Software work being carried out by SAMSKRITAM.NET, Hyderabad
[bookmark: _GoBack]The files attached in the ZIP are files generated by our software essentially from 2 input-text-files in UTF8 format. The outputs of various processes as described below are presented to you without any changes by manual updates. My code currently is just about 572 lines. Pretty small.
The current work is done by Krupalu (V)Ogeti, an IIT-KGP’s graduate of 1976 with over 25 years of IT experience starting in COBOL and later in Relational DBMS. He is supported by Sri VSRK Sarma, his batchmate at IIT. After giving up IT over 12 years ago, he is once again attracted to systems’ work by Sri Vamshikrishna Ghanapathi of Mysore peetham for their ‘Vaakya’ project. It is this experience that helped Krupalu do some programming again for use by Samskritists. He has a lot of ideas which would benefit Samskrit folks as per his experience. Hence he founded an organization ‘Samskritam.Net’ in 2016 to do several kinds of Samskrit work, including tools for learning/enhancing Samskrit letter for modern users.
Those interested are requested to contact him by emailing to ‘okrupalu@samskritam.net’ or SMSing to 7396249650. Samskritam.Net would like to tie up with Samskrit&IT professionals for mutual gains. Volunteer work is solicited in all formsby help in testing the routines and making them robust. If you notice any error, please tell us. We will be indebted to you. If you supply new test cases, we will gladly incorporate them into this text-file-based testing process.
Coding UTF8-file into SLP/WX/Baraha (English-like) coding:BarahaUTF8NewTest.txt: The Baraha-encoded file for the input
UTF8NewTest.txt
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: Codify
Sub-Option: Baraha
WXUTF8NewTest.txt: The WX-encoded file for the input
UTF8NewTest.txt
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: Codify
Sub-Option: WX
SLPUTF8NewTest.txt: The SLP-encoded file for the input
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: Codify
Sub-Option: SLP
UTF8NewTest.txt

Getting back the Unicode status from SLP/WX-encoded files:OutWXUTF8NewTest.txt: The original ‘UTF8NewTest.txt’ from WX-encoding
WXUTF8NewTest.txt
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: Unicodify
Sub-Option: WX
OutSLPUTF8NewTest.txt: The original ‘UTF8NewTest.txt’ from SLP-encoding
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: Unicodify
Sub-Option: SLP
SLPUTF8NewTest.txt

Currently, we don’t have a routine to check if Baraha code was generated correctly. That is because, Baraha software itself can provide that functionality. If you copy and paste the contents of BarahaUTF8NewTest.txt file into Baraha’s input window, if it ‘converts’ properly, that itself would prove that our process of Baraha-generation is correctl.

Guru-Laghu-marking and Chhandas deciphering: GLMark process adds Guru-Laghu-marking for each input line separately. This was the initial routine, based on which following ‘GLAnalyze’ was developed.

GLMarkUTF8NewTest.txt: Input file with one line of U’s and I’s added per input line.
UTF8NewTest.txt
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: GLMark

GLAnalyze does GLMark-ing internally and goes ahead to identify Chhandas if any. Currently, 14 metres are encoded in a tabular form. If it does not match any Chhandas encoded, it puts ‘???’ in the beginning of the line. This process adjusts last Laghu to Guru and tallies with Chhandas available. If it then matches, it puts the Chhandasname followed by a ‘*’.

GLAnalyzeUTF8NewTest.txt: Input file with found-out Chhandas0name if any added at the beginning
UTF8NewTest.txt
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: GLAnalyze

Transliteraton (Script translation only): Currently, we have modules to transliterate from any one of the following to any other lipis. The following example demonstrates ‘cyclic’ transliteration. That is, from Devanagari to Telugu, then Telugu to Kannada and finally, from Kannada to Devanagari.Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: Transliterate
Sub-Options: DN & Tel
UTF8NewTest.txt
DNtoTelUTF8NewTest.txt: The file in Telugu script
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: Transliterate
Sub-Options: Tel & Kan
TeltoKanUTF8NewTest.txt: The file in Kannada script

Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: Transliterate
Sub-Options: Kan & DN
KantoDNUTF8NewTest.txt: The file back in Devanagari script

TeltoKanUTF8NewTest.txt
DNtoTelUTF8NewTest.txt

Scrubbing Samskritam text: This process cleans up input in Devanagari Unicode to follow Samskrit-writing rules in growing complexity. Accordingly, 4 levels of Scrubbing is provided.
In level 1, you would notice (1) ‘ळ’s getting converted to ‘ल’s; (2) anusvaaraas within words converted into their 5th-letter-of-the-varga equivalents; and finally (3) word-ending adjustment of ‘makaara’ and ‘anusvaara’ looking at the first letter of the following word, if any (‘ach’ or ‘hal’). The first 2 paragraphs of the input file are meant for this testing.

Lvl1UTF8ScurbTest.txt: The adjusted output as per above ‘scrubbing’
UTF8ScrubTest.txt
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: ScrubForSkt
Sub-Options: 1

In level 2 scrubbing, the ‘visarga’ before ‘श’ s, ‘ष’ s, and ‘स’s is replaced by ‘dvittvaas’ of the same akshara. This is the most common recitation of the text, in spite of the printing in most standard books as ‘visarga’ only. Hence this scrubbing represents actual rendition by Samskritists. Notice that level2 also does level 1 and level 2 scrubbing.
Lvl2UTF8ScurbTest.txt: The adjusted output as per above ‘scrubbing’
UTF8ScrubTest.txt
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: ScrubForSkt
Sub-Options: 2

In level 3, if ‘makaara’ is followed by ‘ach’, then it is combined into single ‘letter’. For example, म् अ would become म; and म् इ would become मि. This is the writing mode of writing preferred by Samskritists, though initially Samskrita Bharati encourages separate writing. The output is ‘Lvl3UTF8ScurbTest.txt’. 3rd paragraph has such test cases.
In level 4, word-ending ‘anusvaara’ printing is replaced by actual pronunciation letters, namely, 5th letters of the varga if a varga-letter follows; and also nasal-equivalents of य, व, लs. The output is ‘Lvl4UTF8ScurbTest.txt’. 4th paragraph has such test cases. This is expected professional pronunciation by Samskritsts and hence this scrubbing.

Scrubbing Telugu text: This functionality is to make Devanagari-style Samskrit letter more friendly to Telugu users. In Telugu printing, unfortunately as per our thinking, ‘anusvaara’ replaced 5th-varga-letter. While we discourage this conversion in our professional work, this routine helps those Telugu’s who can not come out of that mould.
Note that you need Telugu-file input for this. So, please generate, 'TelUTF8ScrubTest.txt' from 'Lvl4UTF8ScrubTest.txt' , using DN->Tel of 'Transliterate' as explained above, for testing this functionality. In the suite supplied, we have done this only for Lvl4. This can be repeated for Lvl1 to Lvl3, if desired.
Further work to do on this: (1) anunaasika-ya-va-las to be made simple anuswaaraas.
Py-name: SktProcess4.py
Process: x=ProcessTextFileInput()
Option: ScrubForTel
TelUTF8ScrubTest.txt
OutTelUTF8ScurbTest.txt: The adjusted output as per above ‘scrubbing’

