jump to the label to loop.

while (Express ion) Statement

is transformed by the parser in

whi le$1 () : // Labe l .
{

i f (Express ion) {
Statement
whi le$1 () //Jump to the l a b e l wh i l e$1 .

}
}

3.2.2 For loops

There exist two kind of for statement in Java:

1. The basic for statement:
’for’ ’(’ ForInitopt ’;’ Expressionopt ’;’ ForUpdateopt ’)’ Statement

2. The enhanced for statement:
’for’ ’(’ VariableModifiersopt Type Identifier ’:’ Expression ’)’ Statement

Scala does not have for loops. Thus the Java for loops are translated into
while loops. The first for statement (1) is transformed into:

For In i t
while (Express ion) {

Statement
ForUpdate

}

The translation of the second for statement (see 2) needs a some adjust-
ments. This syntax is a syntactic sugar to go through an iterable structure.
Thus we remove the sugar when building the abstract syntax tree. The result
of the translation is:

Java . u t i l . I t e r a t o r <Type> i t e r $ = Express ion . i t e r a t o r () ;
while (i t e r $. hasNext ()) {

8

Type I d e n t i f i e r = i t e r $. next () ;
Statement

}

where “Type”, “Identifier”, “Expression” and “Statement” are those present
in the grammar presented in the enumeration above (see 2).

3.2.3 Break and continue statements

The break statement and the continue statement do not exist in Scala. The
limitations inherent to these two statements are presented in Section 5.2.3. But
even if they do not exist in the Scala language, we can build an abstract syntax
tree for them because they are only jumps. The break statement jumps to the
end of the enclosing loop or switch while the continue statement jumps to the
next iteration of the directly enclosing loop. For the both statements we have
to be careful when we create the labels because we can only jump to labels
that enclose the jump. That means that a break that jumps to the end of the
enclosing loop or switch can not jump to an empty label placed immediately
after the loop.

The continue statement As explained in Section 3.2.1 a label is created for
the while, do-while and for (because it is translated into a while) statements.
Thus the continue statement can simply jump to this label in order to go to
the next iteration. This is correct for the while and the do-while statements
because they do not have a specific piece of code that update the variables.
In the for statement, before going to the next iteration we must execute the
update instructions. Therefore we can not simply jump to the first enclosing
defined label because the update would not be executed. Then we must place
these instructions before checking the condition of the loop. But it must not
be executed at the first execution of the loop. To solve the problem a boolean
variable is added and set to false as initial value. Then the update statements are
executed only if the previously defined variable is true. After the first iteration,
the variable is set to true and will not change until the end of the loop. An
example of such a transformation is provided in the following listing.

for (i n i t ; cond ; update)
body

is transformed into

bool f o r1var = fa l se ;
i n i t
f o r$1 () : // Labe l .
{

i f (f o r1var) {
update

}
f o r1var = true ;
i f (cond) {

body
fo r$1 () //Jump to the l a b e l for$1 .

}

9

}

But this additional code is only necessary if there is one (or more) continue
statement inside the body of the loop. Thus one easy optimisation, that consist
not generating the non necessary code if there is no continue in the loop’s body,
can be implemented.

The break statement The break statement is a statement that jumps to the
end of the enclosing loop (while, do-while or for) or switch. That means that
the loop does not take any further iteration. The way to do that is to jump
after the loop. Unfortunately, it is not so simple because we can not jump to a
label that is defined later in the code. For this reason we must create a abstract
syntax tree that is a little bit more complicated. We have to defined a boolean
variable that conditions the execution of the loop and is set to true. Then we
create a label and in the body of the label we check whether the variable is true
or not. If it is true we execute the loop else not. The break statement sets this
variable to false and then jump to the previously defined label. An example of
such a transformation is provided in the listing below.

while (cond) {
. . .
break ;
. . .

}

is transformed into

bool whi le1var = true ;
whi le$1 () : // Labe l .
{

i f (whi le1var) {
i f (cond) {

. . .
// These l i n e s are the t r a n s l a t i o n
// o f the break i n s t r u c t i o n .
whi le1var = fa l se ;
whi le$1 () ; //Jump to the l a b e l wh i l e$1 .
. . .

}
}

}

As for the continue statement, all of the added code around the loop is
necessary only if there is a break in the loop’s body. If there is no break, we
can easily not generate all these elements.

10

Chapter 4

Implementation

After these transformations the grammar is parsable and we have defined the
correspondences between the rules of the grammar and the Scala compiler’s
abstract syntax tree. It is time to implement it. Most of the parser was easy
to implement but some small elements have creating major problems. They are
presented in this chapter and the solution we have found for them.

4.1 Comparison and cast

One major issue that we encounter when we want to write a Java parser is: How
to differentiate between a cast and a comparison. Lets just present an example:

(A)a

If the parser produces the left-most derivation of the input, it thinks that it is
a parenthesised expression. This expression starts with a comparison (less than)
between A and B that produces a node of the abstract syntax tree BinOp(A,
“<”, B). Then the parser sees the greater than operator and produces an error
because there is no right hand side in the comparison. Therefore the parser
must produce the right-most derivation (LR) of the input, i.e. the derivation
that consumes the longest sequence of tokens. Writing an LR parser is not so
easy because we have to see a non-determined sequence of tokens before being
able to make a decision.

There are two possibilities to write a parser that handles this case:

1. Not really consume the tokens and then we have the possibility to return
back in the input to try another rule.

2. Build the two possible trees (cast and comparison) until the moment we
can make the decision.

The first solution consists in having a list of tokens. When we are in this
special case where we have to make a difference between a comparison and a
cast, we add the read tokens in the list instead of forgetting them. If the current
checked rule (cast for example) is correct, we clear the list, else we try the other
case with as next token, the first token of the built list. The second solution
is much easier to implement because we do not have to build a list and adapt

11

the nextToken method. It requires only to build two trees and throw away the
wrong solution. This is the solution we have implemented in our Java parser.

4.2 Field access, method invocation and types

The FieldAccess, the MethodInvocation and the Type rules in the grammar are
very similar. We must read a sequence of tokens (instead of one) to make the
difference between these three rules. There are many locations in the grammar
where we have to make this difference. Instead of copy-pasting the code, we
put the treatment in a dedicated method. It returns the built tree and some
booleans (three) that indicates if the element is:

1. A field

2. A method

3. A type

4. Do not know

There is some case where the parser does not know which element we have.

A. b . c

Is it a type, or a field access? The programmer knows what he has wrote but
the parser can not make a difference by only looking at this five tokens. The
difference is made further in the calling rule, i.e. the rule that calls this dedicated
method for the treatment of these three rules (FieldAccess, MethodInvocation
and Type). The calling rule knows when reading the next tokens if it was a type
of a field access. Thus the method that parse the code “A.b.c” returns that it
does not know what it returns and let the calling rule choose in what case it is.

4.3 Break and continue statement

In Section 3.2.3 we explained how we translate the break and the continue
statements in an abstract syntax tree node. We also explained in Sections 3.2.1
and 3.2.2 that the for, while and do-while statements are transformed in a label
node. Thus we simply have to jump to the first enclosing loop. To do that we
must build a stack of the loops in which we are. Each time we see a loop we
push on the stack the name of the corresponding label. Thus, when we parse a
break or a continue statement, we can get the element on top of the stack and
jump to it. The last element that must be taken into account is that a break
can be present in a switch statement but not a continue. Therefore, we add a
label when we see a switch as for the other loops. During parsing the rest of the
code, if the current statement is a continue statement, we check whether the
last added label corresponds to a switch or not. If so, we get the first previously
added label.

We can do a optimisation that makes the abstract syntax tree more simpler.
As explained in Section 3.2.3, some elements must be added around the loops
to be able to treat correctly the break and the continue statements. But all
of this is not necessary if we do not see any of these two statements. Thus we

12

add two other stacks of booleans, one for the break and one for the continue.
When we enter a new loop we push “false” on the top of the two stacks. These
elements are set to true if and only if there is one (or more) break and one (or
more) continue in the direct body of the loop and not in a sub-loop. At the end
of the parsing of the loop, the tree is created. At that time the top element of
the two stacks are popped and if they are both “false”, the additional elements
needed to handle the break and the continue statement are not added to the
abstract syntax tree.

4.4 Binary expressions

The treatment of the binary expressions is the same than the one in the Scala
parser of this compiler. It keeps a stack of the previous binary expressions.
When it sees a new one, it pushes it on the stack and try to reduce the stack. The
reduction takes care of the precedence of the operators. That means that the
reduction collapse only the previous binary operations that have a precedence
bigger than the current one. A list of the precedences is given in the following
table.

Operators Precedence
assignment operator 0

text 1
”||” 2

”&&” 3
”|” 4
”ˆ” 5
”&” 6

”==”, ”!” 7
”<”, ”>”, ”<=”, ”>=” 8
”<<”, ”>>”, ”>>>” 9

”+”, ”−” 10
”∗, ”/”, ”%” 11

others 12

Table 4.1: Table of the precedences of the different operators

13

Chapter 5

Limitations

Unfortunately we are not able to translate in Scala or compile with the Scala
compiler every Java program. This comes from two elements. First we are
building a Scala abstract syntax tree from the Java code. This tree is designed to
compile the code and not to translate it. That means that some elements do not
have their exact corresponding node in the tree. These elements are transformed
into something more complex. Then there is some differences between the Java
and the Scala languages which lead to Java programs with elements that can
not (in a reasonable manner) be translated in Scala.

5.1 Limitations for both translation and compi-
lation

There is some problems that limit both the translation from Java to Scala and
the compilation of the Java sources by the Scala compiler.

5.1.1 Override

In Scala, when a method in class A (that extends B) overrides a method defined
in class B, the keyword “override” must be present in front of the method
definition. This keyword indicates to the compiler that this method overrides
a method from a superclass. In Java, this keyword does not exist. We can
override methods without indicating anything to the compiler.

If we want to compile any Java code that contains some overriding methods,
we need to set the “OVERRIDE” flag of the method node in the tree. In the
Scala compiler, this is the namer phase which binds the classes, the interfaces,
the methods etc. to each other. Therefore, during the parser phase, we are not
able to define if a method is overriding another or not. Thus we can not add
the flag at this point. The problem is also present if we want to translate the
Java code into the Scala language. If we want to produce a fully correct Scala
code we need to write the keyword “override” but at this phase (parser) we do
not know if it must be present or not.

One way to solve this problem (for compiling the Java files) would be to
modify the type checker phase. First, during the parser phase, we build an
abstract syntax tree of the methods that contains a Modifier field. This field is

14

composed with the explicit modifiers of the method in the file (public, private,
static, etc.) but if it comes from a Java file, it also has the flag “JAVA”. Then
the element “CompilationUnit” that contains the tree for one file of code (Java
or Scala) knows if it comes from a Java or a Scala file. That means that when
we type check this CompilationUnit and therefore the overriding method, the
compiler can know whether it comes from a Java file. If so, and if the method
is overriding another one in a superclass, it could add the flag “OVERRIDE”
or simply not checking if it is present or not.

5.1.2 Constructors

The Scala language has some constraints about the constructors.

• There can be only one primary constructor.

• Only the primary constructor can call a constructor from the superclass.

• All additional constructors must call as their first statement a previously
defined constructor.

This is very different with the Java constructors. In Java, as the first state-
ment we can: call another constructor of the same class (that can be declared
later), call a superclass’s constructor or call nothing (call to the default con-
structor of the superclass is inserted). The best way to illustrate the problem is
a concrete example.

class A {
public A() { . . . }
public A(int b) { . . . }

}
class B extends A {

public B() { super () ; . . . }
public B(int b) { super (b) ; . . . }

}

Figure 5.1: Source: http://www.nabble.com/-scala–the-winding-road-to-java-
constructor-semantics-td18658789.html

In this example we can easily see the problem if we want to translate this
code into the Scala language: Which of the constructors of A (resp. B) is
the primary constructor? If we want to compile this code, the problem is the
same: How build the tree such that only one constructor calls a constructor of
the superclass and all other constructor (that must be defined later) call this
primary constructor?

This is a major problem in the context of this project that has not only
one possible solution. One solution could be to add an artificial constructor
that takes one argument for each field of the class. This constructor calls the
primary constructor of the superclass (that could either be built by the same way
or already written by the programmer) and initialise all the fields of this class.
Then insert a call to the previously created constructor as the first statement of
each additional constructor. The problem (as for the override problem) is that

15

we need to analyse the tree to do such constructions. We need to know the list
of all fields of the class, which class is the superclass (link to its tree node) and
which constructor of the superclass is the primary. All these elements are not
available in the parser phase. Once again we would need an additional phase
immediately after the Java parser phase that would handle this problem.

The verification of the rules defined above is the Scala parser’s job. Thus, the
further phases do not check it any more. Therefore if the Java parser build an
abstract syntax tree from a class that contains more than one constructor and
some of them call a superclass’s constructor, then it can give it to the further
phases. Unfortunately, these further phases do not expect to receive such a tree
and we can not ensure that the generated code is correct or not.

5.2 Translate Java programs into Scala language

As explained in the introduction of this chapter, we are constrained by the way
we choose to translate the Java code into the Scala language. We use a tree to
represent the program that is built and optimised to compile (and produce class
files of) Scala source files. That means that much syntactic sugar is removed
at the parser phase of the compiler. Thus if we want to write the program
represented by the tree using a pretty printer, we have the code with some
elements that are transformed in a much more complex block and without the
syntactic sugars.

5.2.1 While, do-while statements

A good example for the current problem is the while statement. As explained
in Section 3.2.1, the while statement is transformed in a complex node of the
abstract syntax tree. The limitation of a do-while is exactly the same. We recall
the transformation for a while:

while (cond) body

is transformed in

whi le$1 () : // Labe l .
{

i f (cond) {
body
whi le$1 () //Jump to the l a b e l wh i l e$1 .

}
}

The second code is not a valid Scala code because the labels (¨while$1¨ in
the example) are not allowed in Scala. We use the same argument for the do-
while statement. One solution would be to adapt the pretty printer present in
the compiler to handle these cases. But they are complex cases and they could
become even more complex if there is some break and continue statements (see
Section 3.2.3) in their bodies. Another solution is to create some intermediate
tree nodes for the abstract syntax tree. These nodes (called While and DoWhile)
would be valid only in the Java parser phase, the pretty printer and an additional
phase that would remove them. Because the pretty-printer would handle them,

16

it could print correctly any while and do-while statements in Scala. However,
with this solution, we create temporarily an invalid abstract syntax tree. It is
invalid because it contains some nodes that are not accepted by the other phases
of the compiler.

5.2.2 For statement

Another example is the for statement. It is transformed (explained in Section
3.2.2) in a while that is itself transformed in a complex node (explained in
Section 3.2.1). That means that the abstract syntax tree (built during the parser
phase) is completely different from the original code (but behaves exactly the
same). If the tree is printed using the tree-printer present in the compiler, all
the complex nodes are printed even if some elements do not exists in Scala (see
Section 5.2.1. We could use the solution presented in Section 5.2.1 for the while
and the do-while statements: Adding a temporary while node that could be
printed correctly by the tree-printer, the for loop would be transformed into a
while loop.

5.2.3 Break and continue statements

The break and the continue statements do not exist in Scala. The solution to
compile these two statements is to transform them into a jump to a label placed
around the loop we want to continue (resp. break). Unfortunately the labels
are not allowed in the Scala files. Therefore the resulting code of the translation
is not correct in Scala.

5.3 Compiling Java source files

5.3.1 Type checker

The type checker present in the Scala compiler makes some assumptions about
the abstract syntax tree it receives. These assumptions are correct for a Scala
AST because all the previous phases execute all their steps when compiling a
Scala source file. This does not hold in the case of the compilation of a Java
source file. Indeed the namer phase skips some steps for the Java code and not
for a Scala code. It implies that some elements are not added in the AST but
the type checker needs them. If they are not present, it generates an error and
prevents the rest of the compilation phases from executing. One example of
this problem is a field declaration in a class. In Java, the getter and the setter
for this field are not necessary. Therefore the namer phase does not add them
automatically for Java code but does it for Scala code. Thus the type checker
assumes that all the fields have a getter and a setter but it assumes this in all
cases and not only in the case of a Scala code. When it receives a Java code, it
checks whether the AST contains the getters and the setters for all fields and
it finds that they have not. If we want to be able to compile every Java source
file into Scala, the namer and the type checker need to be modified to be able
to compile the Java code.

17

Chapter 6

Future work

One way to simplify the Java parser is to add some new temporary nodes in the
Scala abstract syntax tree. These nodes would only be present in the Java parser
and printed by the pretty printer. In the Java parser, they would represent
some elements that have a special meaning in Java but not in Scala as array
access for example. If we also add nodes for while and do-while statements, the
pretty printer would be able to produce more correct Scala code. These nodes
could be removed by an additional phase in the compiler that would be added
immediately after the Java parser phase.

As presented in Sections 5.1.1 and 5.1.2 some problems need an additional
phase to be solved. Adding these two phases for the problem of override and
the one for the constructors would give the possibility to the Scala compiler
to translate a larger set of Java source files. Without these phases we are
very limited about the elements we can translate because the constructors and
the overriding of methods are two notions very important in object oriented
programming.

The last element we suggest to do is to adapt the namer and the type checker
phase in order to being able to compile correctly a Java code. They are defined
to name and type check the Scala code but if we want to add the possibility to
mix some Java and Scala source files in the same project and compile all of them
with the same compiler, it must be able to do it correctly for both languages.

The only elements of the Java grammar that are not handled by this parser
are the annotations. They are not necessary to parse and compile the Java code
but they could be useful. For example: if the programmer add the @override
annotation for a method, this would permit to set the OVERRIDE flag in the
modifiers of the method node. Thus the code could be compiled without any
modifications of the namer or the type checker. But it would be useful only if
the programmer writes correctly and every time it is necessary.

18

Bibliography

[1] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley
Professional, 2005.

19

Appendix A

Original Java grammar

A.1 Expressions

ConstantExpression:
Expression

Expression:
AssignmentExpression

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator

AssignmentExpression

LeftHandSide:
ExpressionName
FieldAccess
ArrayAccess

AssignmentOperator: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
Type . class
void . class
this
ClassName.this
(Expression)
ClassInstanceCreationExpression
FieldAccess
MethodInvocation
ArrayAccess

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

ClassInstanceCreationExpression:
new TypeArgumentsopt ClassOrInterfaceType

(ArgumentListopt) ClassBodyopt
Primary. new TypeArgumentsopt Identifier

TypeArgumentsopt (ArgumentListopt)
ClassBodyopt

ArgumentList:
Expression
ArgumentList , Expression

ArrayCreationExpression:
new PrimitiveType DimExprs Dimsopt
new ClassOrInterfaceType DimExprs Dimsopt
new PrimitiveType Dims ArrayInitializer
new ClassOrInterfaceType Dims ArrayInitializer

DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[Expression]

Dims:
[]
Dims []

FieldAccess:
Primary . Identifier
super . Identifier
ClassName .super . Identifier

MethodInvocation:
MethodName (ArgumentListopt)
Primary . NonWildTypeArgumentsopt

Identifier (ArgumentListopt)
super . NonWildTypeArgumentsopt

Identifier (ArgumentListopt)
ClassName . super . NonWildTypeArgumentsopt

Identifier (ArgumentListopt)
TypeName . NonWildTypeArguments

Identifier (ArgumentListopt)

ArgumentList:
Expression
ArgumentList , Expression

ArrayAccess:
ExpressionName [Expression]
PrimaryNoNewArray [Expression]

20

PostfixExpression:
Primary
ExpressionName
PostIncrementExpression
PostDecrementExpression

PostIncrementExpression:
PostfixExpression ++

PostDecrementExpression:
PostfixExpression --

UnaryExpression:
PreIncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression

UnaryExpressionNotPlusMinus

PreIncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
! UnaryExpression
CastExpression

CastExpression:
(PrimitiveType Dimsopt)

UnaryExpression
(ReferenceType)

UnaryExpressionNotPlusMinus

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression +

MultiplicativeExpression
AdditiveExpression -

MultiplicativeExpression

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ReferenceType

EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression :

ConditionalExpression

A.2 Statements

Block:
{ BlockStatementsopt }

BlockStatements:
BlockStatement
BlockStatements BlockStatement

BlockStatement:
LocalVariableDeclarationStatement
ClassDeclaration
Statement

LocalVariableDeclarationStatement:
LocalVariableDeclaration ;

LocalVariableDeclaration:
VariableModifiers Type VariableDeclarators

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

VariableInitializer:
Expression
ArrayInitializer

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

21

StatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
AssertStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf
IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf

else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf

else StatementNoShortIf

EmptyStatement:
;

LabeledStatement:
Identifier : Statement

LabeledStatementNoShortIf:
Identifier : StatementNoShortIf

ExpressionStatement:
StatementExpression ;

StatementExpression:
Assignment
PreIncrementExpression
PreDecrementExpression
PostIncrementExpression
PostDecrementExpression
MethodInvocation
ClassInstanceCreationExpression

AssertStatement:
assert Expression1 ;
assert Expression1 : Expression2 ;

SwitchStatement:
switch (Expression) SwitchBlock

SwitchBlock:
{ SwitchBlockStatementGroupsopt

SwitchLabelsopt }

SwitchBlockStatementGroups:
SwitchBlockStatementGroup
SwitchBlockStatementGroups

SwitchBlockStatementGroup

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel
SwitchLabels SwitchLabel

SwitchLabel:
case ConstantExpression :
case EnumConstantName :
default :

EnumConstantName:
Identifier

WhileStatement:
while (Expression) Statement

WhileStatementNoShortIf:
while (Expression) StatementNoShortIf

DoStatement:
do Statement while (Expression) ;

ForStatement:
BasicForStatement
EnhancedForStatement

BasicForStatement:
for (ForInitopt ;

Expressionopt ;
ForUpdateopt) Statement

ForStatementNoShortIf:
for (ForInitopt ;

Expressionopt ;
ForUpdateopt) StatementNoShortIf

ForInit:
StatementExpressionList
LocalVariableDeclaration

ForUpdate:
StatementExpressionList

StatementExpressionList:
StatementExpression
StatementExpressionList , StatementExpression

EnhancedForStatement:
for (VariableModifiersopt Type Identifier:

Expression) Statement

BreakStatement:
break Identifieropt ;

ContinueStatement:
continue Identifieropt ;

ReturnStatement:
return Expressionopt ;

ThrowStatement:
throw Expression ;

SynchronizedStatement:
synchronized (Expression) Block

TryStatement:
try Block Catches
try Block Catches1opt Finally

%

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch (FormalParameter) Block

Finally:
finally Block

FormalParameter:
VariableModifiers Type VariableDeclaratorId

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

22

Appendix B

Transformed Java grammar

To simplify the grammar some new symbols are used:

• {} is the repetition. At least zero time.

• [] is the option. Zero or one time.

• () is the alternative. Exactly one of the alternatives.

The transformations are present to remove the infinite loops present in the
grammar (see Section 3.1.2) and to simplify the work to write the parser. But
we did not transform the fact that some elements have to consume a sequence
of tokens before taking a decision. We explain it in Sections 4.1 and 4.2.

B.1 Expressions

Primary:
PrimaryNoNewArray [PrimaryRest]
ArrayCreationExpression

{ ’.’ Identifier
[’(’ [ArgumentList] ’)’] }

ClassInstanceCreationExpression
[PrimaryRest]

PrimaryRest:
{ (’.’ Identifier [’(’ [ArgumentList] ’)’]

| ’[’ Expression ’]’) }

PrimaryNoNewArray:
Literal
’void’ ’.’ ’class’
’this’
’(’ Expression ’)’
’super’ . Identifier

[’(’ [ArgumentList] ’)’]
Identifier {’.’ Identifier} ’.’ ’this’
Identifier {’.’ Identifier}

[’(’ [ArgumentList] ’)’]
Identifier {’.’ Identifier} ’.’ ’super’

’.’ Ident [’(’ [ArgumentList] ’)’]
Identifier {’.’ Identifier} {’[’ ’]’}

’.’ ’class’

ArgumentList:
Expression { ’,’ Expression }

PostfixExpression:
Primary
PostfixExpression ’++’
PostfixExpression ’--’

UnaryExpression:
’++’ UnaryExpression
’--’ UnaryExpression
’+’ UnaryExpression
’-’ UnaryExpression
UnaryExpressionNotPlusMinus

UnaryExpressionNotPlusMinus:
PostfixExpression
’~’ UnaryExpression
’!’ UnaryExpression
CastExpression

CastExpression:
’(’ PrimitiveType ’[’Dims’]’ ’)’

UnaryExpression
’(’ ReferenceType ’)’

UnaryExpressionNotPlusMinus

MultiplicativeExpression:
UnaryExpression

{ (’*’ | ’/’ | ’%’) UnaryExpression }

AdditiveExpression:
MultiplicativeExpression

{ (’+’ | ’-’) MultiplicativeExpression }

23

ShiftExpression:
AdditiveExpression

{ (’<<’ | ’>>’ | ’>>>’)
AdditiveExpression }

RelationalExpression:
ShiftExpression

{ (’<’ | ’>’ | ’<=’ | ’>=’)
ShiftExpression }

ShiftExpression ’instanceOf’ ReferenceType

EqualityExpression:
RelationalExpression

{ (’==’ | ’!=’)
RelationalExpression }

AndExpression:
EqualityExpression

{ ’&’ EqualityExpression }

ExclusiveOrExpression:
AndExpression { ’^’ AndExpression }

InclusiveOrExpression:
ExclusiveOrExpression

{ ’|’ ExclusiveOrExpression }

ConditionalAndExpression:
InclusiveOrExpression

{ ’&&’ InclusiveOrExpression }

ConditionalOrExpression:
ConditionalAndExpression

{ ’||’ ConditionalAndExpression }

ConditionalExpression
ConditionalOrExpression

[’?’ Expression ’:’ ConditionalOrExpression]

B.2 Statements

No transformations have been done in this part of the grammar.

24

