
Using Recurrent Neural Networks for joint compound splitting and Sandhi
resolution in Sanskrit

Oliver Hellwig

University of Düsseldorf, Düsseldorf, Germany

Abstract
The paper describes a novel approach that performs joint splitting of compounds and of Sandhis in Sanskrit texts. Sanskrit is a strongly
compounding, morphologically and phonetically complex Indo-Aryan language. The interacting levels of its linguistic processes com-
plicate the computer based analysis of its corpus. The paper proposes an algorithm that is able to resolve Sanskrit compounds and
“phonetically merged” (sandhied) words using only gold transcripts of correct string splits, but no further lexical or morphological re-
sources. In this way, it may also prove to be useful for other Indo-Aryan languages, for which no or only limited digital resources are
available.

1. Introduction
Sanskrit, an Old Indo-Aryan language, whose first texts

date back to around 1.500 BCE, has produced one of the
most voluminous text corpora in the world. There are two
principal layers of Sanskrit. The earlier Vedic layer, which
has been created between 1.500 and the middle of the first
millenium BCE, may have preserved a spoken form of
Sanskrit, at least in its oldest strata (Witzel, 1995). Clas-
sical Sanskrit, which is the topic of this paper, is a literary
language that is largely regulated by the famous grammar
of Pān. ini. Its literary production extends from the end of
the Vedic period until the present day, its current use being
confined to literary and scientific circles.

Although Sanskrit texts are the primary sources for un-
derstanding the cultural and political history of premodern
India, there exist comparatively few tools and resources
that provide easy access to its text corpus and its underly-
ing structures. The paper aims at contributing a method
that facilitates the automatic analysis of digital Sanskrit
corpora, especially for researchers from the Humanities,
and that can be easily applied to the large, though widely
unexplored corpora of Middle and early New Indo-Aryan
languages (Prākrits, Old Hindi and Marathi, the language
of Nepalese royal edicts, etc.), which share some basic lin-
guistic peculiarities with Sanskrit.

Sanskrit shows a number of linguistic phenomena that
complicate its automatic analysis, including a very volu-
minous vocabulary, which was assembled and expanded
over a period of more than 3.000 years, a rich morphol-
ogy, a weakly regulated word order, and an extremely lib-
eral orthography that permits considerable variations in
spelling and word separation. Most demanding from a
computational perspective, however, are the euphonical
rules called Sandhi (“connection”), which were first for-
malized by Pān. ini, and the very productive compound for-
mation.

1.1. Sandhi
Most Sandhi rules combine two adjacent phonemes

into one or two other phonemes to facilitate the pronoun-
ciation of a string. They are applied while deriving an in-
flected form from its root (inner-word Sandhi), and while
combining multiple inflected words into the final sentence

(inter-word Sandhi). As the presented algorithm aims at
splitting sentences and compounds into un-sandhied word
forms, it deals only with the second type of Sandhi rules.

As an example for inter-word Sandhi, consider the
string gardabhaścāśvaśca (“the ass and the horse”), which
contains three Sandhis. The phonetic sequences śc are cre-
ated by combining word final h. with word initial c. The
long ā is the combination of a word final short a and a
word initial short a. Sandhi can be resolved as follows:

gardabhaścāśvaśca
gardabha(h. -c)(a-a)śva(h. -c)a
gardabhah. ca aśvah. ca
“the ass and the horse and”

It is important to keep in mind that the application of
Sandhi rules is strictly deterministic, i.e. there is only one
acceptable output for a given combination of phonemes,
and that these rules must be applied.1 Analysis of Sand-
his, however, does not need to be deterministic. The long
ā in the sample string may have been derived from one of
the four combinations (a-a), (a-ā), (ā-a), or (ā-ā) (Sandhi
and compound split in all cases), it may be the terminat-
ing vowel of a feminine noun on ā (no Sandhi, but a com-
pound split), or it may belong to the stem of a lexeme (nei-
ther Sandhi nor compounding). Which of these six solu-
tions should be chosen, depends on the lexical and seman-
tic context. The short string hāhākārāh. (“the exclamations
‘hāhā”’), for example, produces 54 = 625 possible splits
using only this set of Sandhi rules, and a substantial num-
ber of these splits can be resolved into morphologically and
lexically valid substrings.

It should be apparent that learning and applying Sandhi
rules cannot proceed mechanically, but requires lexical and
semantic context information. So, the rule (t-j) → (j-j) is
used correctly for tajjalam (ta(t-j)alam, “this water”), be-
cause the resulting split is lexically and semantically mean-
ingful. The string kajjalam, however, should not be split by
this rule, because the resulting solution ka(t-j)alam (*“how
many water?”) makes sense from a purely lexical, but not
from a semantic perspective. Instead, the analyzer should
leave this string unchanged (lexeme kajjala, “lampblack”,
nom./acc./voc. sg. neutre).

1Epic texts, for instance, frequently do not adhere strictly and
consistently to these rules (Oberlies, 2003).

observed u t t a m ā dh a m a m a dh y ā n ā m.
target u t t a m a-a dh a m a m a- dh y ā n ā m

Table 1: Desired output for the string ut-
tamādhamamadhyānām. . Bold letters mark differences
between observed and target sequences. Output units
containing a hyphen (-) indicate that the string should
be split at this position; output of the form x-y indicates
Sandhi rules to be learned.

1.2. Compound formation
Sanskrit grammar distinguishes three main types of

compounds. dvandvas (“pairs”) are n-ary compounds list-
ing a set of coordinate members (aśvāvyus. t.rāh. = aśva-
avi-us. t.rāh. , “horses, sheep, and camels”). tatpurus. as (“his
man”) indicate a relation between the governing first and
the subordinate second member. bahuvrı̄his (“(one who
has) much rice”) describe the possessed argument in a pos-
sessive relation. This compound type may refer to an-
other noun that denotes the possessor. While dvandvas
and tatpurus. as grammatically remain nouns, bahuvrı̄his
inflect like the external possessing argument and can,
therefore, be interpreted as adjectives. All Sandhi rules
that are operational when combining two independent
strings are also applied during compound formation. Be-
cause compound formation is recursive, any compound
can be composed with another word or compound into
a new, more complex compound; as, for instance, in
((aśvāvyus. t.ra)dvandva-darśanam)tatpurus. a (“visual perception of
horses, sheep, and camels”).

Apart from the fact that the number of possible Sandhi
and compound splits most often increases exponentially
with the string length, any decompounding algorithm will
also have to deal with lexicalized compounds recorded
in the dictionary. The string mahāratnāni, for instance,
should be split as mahā-ratnāni (“big jewels”) in most con-
texts. Gemmological texts, however, know mahāratna as a
technical term for a class of precious jewels, so the string
should not be split in this domain.

1.3. Contribution
The overall aim of the learning algorithm is to (1) split

compounds at the correct positions, (2) resolve Sandhi,
if it has occurred, and (3) produce the Sandhi rules ac-
cording to the definitions in Section 3. that were operative
when forming the current string. As an example, Table 1
shows the observed input sequence and the desired output
for the string uttamādhamamadhyānām. (“of the highest,
middle, and lowest”, gen. pl. masc./fem./neuter).2 The
correct decomposed and unsandhied form of this string
is uttama-adhama-madhyānām, and the classifier should
learn to produce this result.

The rest of the paper is organized as follows. Section 2.
gives a short overview of current NLP related methods for
processing Classical Sanskrit. Section 3. describes which
data are used and how they are encoded for the learning

2Aspirates such as dh and diphthongs (ai, au) are single
phonemes in Sanskrit and are, thus, interpreted as one phonetic
unit.

task. Section 4. describes the neural network used for com-
pound and Sandhi splitting. Results for different learning
scenarios are reported in Section 5. Section 6. summarizes
the paper.

2. Related research
A formal description of Sanskrit was first undertaken

by the grammarian Pān. ini, who probably lived around 350
BCE in Northwestern India (Cardona, 1976). His gram-
mar As.t.ādhyāyı̄ (“eight [as. t.an] chapters [adhyāya]”) de-
scribes the late Vedic level of Sanskrit by applying con-
cepts such as thematic roles, rewrite rules, abstract deriva-
tion levels, and phonemes (Kiparsky, 2009). Pān. ini’s sem-
inal work was continued and refined during the following
millenia in works such as the Mahābhās.ya (150 BCE) or
the Siddhāntakaumudı̄ (16. c. CE) (Scharfe, 1977).

Many modern approaches to the NLP of Sanskrit try to
make use of the Pān. inian system. Mishra reformulates the
rules of the As.t.ādhyāyı̄ using ideas from set theory to build
a generator for valid Sanskrit forms (Mishra, 2009). Huet
(Huet, 2005) and Kulkarni (Kulkarni and Shukla, 2009)
combine formal methods from the As.t.ādhyāyı̄ with a sta-
tistical scorer for the analysis of Sanskrit. Mittal reports
92.8% split accuracy in Sandhi resolution by combining an
FSA trained on a parallel corpus of sandhied and unsand-
hied texts with lexical frequencies and a morphological an-
alyzer (Mittal, 2010). Hellwig applies a Sandhi rule base,
a morphological analyzer, and a language model estimated
from a corpus to generate lexical and morphological anal-
yses of unrestricted Sanskrit text (Hellwig, 2009; Hellwig,
2015).

This paper interprets Sandhi and compound resolution
as a sequence labeling task. Sequence labeling is an impor-
tant topic in the machine learning community, and algo-
rithms proposed for this task include, among others, Hid-
den Markov Models (HMM), Conditional Random Fields
(CRF) (Lafferty et al., 2001), and Recurrent Neural Net-
works (RNN, e.g., simple Elman networks (Elman, 1990)).
While the context of HMMs and CRFs is restricted to few
(mostly not more than 3) positions to the left of the input
symbol, RNNs are in theory able to capture much larger
ranges. This property makes them natural candidates for
the present task, because Section 1. has shown that the cor-
rect resolution of compounds and Sandhis depends on the
lexical and semantic neighbourhood of a phoneme, which
extends further than a few characters in most cases. Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) neural cells have been shown to be numeri-
cally more stable than “normal” neural network cells used
in RNNs, and they have demonstrated their ability to un-
derstand context-sensitive languages (Gers and Schmidhu-
ber, 2001). Recent research in Computational Linguistics
strongly relies on recurrent and deep neural architectures to
learn, for instance, the compositional meaning of German
compound phrases (Dima and Hinrichs, 2015) or to derive
word and morpheme embeddings in the same training pro-
cess (Qiu et al., 2014). Complex neural architectures are
also applied to learn features located on the sentence level
from character sequences (Santos and Zadrozny, 2014).

3. Data
The training data are extracted from the corpus of San-

skritTagger (Hellwig, 2009). Because Sandhi information
is not stored permanently in the database of this corpus,
each sentence in the corpus is re-analyzed, and the Sandhi
information is extracted from the analysis that matches
the gold analysis of the respective sentence stored in the
database. Next, each string is split into its phonemes p (ob-
served sequence), and each phoneme is associated with the
desired type of transformation rule (target sequence). The
full data set consists of 2.591.000 phoneme sequences.

For this paper, the Pān. inian prescriptions for inter-word
Sandhi are reduced to five rule types R1−5. This distinc-
tion is based on two criteria: (1) Does the phoneme change
from the observed to the target sequence? (2) Is a word
or compound split inserted into the target sequence? In
addition, the paper distinguishes between two classes of
Sandhi rules, which do not coincide with the Pān. inian clas-
sification of Sandhi rules (Wackernagel, 1978, I, 301ff.). If
the result of applying a Sandhi rule is a single vowel, this
Sandhi type is called vocalic Sandhi in this paper. All other
Sandhi types are called non-vocalic Sandhis.

1. p→ p (R1): Leave the observed phoneme unchanged;
example: varāhah. (“boar”): ā→ ā, result: varāhah. .

2. p→ a-b (R2): Undo a vocalic Sandhi, and add a com-
pound split (hyphen, -) between its two phonemes a
and b; example: caiva (“and indeed”; refer to Foot-
note 2): ai→ a-e, resulting split string: ca-eva.

3. p → p- (R3): Leave p unchanged, and add a com-
pound split; example: mahāgirih. (“high mountain”):
ā→ ā-, result: mahā-girih. .

4. p→ a- (R4): Apply a non-vocalic Sandhi, and add a
compound split; example: aśvaśca (“and the horse”):
h. → ś-, result: aśvah. -ca. – Non-vocalic Sandhi rules
depend on the directly following observed phoneme.
Therefore, h. is transformed into ś only if the next
phoneme is an voiceless palatal. This kind of con-
textual information is not encoded in the training data
for two reasons. First, the classifier should learn to
infer the rules from the context - that’s why a bidirec-
tional recurrent neural network is used as the learning
algorithm. Second, lexemes such as āścarya (“won-
der”) contain the sequence śc, but should not be split
at this point. Omitting the explicit formulation of con-
text rules is therefore intended to keep the algorithm
as “unprejudiced” as possible.

5. p→ a (R5): Apply a Sandhi; example: ratnam. (“the
jewel”): m. →m, result: ratnam. – Because the string-
final Sandhi depends on the first phoneme p1next of
the following string, p1next is added to the observed
sequence. The target of p1next is set to the dummy
class BOW in this case. All phonemes with the gold
annotation BOW are ignored in the final evaluation,
while any silver BOW annotations that are not found
at the end of a sequence are counted as false nega-
tives. If the start of the next string is, for instance, the

R1 R2 R3 R4 R5

90.96 1.49 2.62 0.88 4.05

Table 2: Percentual proportions of Sandhi rules R1-R5 in
the data

Length Proportion |R|/string
≤ 5 33.89 0.0317
≤ 10 45.89 0.2174
≤ 15 13.7 0.9373
≤ 20 4.75 1.9707
≤ 40 1.7 3.3038
> 40 0.06 6.9375

Table 3: Composition of the full data set: String length
classes, their proportion in the dataset in percent, and the
average number of transformation rules Ri per string

consonant c, training data for this instance will look
like this:

observed r a t n a m. c︸︷︷︸
p1next

target r a t n a m BOW

Some non-vocalic Sandhis (e.g., (n-c) → (m. ś-c)) replace
a single phoneme (n) by multiple phonemes (m. and ś).
To keep the format of the data consistent, “superflu-
ous” phonemes of the observed sequence are marked as
deletable (x) in this case:

observed t ā m. ś c a g
target t ā x n c a BOW

Internally, this deletion is interpreted as an instance of R5.
Table 2 describes the composition of the full data set in

terms of Sandhi types, grouped by the count of phonemes
in the observed sequences. The table shows that Sandhi
and compounding are frequent phenomena, as about 1 of
10 phonemes is subjected to one of the transformation
rules. As could be expected, the frequency of the trans-
formations increases with the length of strings (Table 3).

4. Algorithm
A Recurrent Neural Network is used for the labeling

task. The network consists of an input layer, a hidden for-
ward and backward layer (Schuster and Paliwal, 1997), and
an output layer. At time step t, the input layer receives the
phoneme observed at position t in a string in 1-of-n encod-
ing. The size of the input layer is, therefore, identical with
the number of distinct input phonemes. The output layer
contains as many units as there are target classes in the cur-
rent learning problem. Because sample size is varied sys-
tematically to study its influence on the labeling accuracy
(refer to Table 7), and smaller samples may not contain all
types of rules, the size of the output layer varies between
120 classes for 10.000 samples and 155 classes for the full
data set. The forward and backward hidden layers capture
the left and right context of t, respectively. LSTM cells are
used in the hidden layer, because they have been shown
to be less susceptible to the “vanishing gradient” problem
than regular neural network cells (Hochreiter et al., 2001).
The structure of the LSTM cells follows the formulation

Rule type P R F
R1 99.59 99.44 99.51
R2 92.96 93.23 93.09
R3 89.53 91.67 90.59
R4 89.35 95.55 92.35
R5 98.28 98.63 98.46

Table 4: Precision (P), recall (R), and F score (F) per rule
class (refer to Section 3.); full data set

Len. class 0 1 2 3 ≥ 4
≤ 5 33.56 0.4 0.02 0 0
≤ 10 43.43 2.41 0.14 0.01 0
≤ 15 11.72 1.81 0.2 0.02 0
≤ 20 3.44 0.85 0.19 0.04 0.01
≤ 40 1.05 0.43 0.14 0.05 0.02
> 40 0.02 0.01 0.01 0.01 0.01

Table 5: Proportion of errors per string length class; full
data set

in (Graves, 2012). The output layer receives the individual
outputs from both hidden layers and performs a softmax
regression for the desired target values. The network is
trained with stochastic gradient descent, and implemented
in C++.

5. Evaluation
All evaluations, except for that of the full data set, are

performed with 10 crossvalidations (CV), and the averaged
values from these CVs are reported. The evaluation of the
full data set is only performed once with 90% of train-
ing and 10% of test data due to time limitations. The la-
beler is trained for 100 epochs with a momentum of 0.9
and a learning rate of 0.0005 for each fold of the CVs.
The labeling of one string (forward pass of the network)
takes approximately 1 millisecond on a normal desktop
computer. This means that the trained labeler can process
around 1.000 strings per second.

Table 4 evaluates the results for all phonemes in the
full data test set with regard to the types of rules involved
(refer to Section 3.). The labeler achieves high F scores
for R1 (p→ p) and R5 (p→ a), and is, therefore, in gen-
eral quite “conservative”, pleading mainly for keeping the
original phoneme or replacing it with another one with-
out introducing a compound split. Because R5 is mostly
found in string final position, the high F score for R5 just
means that the labeler has learned the Sandhi rules that de-
pend on the initial phoneme of the following string. While
this task is largely deterministic – penultimate m. is, for ex-
ample, always mapped to m –, the F scores of the com-
plicated classes R2−4 are markedly lower. Table 5 de-
scribes the stringwise accuracy of the labeler for the full
data set, grouped by string length classes (refer to Table 3).
Most mislabelings occur for strings with 6-15 phonemes in
which one phoneme is not labeled correctly.

For a more detailed analysis, Table 6 gives precision,
recall, and F scores for all occurrences of the true target
classes of phoneme ā, which is notoriously difficult to ana-
lyze (remember the example of hāhākārāh. in Section 1.1.)

Target P R F Proportion
ā 98.09 97.82 97.95 0.82
ā- 84.6 87.72 86.13 0.02
a-a 89.08 92.67 90.84 0.07
a-ā 88.26 86.48 87.36 0.03
ā-a 83.59 75 79.06 0.01
ā-ā 72.45 58.97 65.02 < 0.01
āh. 73.13 77.66 75.33 0.03

Table 6: Detail results for the observed phoneme ā; full
data set. The column Target records the desired output rule.

and which can raise R2 and R3 rules. Most importantly,
the table shows that the F scores of the non-deterministic
mappings, which depend on the lexical and semantic con-
text, are correlated with the amount of training data avail-
able for each mapping. A closer look at some of the results
supports this impression. The string ātreyādayah. (“(the
man called) Ātreya etc.”) is labeled correctly as ātrey(a-
ā)dayah. , most probably because ādayah. is a very com-
mon final member of compounds. Another example is
śarkarāmaricopetam. (“mixed with sugar and pepper”, la-
beled as śarkar(ā-)maric(a-u)peta(m)). The string is part
of the medicinal subcorpus that contains several texts enu-
merating similar lists of ingredients. In contrast, the string
prakı̄rn. akeyūrabhujāgraman. d. alah. (“whose round forearm
is scattered with bracelets”, labeled: prakı̄rn. (a-)keyūr(a-
)bhuj(ā-a)gr(a-)man. d. alah.) contains one error at bhuj(ā-
a)gra, which should be labeled as bhuj(a-a)gra instead.
The word is part of poetic description of a god in the Ma-
tsyapurān. a, and the whole passage is strongly indebted to
the demanding style of Sanskrit poetry. It should be noted
that the proposed solution offers a lexically, though not se-
mantically valid interpretation of the string, because bhujā
(“by the enjoying one”) is quite regularly found as a com-
pound termination. In addition, the proposed analysis is
definitely preferable over possible unlexical solutions such
as bhuj(ā-)gra.

To estimate how the amount of training data influences
the accuracy of the labeler, training and testing are repeated
for randomly drawn samples of 10.000, 20.000, 50.000,
and 500.000 strings. Table 7 shows that the stringwise ac-
curacy increases with the amount of training data. The ac-
curacy for the full data set comes close to the results re-
ported in (Hellwig, 2015), where a language model and
morphological resources are used for analysis. Neverthe-
less, the labeler shows acceptable accuracy rates even for
samples as small as 10.000 strings. As many hand labeled
data sets in the Humanities may have similar sizes, the la-
beler seems to be applicable even in such research scenar-
ios.

6. Conclusion
The paper has presented a novel algorithm for Sandhi

resolution and compound splitting that can be trained with
shallow annotations and without the use of external re-
sources such as language models, morphological or pho-
netic analyzers. This is an important prerequisite for its ap-
plication in South-Asian Studies, because such resources

Sample size Accuracy
10.000 77.92
20.000 80.98
100.000 87.68
500.000 91.03
full data set 93.24

Table 7: Overall string-wise labeling accuracy w.r.t. sam-
ple size

are missing or are still under construction for many ancient
languages of India.

On the computational side, it should be explored if
a deep architecture improves the accuracy of the labeler.
The paper of dos Santos et al. (Santos and Zadrozny,
2014), who insert a convolutional layer right after the in-
put, appears to be a promising starting point for this track
of research. A primary area of application is the initial
linguistic analysis of under-resourced Middle Indo-Aryan
languages such as Old Marathi, or of premodern Nepali.
Given the undemanding phonetic structure of Nepalese, for
example, the algorithm may be a good choice for suffix
splitting in this language. As the algorithm is fast when
compared with a full-fledged linguistic processor, it should
also be useful for analyzing larger corpora of Sanskrit,
which may become available through OCRing printed texts
and manuscripts. Here, the algorithm could either be used
as a pure word splitter, or be integrated into the existing
Sanskrit tagger as a preprocessing step that determines the
most probable split of a sentence and feeds this proposal
into the full linguistic analysis pipeline.

7. References
Cardona, George, 1976. Pān. ini. A Survey of Research.

The Hague - Paris: Mouton.
Dima, Corina and Erhard Hinrichs, 2015. Automatic noun

compound interpretation using deep neural networks
and word embeddings. In Proceedings of the 11th In-
ternational Conference on Computational Semantics.

Elman, Jeffrey L., 1990. Finding structure in time. Cogni-
tive Science, 14(2):179–211.

Gers, Felix A. and Jürgen Schmidhuber, 2001. LSTM re-
current networks learn simple context free and context
sensitive languages. IEEE Transactions on Neural Net-
works, 12:1333–1340.

Graves, Alex, 2012. Supervised Sequence Labelling with
Recurrent Neural Networks. Heidelberg: Springer Ver-
lag.

Hellwig, Oliver, 2009. SanskritTagger, a stochastic lexi-
cal and POS tagger for Sanskrit. In Gérard Huet, Amba
Kulkarni, and Peter Scharf (eds.), Sanskrit Computa-
tional Linguistics. First and Second International Sym-
posia, Lecture Notes in Artificial Intelligence, 5402.
Berlin: Springer Verlag.

Hellwig, Oliver, 2015. Morphological disambiguation of
Classical Sanskrit. In Cerstin Mahlow and Michael Pi-
otrowski (eds.), Systems and Frameworks for Computa-
tional Morphology. Cham: Springer.

Hochreiter, Sepp, Y. Bengio, P. Frasconi, and J. Schmidhu-

ber, 2001. Gradient flow in recurrent nets: The difficulty
of learning long-term dependencies. New York: IEEE
Press, pages 237–243.

Hochreiter, Sepp and Jürgen Schmidhuber, 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Huet, Gérard, 2005. A functional toolkit for morpho-
logical and phonological processing, application to a
Sanskrit tagger. Journal of Functional Programming,
15(04):573–614.

Kiparsky, Paul, 2009. On the architecture of Pān. ini’s
grammar. In Gérard Huet, Amba Kulkarni, and Peter
Scharf (eds.), Sanskrit Computational Linguistics, vol-
ume 5402 of Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, pages 33–94.

Kulkarni, Amba and Devanand Shukla, 2009. Sanskrit
morphological analyser: Some issues. Indian Linguis-
tics, 70(1-4):169–177.

Lafferty, John D., Andrew McCallum, and Fernando C. N.
Pereira, 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
Proceedings of the Eighteenth International Conference
on Machine Learning.

Mishra, Anand, 2009. Simulating the Pān. inian system of
Sanskrit grammar. In Sanskrit Computational Linguis-
tics. Springer, pages 127–138.

Mittal, Vipul, 2010. Automatic Sanskrit segmentizer using
finite state transducers. In Proceedings of the ACL 2010
Student Research Workshop. Stroudsburg, PA, USA: As-
sociation for Computational Linguistics.

Oberlies, Thomas, 2003. A Grammar of Epic Sanskrit. De
Gruyter.

Qiu, Siyu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan
Liu, 2014. Co-learning of word representations and
morpheme representations. In Proceedings of COLING
2014.

Santos, Cicero D. and Bianca Zadrozny, 2014. Learning
character-level representations for Part-of-Speech tag-
ging. In Tony Jebara and Eric P. Xing (eds.), Proceed-
ings of the 31st International Conference on Machine
Learning (ICML-14). JMLR Workshop and Conference
Proceedings.

Scharfe, Hartmut, 1977. Grammatical Literature. A His-
tory of Indian Literature, Volume 5, Fasc. 2. Wiesbaden:
Otto Harrassowitz.

Schuster, M. and K.K. Paliwal, 1997. Bidirectional recur-
rent neural networks. IEEE Transactions on Signal Pro-
cessing, 45(11):2673–2681.

Wackernagel, Jakob, 1978. Altindische Grammatik. Göt-
tingen: Vandenhoek und Ruprecht. Reprint from 1896.

Witzel, Michael, 1995. Early Indian history: Linguistic
and textual parametres. In George Erdosy (ed.), The
Indo-Aryans of Ancient South Asia. Language, Mate-
rial Culture and Ethnicity, volume 1. Berlin, New York:
Walter de Gruyter, pages 85–125.

