
Peering into Advanced Mathematics through
Sage-colored Glasses

John Harris,
Karen Kohl, and

John Perry,
all employed at the University of Southern Mississippi
(at least until the Provost’s Office reads this debacle)

2000 Mathematics Subject Classification. 97U30, 97N80

Copyright (C) 2016 John Harris, Karen Kohl, and John Perry
License CC-BY-NC-SA

https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Acknowledgments 6

Preface 7
Why did you write this text? 7
No, really, why did you write this text? 7
What instructional value does this text offer? 7
Aren’t there already some good references on Sage? 9
How do you typically run this course? 9
Why this approach? 10
Any last words? 10

Part 1. A Hitchhiker’s Guide to Advanced Mathematics 11

Background 12
Is this just another programming textbook? 12
What is this Sage thing you keep yapping about? 14
How do I get going with Sage? 18
Worksheet or command-line? 19
Getting help 21
Exercises 23

Basic computations 25
Yer basic arithmetic 26
Constants, variables, and indeterminates 29
Expressions, and commands to manipulate them 31
Basic Calculus 35
Mathematical structures in Sage 42
Exercises 46

Pretty (and not-so-pretty) pictures 51
2D objects 51
2D plots 64
Animation 68
Implicit plots 70
Exercises 75

Writing your own functions 79
Defining a function 80
Arguments 82
An end to dysfunctional communication 89

3

CONTENTS 4

Pseudocode 92
Scripting 94
Interactive worksheets 97
Exercises 101

Repeating yourself definitely with collections 105
How to make a computer repeat a fixed number of times? 106
How does this work? or, an introduction to collections 108
Repeating over a collection 118
Comprehensions: repeating in a collection 123
Animation again 125
Exercises 126

Solving equations 133
The basics 133
One equation or inequality, for one indeterminate 133
Mistakes or surprises that arise when solving 138
Approximate solutions to an equation 138
Systems of equations 140
Matrices 141
Exercises 151

Decision-making 154
The method of bisection 154
Boolean logic 157
Breaking a loop 160
Exceptions 161
Exercises 171

Repeating yourself indefinitely 176
Implementing an indefinite loop 177
What could possibly go wrong? 181
Division of Gaussian integers 182
Exercises 188

Repeating yourself inductively 193
Recursion 193
Alternatives to recursion 198
Exercises 207

Making your pictures 3-dimensional 213
3D objects 213
Basic 3D plots 215
Advanced tools for 3d plots 222
Ascending a hill 225
Exercises 229

Advanced Techniques 232
Making your own objects 232

CONTENTS 5

Cython 241
Exercises 247

Useful LATEX 251
Basic commands 251
Delimiters 251
Matrices 251

Part 2. Encyclopædia Laboratorica 254

Prerequisites for each lab 255

General mathematics 257
Various kinds of plots 258

Calculus and Differential Equations 260
An important difference quotient 261
Illustrating Calculus 262
Simpson’s Rule 264
The Runge-Kutta method 265
Maclaurin coefficients 266
p-series 267
Maxima and Minima in 3D 268

Linear Algebra 269
Algebraic and geometric properties of linear systems 270
Transformation matrices 272
Visualizing eigenvalues and eigenvectors 273
Least squares averaging 274
Bareiss’ Method 275
Dodgson’s Method 276

Discrete Mathematics 277
One-to-one functions 278
The Set Game 279
The number of ways to select m elements from a set of n 280

Algebra and Number Theory 281
Properties of finite rings 282
The geometry of radical roots 283
Lucas sequences 285
Introduction to Group Theory 286
Coding theory and cryptography 290
Continued fractions 292

Bibliography 293

Index 294

Acknowledgments

This work was supported in part by a Summer Grant for the Improvement for Instruction,
awarded by the Office of the Provost at the University of Southern Mississippi. Without that
support, this would have taken a lot longer to complete, if ever.

We would also like to thank:
• William Stein and various Sage developers and users for moral support and occasional

financial support to attend Sage Days workshops.
• All the developers who have contributed to the Sage project, whether directly or indi-

rectly, deserve the scientific community’s profound gratitude, though we can only assure
them of ours.
• The image of Glenda, the Plan 9 Bunny on p. 209 was downloaded from Bell Labs’ Plan

9 website and is used according to the terms given. (We think we have permission — the
wording’s a tad vague.)
• The image of Rabbit Island on p. 195 was taken by Kim Bui and is used according to the

terms given (CC BY-NC-SA 2.0).
• Amber Desrosiers and Candice Bardwell suffered through an early draft of this text, and

found more typographical errors than we care to admit.
• Finally (stop applauding, it’s rude) two of us have spouses and children that deserve

apologies more than thanks, two of us have cats that deserve whatever it is that cats de-
serve (everything?), and one of us has a bunny and a turtle, both of which deserve more
attention. Textbooks don’t typically have a special section for apologies or whatever cats
and bunnies deserve, we thank them instead.

6

http://plan9.bell-labs.com/plan9/glenda.html
http://plan9.bell-labs.com/plan9/glenda.html
https://flic.kr/p/otnhcN
https://creativecommons.org/licenses/by-nc-sa/2.0/

Preface

It is said that despite its many glaring (and occasionally fatal) inaccuracies, the
Hitchhiker’s Guide to the Galaxy itself has outsold the Encyclopedia Galactica
because it is slightly cheaper, and because it has the words “DON’T PANIC” in
large, friendly letters on the cover. [1]

We have prepared this lab book as a kind of “Hitchhiker’s Guide to Higher Mathematics,” resist-
ing the urge to write “Don’t Panic” on the cover, in part out of sheer terror that Douglas Adams’
estate might sue, in part out of a feeble attempt to maintain the last shred of human dignity we
will doubtless retain in the reader’s mind once he/she/it has put aside this text.

Why did you write this text?

The main goal of this text is to justify a partial summer salary extended us by our employer’s
Provost, who doubtless will never err in this fashion again.

No, really, why did you write this text?

The ostensible goal is that our institution offers majors a rather unique class, Mathematical
Computation. We teach it, and we don’t find a text that fits its unique character. We actually
believe in the course and think it’s a really good idea; many of the students who take it end up
agreeing. With any luck, the resulting text will spring up like a fungus, here and there, impervious
to eradication, until it comes to dominate the landscape of mathematics education.

What instructional value does this text offer?

We can only promise it will contain errors that range from the merely typographical to the
outright mendacious. As to the former, we direct the reader to

www.math.usm.edu/dont_panic/

to find corrections to known typographical errors, though if the publication record of one of
the authors is any kind of indicator, there will be typographical errors among the typographical
corrections. As to the latter, any mendacity contained herein has the merit of sounding better
than the outright truth, so in the spirit of the times we decided to include it. We leave it to the
reader to sort the wheat from the chaff, though we assure the dedicated reader that there is more
wheat than chaff, though for all you know that may turn out to be one of our mendacities.1

Speaking somewhat less un-seriously, we would like to think this book would be useful for any
situation where an individual is moving from “high school” mathematics, in which we include
basic calculus, to “university” mathematics, which includes intermediate calculus and a lot of
stuff besides, much of which seems to make the average mathematics major regret having chosen
the major. It is no secret that students struggle with the transition from the style of mathematics
they have encountered in their youth, which is primarily computational, even to the point of

1For what it’s worth, at least one outright mendacity is disclaimed as such, with cause.

7

http://en.wikipedia.org/wiki/Douglas_Adams
http://www.math.usm.edu/dont_panic/

WHAT INSTRUCTIONAL VALUE DOES THIS TEXT OFFER? 8

being thoughtless, to upper-level mathematics, which is increasingly theoretical, and necessarily
thoughtful. They have so much trouble with this transition that many universities gave up on
students’ learning, say, “proof techniques,” via osmosis,2 or even by imitation, and now offer a
course dedicated to it. At times it goes by a subtle name like Transition to Advanced Mathemat-
ics, but often the title is much more obvious: at our institution, for example, it masquerades as
Discrete Mathematics.3

The University’s course on Mathematical Computation was the brainchild of two of our col-
leagues who, two decades past, won an NSF grant to develop it. As part of the grant, they wrote
a textbook published by Springer. The course became a required part of the major, and even after
they retired the faculty continued to use their text. Why are we not content to continue with
that book?

• The course has evolved.
– Originally the course required multivariable Calculus as a prerequisite, and focused

almost exclusively on Calculus problems. As we teach it now, the course requires
only second-semester calculus, and tries to introduce students to a more expansive
view of Calculus.

– Many students who encounter abstract topics in higher mathematics are unfamil-
iar with the objects they encounter, and essentially find themselves dropped into a
bizarre new land, surrounded by a bewildering menagerie of exotic and frightening
beasts.

EXAMPLE. Many majors indicate that part of mathematics’ appeal is its reliance on
enduring, unchanging truths: as some would put it, “One plus one is always two.”
Yet one of these beasts in advanced mathematics insists resolutely that, contrary to
everything they’ve learned before now, 1+ 1= 0.

For the average Joe, the only surefire way to accustom oneself to these critters is to
familiarize oneself with them, mainly through experimentation on examples. We
would like to familiarize the student with these topics in a friendlier, less formal
environment than the typical, axiomatic approach, much as Calculus has evolved to
familiarize students with an intuitive idea of limits, without insisting on the rigor of
the ε-δ definition of the limit.

– A course like this turns out to be very useful for purposes of institutional assess-
ment. Our department uses a portfolio as part of its annual assessment, and a num-
ber of these labs can serve as evidence that the student has of course worked with
technology, but has also studied Calculus and become familiar with the breadth of
mathematics (if not yet its depth).

• The old textbook required Maple. We prefer Sage for a number of reasons:
– Sage is “free as in beer.” We live in a poor part of the nation; while student ver-

sions of Maple and other computer algebra systems are arguably affordable, they
are nevertheless a nontrivial addition to the high cost our students already bear.

2We are indebted to our colleague Bill Hornor for this vivid and entirely accurate description of how most of
us learned proof techniques in our youth.

3No, we did not reverse the adjectives. Yes, we are trying to be funny. Probably, we may well be failing. You
could give us an A for effort.

http://www.maplesoft.com/
http://www.sagemath.com/

HOW DO YOU TYPICALLY RUN THIS COURSE? 9

– Sage is “free as in speech.” Instructors can show talented students parts of the code,
and encourage them to get involved. There are doubtless a number of good un-
dergraduate research projects that could lead to contributions to the Sage codebase.
Talented instructors can even contribute code in ways that improves Sage’s use in
education. For that matter, two of us have shown that talentless instructors can
contribute code to Sage. Don’t be shy: the community is very supportive!

– Sage’s interface relies on Python, an industry-standard programming language that
remains in high demand among employers. Teaching students Sage per force teaches
them quite a bit of Python, as well — and frankly, most students who graduate with
a degree in mathematics aren’t going to land jobs that require them to use anything
beyond the Calculus, and probably not even that.

– Occasional changes to Maple’s interface rendered the old textbook obsolete: we
found code and examples that no longer worked. Do not misread this observation:
Occasional changes to Sage’s interface will likely render this text obsolete, as well,
but at least you aren’t paying for Sage.

Aren’t there already some good references on Sage?

Yes, and that’s the point; they strike us mostly as references for mathematicians and students
to learn Sage. This text aims to help students learn mathematics via Sage. This puts it into a
different niche, which we hope will prove not only profitable,4 but also useful,5 both to read
and to edit. The LATEX source to this material will be available online at no charge; users can
download, edit, and revise it as they find fitting. Editing the labs to taste is especially advisable in
light of an age where, speaking frankly, a nontrivial number of students prefers to expend more
effort finding pre-made solutions via a search engine to developing their own solution via their in-
house intellectual engines. To this end, we have tried to offer a large number of labs, so that even
if you don’t modify any of them to taste, the course can vary semester by semester, according
to research interests, educational tastes, or daily hormone count. If you are feeling particularly
hostile to your students, feel free to contact the authors and we can recommend some of the labs
as especially difficult in practice — though, frankly, you can probably guess which ones those are
on your own.

How do you typically run this course?

Actually, each of us teaches it quite differently. As you might expect, this Guide collects
neither the intersection nor the full union of our thoughts, but falls somewhere in between.
That said, we do tend to alternate between lecture days and lab days (no lab section is attached
to this course); we do tend to proceed in some semblance of the order provided here; and we
do assign textbook questions, labs, and tests. Some of us give group assignments and find them
useful; some of us have abandoned group assignments as not especially helpful.

4Stop laughing.
5Really. Stop laughing.

http://www.python.org/

ANY LAST WORDS? 10

Why this approach?

Since the entire point of computers is to compute quickly,6 programs to compute quickly
became increasingly powerful and widespread. It now allows students to visualize and attack
more interesting and more difficult problems.

Accordingly, technology has become an indispensable aspect of most mathematics education.
At many universities, students engage in long-term research projects that would have been un-
thinkable when the authors were in college. Honestly, the amount of computing power in your
cell phone is more than we had in our home computers as children — assuming our families could
even afford a home computer. We live in a magical world, and part of our aim is to open their
eyes to the wonders of the world we live in. The learning curve is often too steep, and even if
they finish the degree, the enchantment of mathematics is gone — assuming they had any to start
with. One large problem is their apparent reluctance to experiment with mathematics. We can
teach them about groups (say) and give them some examples, but they are often too reluctant to
move from the axioms and examples to playing with them on their own.

The access to greater computing power makes it easier to acquaint ourselves with unfamiliar
mathematical objects and experiment with them. Matrices can serve as an example you’ve prob-
ably met: it is all too easy to get one element of an intermediate matrix wrong, ending up with
every element of the final matrix wrong. The computer makes it easy to do the computations
quickly and reliably, allowing them to generate and test conjectures. It doesn’t replace the brain
— they still need to understand the rules of matrix arithmetic! — it frees the brain.

Any last words?

You can purchase a hardcopy of this text from
[yes, we will eventually insert a link here]

You need not purchase a hardcopy; after all, you can see from the CC-BY-SA license that you can
print it or even modify it yourself. You may prefer a hardcopy, though; many people do. If you
do purchase one, we assure you that two things will happen.

(1) You will contribute to the death of some trees. But! that was happening even with the
old book, so we don’t recommend worrying too much about that.

(2) We contribute our share of the proceeds to
(a) an existing scholarship for students of mathematics at the University of Southern

Mississippi,7 and
(b) an organization whose funds are used to support the development of SageMath.8

6An amazing fact about mathematics is that you can use so much of it in places its inventors never imagined.The
early pioneers of computer science, who were actually mathematicians, almost certainly had no idea that their inven-
tions would lead one day to funny cat videos — and yet there is so much mathematics in funny cat videos! Someone
should write an article about it one day.

7Currently the Pye scholarship.
8Tentatively the SAGE foundation.

Part 1

A Hitchhiker’s Guide to Advanced Mathematics

Background

A thing they had never needed before became a necessity. (Narrator, [12])
To explore the world of mathematics, you can’t just read about it; you have to engage it. Some
people are gifted with enough confidence and/or aptitude that they take to this on their own;
some were lucky enough to be brought up well, and from their youth are accustomed to engaging
the world of mathematics.

Most are less lucky, and while they may find the wider world of mathematics intriguing, they
struggle to make their way through new and unfamiliar territory. This text aims to encourage
you to explore the world of higher mathematics with the help of a computer algebra system,
relying on a particular system named Sage. We will encourage you to experiment with prob-
lems and form conjectures about their solutions. Sometimes we will encourage you to use the
experimentation to formulate an explanation as to why the conjecture is, in fact, true.

But to use computers effectively, you need to learn how to program.

Is this just another programming textbook?

No.

Can you be more specific? Yes.

[Grumble.] Please go into some detail. This text is about mathematics, which itself is about
solving problems. That’s important enough to highlight, so that even the skimmers will notice it.

Mathematics is a tool for solving problems.
In particular, we want to introduce you to ideas and techniques of higher mathematics through
problems that are arguably approached best with a computer, because

• they are long;
• they are repetitive or tedious; and/or
• they require experimentation.

Computers require instructions, and a group of instructions is called a program.9 So we do study
programming, but in reference to a specific goal: namely, solving problems in mathematics. That
makes this text different from “programming” textbooks, which study programming in reference
to a different goal: namely, solving problems in computer science. Again, that distinction is
important enough to highlight, so that even the skimmers will notice it.

We study programming in order to solve math problems.

9If you are reading this as an electronic document, then from time to time you will notice text in a different
color. If you click on it, you will find it links through the internet to additional information, very little of which is
due to the authors of this text and, as such, is probably much more reliable and useful. We hope you follow these
links and familiarize yourself with that information — that’s why we included it! — but strictly speaking it isn’t
necessary.

12

https://en.wikipedia.org/wiki/Computer_program

IS THIS JUST ANOTHER PROGRAMMING TEXTBOOK? 13

Why program? If I wanted to write programs I’d major in computer science. To start
with, some problems are too tough to do by hand, so you have to use a computer. The purpose
of this text is to start you down this path without turning you into a computer science major. It
will not only introduce you to some tools in a computer algebra system that help you compute, it
will encourage you to take steps along the path of becoming a mathematical pioneer. To solve the
problems we present, you will need to stop at a particular feature just outside your neighborhood
and acquaint yourself with it a little more than you might in the absence of our encouragement.
In some cases, we will even lead you back over land you traveled already and ask you to re-examine
something a little more carefully. In short, and in repetition, this text is about exploring the world
of higher mathematics, with a computer’s help.

On the one hand, computers don’t understand human languages. Humans are intuitive and
poetic, resorting to figurative and abstract language. Computers understand none of that; they
really understand one thing only: on and off. Everything your cell phone, laptop, or desktop
does involves a clever arrangement of switches by human beings who are well-trained in the art
of directing electric current to the right place at the right time.

On the other hand, most humans don’t understand the computer’s language of on and off.
Reducing every problem to these two symbols has been extremely effective, but it’s uncomfort-
able to humans (if only because it’s so tedious!).

Learning to program gives you control over the computer’s circuitry, and allows you to work
at a level that is much more comfortable. Even the experts typically work with more abstract
interfaces that are themselves converted to on and off signals in several stages. Learning to pro-
gram also gives you a deeper understanding of computer technology, and an appreciation for the
amount of work that goes into building this magical world we live in, where you can speak into
a little box in your hand and be heard by someone half a world away.

What kinds of programming languages are there? Without getting into too much detail,
there are three types of computer programming languages available today:

• In an interpreted programming language, the computer reads a file that contains com-
mands in the language. It translates each symbol, and executes some sequence of com-
mands based on that symbol. (Here, “symbol” can include words as well as numbers and
abstract characters.) It then proceeds to the next symbol, eventually forgetting its trans-
lation of the previous one. Examples of interpreted languages include BASIC, Python,
and the “shell” languages of command-line prompts.
• In a compiled programming language, the computer reads a file that contains commands

in the language. It translates each symbol, but instead of executing any commands, it
records the translation into on and off signals into a new file, usually called an executable.
(We write “usually” because it sometimes produces a library instead, depending on the
programmer’s request.) Examples of compiled languages include Fortran, C/C++, and
Go.

Before describing the third type of language, let’s mention some advantages and disadvantages
of each type. Interpreted languages are by nature typically much, much slower than compiled
languages, because the computer must re-translate each symbol, regardless of how many times
it has translated it before. (This is something of an oversimplification, but neither is it that far
from the truth.) On the other hand, interpreted languages are typically much more interactive
and flexible than compiled languages, to the point that many users never write an actual program
for them, but merely issue one command at a time.

https://en.wikipedia.org/wiki/A_Symbolic_Analysis_of_Relay_and_Switching_Circuits
https://en.wikipedia.org/wiki/A_Symbolic_Analysis_of_Relay_and_Switching_Circuits
https://en.wikipedia.org/wiki/Interpreted_language
https://en.wikipedia.org/wiki/BASIC
http://www.python.org/
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://golang.org/

WHAT IS THIS SAGE THING YOU KEEP YAPPING ABOUT? 14

Similarly, the nature of compiled languages means that the precise on and off signals are tied
to a particular architecture, one reason programs compiled to run on a Windows device won’t
run on Macintosh or Linux. C++ developers have to re-compile each program for a different
architecture, and for many programs this becomes quite difficult, especially if the program relies
heavily on Windows’ particular graphical interface. As a result, interpreted languages can be
much more “portable,” which means you can simply copy them onto another machine. Python
programs are especially famous for their portability. It’s arguable that Microsoft Corporation’s
success is due primarily to its brilliant and ubiquitous BASIC interpreter for home computers of
the late 70s and early 80s; it lives on today as Visual BASIC.

• Bytecode languages seek to straddle the gap between the two. In this case the computer
reads a file that contains commands in the language, and translates each symbol, but not
into the on and off signals native to the computer’s architecture. Rather, it translates
them into signals designed for an abstract computer called a virtual machine, then stores
them into an executable or library that will only work on computers that contain pro-
grams that understand the virtual machine’s signals. Notable bytecode languages include
Pascal,10 Java, and the .NET languages’ Common Language Runtime.11

Because the executables and libraries are not in the computer’s own signals, bytecode languages
are technically a special kind of interpreted language, and their reliance on a virtual machine
means they are theoretically slower than compiled languages. In practice, the penalty is usually
quite small, because the virtual machine’s signals are designed to be translated very easily into
an actual computer’s signals. Modern techniques make them so efficient that some bytecode
languages frequently outperform many compiled languages. Reliance on the abstract virtual ma-
chine means bytecode languages are highly portable; we wrote above that the executables work
“only” on computers that contain programs that understand the virtual machine’s signals, but
that also means they run on “any” computer with a program that understands the virtual ma-
chine’s signals. Java’s popularity — it once seemed impossible to find a webpage without a Java
applet — was due to its “Write Once, Run Anywhere” philosophy, which depended on its virtual
machine capabilities.

Which of these language types do we use in this text? All of them, in fact.
The primary programming language in Sage is Python, which we listed above as an interpreted

language. Sage and Python are not quite the same, though; Sage programs will not work in plain,
vanilla Python, and some Python features are different in Sage.

You can sometimes compile Sage programs using a program Cython; we cover that near the
end of the text. However, “Cythonized” Sage will not stand on its own; you have to run it inside
a Sage environment.

As you will learn below, Sage is actually assembled from a large number of separate parts.
Some of them are written with Java, which means you are using a bytecode language, though
you won’t actually write any Java programs.

What is this Sage thing you keep yapping about?

Sage is a free, open-source computer algebra system.

10In its original incarnations, Pascal was translated to a similar idea called P-code, later into bytecode proper.
11Many interpreted languages are now compiled “incrementally.” They save each command’s interpretation,

and as they progress during execution, check to see whether each new command has already been interpreted.

https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/UCSD_Pascal
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Common_Language_Runtime
http://www.cython.org/

WHAT IS THIS SAGE THING YOU KEEP YAPPING ABOUT? 15

What is a “computer algebra system”? Traditionally, there have been three major kinds of
large-scale mathematical software packages:

• Numerical computing systems aim for fast computation, relying typically on “floating
point” numbers. We won’t go into the details right now, but you can think of floating
point as a kind of “accurate estimation,” similar to the use of significant digits in the
sciences. The science behind numerical computing is typically the province of numeri-
cal analysis. Almost everyone in the developed world has used a numerical computing
system at some point by turning to a calculator. Numerical software packages include
MATLAB and Octave.
• Statistical software packages are a special kind of numerical computing system that focus

on special tools proper to statistical analysis. Examples include SAS and the R project.
• Computer algebra systems aim for exact computation, even if this comes at the expense

of the speed one associates with numerical systems. Rather than manipulate approxi-
mate values, computer algebra systems manipulate symbols that represent exact values:
they don’t view π as a decimal number but as a symbol with the properties mathematics
associates to it, and they allow us to manipulate expressions that involve variables. Be-
cause of this, the science behind computer algebra systems is called symbolic computation,
computer algebra, or computational algebra. A few of the more expensive calculators use
symbolic computation, but typically one works with a software package like Maxima,
Maple, or Sage.

Why would one sacrifice exactness for the approximate values of a numerical system? The main
reason is speed! By sacrificing a small amount of precision, a numerical system can easily work
with both large and small numbers, vectors, and matrices, all without too much trouble; it is not
uncommon to work with hundreds or even thousands of variables in a system of equations.

For example, what happens if you add the fractions 1/2, 1/3, 1/5, and 1/7? Each of them requires
only two digits to write (numerator and denominator), but the exact sum, 247/210, requires six
digits — a 300% increase in size! If you turn to floating point numbers with at most 4-digits, the
sum becomes instead

0.5000+ 0.3333+ 0.2000+ 0.1429= 1.176.

The sum is no larger than the original numbers. True, it’s a little bit wrong, but the error is less
than 1/500; that’s much more accurate than most day-to-day tasks need.

The rapid growth in size is one reason people generally dislike fractions; no one likes to work
with objects whose complexity grows quickly. In this case, what’s true about people is true
about computers, too; if you work with a problem that requires division of integers in Sage, you
will almost certainly encounter a massive slowdown as the fractions become complicated and,
therefore, more difficult for the computer to handle.

In that case, why would anyone bother with symbolic computation and exact values? For
many problems, the inaccuracies of floating point computation makes it absolutely unsuitable.
This is especially true when division is an inescapable part of the problem.

For example, suppose the computer has to divide by the 4-digit floating point number 0.0001,
the resulting quotient grows very large. Yet it’s entirely possible that 0.0001 is the result of a
floating-point error, and the correct value is actually 0. As you surely know by know, division
by 0 is bad. Had the computer known the value was 0, it wouldn’t have divided at all! Problems
where this can occur often are called “ill-conditioned,” and numerical analysts spend a lot of time
trying to avoid them.

http://www.mathworks.com/products/matlab/
http://www.gnu.org/software/octave/
http://www.sas.com/
https://www.r-project.org
http://maxima.sourceforge.net/
http://www.maplesoft.com/

WHAT IS THIS SAGE THING YOU KEEP YAPPING ABOUT? 16

In some cases, however, you can’t, so you resort to exact values. This is especially true as
one moves into more abstract mathematical fields. Some people think “abstract” mathematics is
“useless” mathematics, but they are quite mistaken: this text will introduce you to several abstract
mathematical objects whose very exactness makes possible the extremely accurate and extremely
secure communication you achieve on the internet whenever you check your bank account or
buy from an online vendor.

What’s special about Sage? Sage was “started” by William Stein, a number theorist. He was
frustrated with several drawbacks of the computer algebra systems available at the time:

Commercial systems, like Maple, don’t allow the user to view the code, much less modify it.
In the software world, these systems are called “proprietary”, “closed”, or “unfree” (by some
people). “Open” or “free” systems also existed, and as the product of cutting-edge research, they
were often better at a particular task than the commercial packages. However, these packages
only excel at one particular field of mathematics:

• for Calculus, you’d likely use Maxima;
• for linear algebra, you’d likely use Linbox;
• for group theory, you’d likely use GAP;
• for number theory, you’d likely use Pari;
• for commutative algebra, you’d likely use CoCoA, Macaulay, or Singular;

and so forth. Worse still, suppose you needed to transfer the result of one package to another:
after performing some number theory with Pari, for instance, you might want to analyze the
results using group theory, in which case GAP would be the tool of choice. But there was no
easy way to copy the results from Pari into GAP.

Sage, then, was organized to bind these brilliant tools together into one, relatively easy pack-
age. Additional features were programmed in Sage proper, and in some cases, Sage has been the
leader at solving some problems. As a bonus, Sage’s developers have made it possible to interact
with many proprietary packages through Sage, so that if Maple has the fastest tools to solve some
problem, and you own a copy, you can get it done through Maple, then manipulate the result
through Sage.

Why the concern with “free” software? In the world of software, the term “free” has two
senses:

Free as in beer: You don’t have to pay for it.
Free as in speech: The code is open and viewable, rather than “censored.”

Software can be “free as in beer” but not “free as in speech;” that is, it costs nothing, but you can’t
view the source code. Examples include the numerous “free” programs you can download for a
computer or mobile phone.

There are important reasons a researcher or even an engineer should be able to view and/or
modify the code in a mathematical software package:

• Good scientific practice requires reproducibility and verifiability. But a researcher can’t
verify the results of a mathematical computation if she can’t check the way it was com-
puted.
• Any software package of significant size will have some mistakes, called bugs. If two soft-

ware packages produce a different answer, a researcher can’t decide which one is correct
if he can’t view the code and evaluate the algorithms.

http://www.math.washington.edu/People/fac_individ.php?mathid=wstein
http://linalg.org/
http://www.gap-system.org
http://pari.math.u-bordeaux.fr/
http://cocoa.dima.unige.it
http://www.math.columbia.edu/~bayer/Macaulay/
http://www.singular.uni-kl.de/

WHAT IS THIS SAGE THING YOU KEEP YAPPING ABOUT? 17

• Almost all mathematical research builds on previous work. The same is true about soft-
ware packages, and researchers often need to extend a package with new features in order
to accomplish some task. This can be much more difficult to do properly if the researcher
can’t view the code, let alone modify it.

For example, suppose a mathematician claimed to have a proof that there are infinitely many
primes. Most mathematicians would want to see the proof; that’s one way we learn from each
other. (In some cases, the proof is much more interesting than the theorem.) Indeed, you can find
this proof in many, many textbooks, because the Hellenic mathematician Euclid of Alexandria
recorded what is considered one of the most beautiful proofs of this fact over two thousand years
ago [11, Book IX, Proposition 20]:

THEOREM. There are infinitely many prime numbers.

PROOF. Consider any finite, nonempty set of primes, P = {p1, . . . , pn}.
Let q = p1 · · · pn + 1. Since q 6= 1, at least one prime divides it, but the re-
mainder of dividing q by any p ∈ P is 1, so none of them divides it. So there
must be some prime number not listed in P . But P is an arbitrary, finite set of
primes, which means that no finite set of primes can list all of them. In other
words, there are infinitely many prime numbers. �

By exposing the proof plainly, Euclid makes it easy to verify the result. He also makes it easy
to question the argument: you might wonder, for instance, how Euclid knows that at least one
prime divides any positive integer that is not 1. (As a matter of fact, he proves that earlier on.)

Compare this to another famous theorem attributed to Pierre de Fermat, a French jurist who
studied mathematics as a hobby [10, p. 61, Observatio Domini Petri de Fermat]:

THEOREM. If n > 2, the equation an + b n = c n has no solution with integers
a, b , c ≥ 1.

PROOF. I have found a truly wonderful proof of this fact. This margin’s
smallness will not contain it. �

These two sentences set off a search for a proof that lasted more than three centuries; Andrew
Wiles found a proof in 1994, and to date there are no other proofs. Most people agree that Fermat
did not, in fact, have a proof, but we shouldn’t think ill of him: he never actually told anyone he
had a proof; he merely wrote this comment down in the margin of a book. His son published a
copy of the book after Fermat’s death, and included the notes Fermat wrote in the margin.

To stretch the analogy further, suppose we were to claim the following:

THEOREM. The number
2n − 1

is prime for n = 2,3,5,7,13,17,19,31,67,127,257.

PROOF. Trade secret. �

You would be right to doubt our claim, for at least two reasons: there is no easy to way to verify
it, and in fact it is wrong! Yet this claim was made by a well-respected mathematician named
Marin Mersenne [9], offered without proof, and was for some time generally accepted. You will
meet this claim again in a lab later on.

What are some advantages of Sage? As mentioned before, Sage makes it easy to experiment
with mathematical objects that you will use increasingly more in classes after this one. Later

http://en.wikipedia.org/wiki/Euclid
http://en.wikipedia.org/wiki/Pierre_de_Fermat
http://en.wikipedia.org/wiki/Andrew_Wiles
http://en.wikipedia.org/wiki/Andrew_Wiles
http://en.wikipedia.org/wiki/Marin_Mersenne

HOW DO I GET GOING WITH SAGE? 18

classes will probably not require Sage explicitly, but if you never use Sage again after this class,
that would be like going through a Statistics class and doing all the work by hand:12 WHY?!?

Another advantage to Sage is that you interact with it through a Python interface; program-
ming in Sage is, to some extent, indistinguishable from programming in Python. This confers
the following benefits:

• Recall that Python is one of the more widespread interpreted languages.
– Many employers want Python experience. Learning Sage well helps you learn Python,

and helps make you more employable.
– Many packages are available to enhance Python, and work well with Sage. Indeed,

many such packages are already packaged with Sage.
– As mentioned earlier, you can often speed up a program by “Cythonizing” it.

• Python is a modern language, offerings many ways to express an elegant solution to a
problem. By learning Sage, you are learning good programming practices.

Keep in mind that Python and Sage aren’t the same thing, nor is either a subset of the other. Sage
commands do not work in plain Python, and some Python commands don’t work the same way
in Sage that they would in Python.

How do I get going with Sage?

Probably the easiest way is to visit the SageMathCloud server at cloud.sagemath.com, register
for a free account, start a project, and create a Sage worksheet. We strongly urge the reader to
pony up the dough for a membership, which at the time of this writing costs $7/month and
gives access to faster, more reliable servers. You can use it for free, but for various reasons, the
free servers sometimes reset on you. (If you are part of a class, however, ask the instructor if
the department has ponied up for a class package; the discount is substantial.) The drawback to
this approach is that you have to pay to get good service. The advantage is that you always have
a reasonably up-to-date version of Sage at your fingertips, and you don’t have to worry about a
hardware crash that wipes out all your data, because it’s stored on servers that rely on multiple
backups and fallback mechanisms.

Another way to use Sage is via an online server that is not a SageMathCloud server. This
requires you to know somebody who knows somebody who. . . knows somebody who runs a
server you can use. Quite a few institutions do this, including the one that employs the authors; in
fact, our department maintains at least two such servers at the time of this writing. The drawback
to this approach is that you depend on the server’s maintainer to keep the software up-to-date and
the data backed up. Indeed, one of our department’s servers runs a version of Sage that is years
out of date.

The last way to use Sage is from a copy on your own machine. You can download it from
www.sagemath.org and install it on your computer. (Look for the link to “Downloads”.)

• If your machine runs Linux, this is a relatively simple process, though you may have
to install some packages through your package manager. (In the past, we have had to
install a system called m4. We don’t remember what it is.) Binaries are available for some
Linux distributions; Ubuntu is typically one of these, and Fedora has been from time to
time. For the rest, you’ll likely need to download the Sage source and compile it on your

12At least one of the authors actually tried this when he was in college. In fact, Statistics was the one class
that broke his resistance to using a calculator. The calculator’s ability to perform exact computation of fractions
impressed him; until then, he had only seen calculators perform arithmetic with fractions via floating point.

https://www.python.org/jobs/
http://cloud.sagemath.com/
http://www.sagemath.org/

WORKSHEET OR COMMAND-LINE? 19

computer. The good news is that this is usually quite painless, as long as you have already
installed the required packages, and these are listed in the directions. The bad news is that
installing from source takes quite a long time, so prepare for some hurry-up-and-wait.
• If your machine runs OSX, try downloading a binary for your architecture. You can try

compiling from source, as with Linux, but in that case, hope that Apple hasn’t recently
“upgraded” Xcode, because you need Xcode to install Sage, and every major release of
Xcode typically breaks Sage in some way.13

• If your machine runs Windows, you are in the unusual position of having to suffer what
Linux and OSX users typically suffer: Sage doesn’t work natively on Windows, so you
have to use it through a virtual machine. This can be a little tedious to set up, but once
you get the hang of it, it works fine. The correct way to do this has changed several times
over the years, so we are reluctant to give more precise advice than this. The good news
is that instructions on installing and running Sage will be available at the website.

Once you have one of these methods up and running, you start using it!

Worksheet or command-line?

There are two typical ways to use Sage: from a browser, in what’s called a Sage worksheet, or
from the command line. If you have installed Sage to your machine, you can do both; see the
section on Command-line Sage to see how to start a Sage worksheet from the command line.

Sage worksheets. If you have access to Sage via a web browser (either SageMathCloud or
another online server) you will likely prefer to work with a Sage worksheet. We recommend our
students to start with Sage in this fashion, because the worksheet provides a more user-friendly
environment: it is easy to review and re-execute commands, to add text for organization and
narrative, and further to save your entire session, then later reload the work and the output. You
can’t do any of that with the command line.

When you start a worksheet, you should see one of these two screens:

Independent server

13Sage is by no means the only software package that suffers this consequence.

WORKSHEET OR COMMAND-LINE? 20

SageMathCloud

You can (and should) change the title.

• In the independent server, you can do that at the beginning with the “Rename work-
sheet” dialog you see in the screenshot. You can do it later by clicking on the title (in the
upper left, currently “Untitled”) and the same dialog will pop up.
• In SageMathCloud, you can do that by clicking on the circled i in the upper left and

choosing “Rename. . . ”. A new screen will appear, prompting you to rename the file.
Make sure you keep the .sagews added at the end.

There are other options you can monkey with, but for now we’d recommend you move on to
the next chapter, since most of those options are of small importance for our purposes. The ones
we do need we’ll discuss in due course.

Command-line Sage. If you choose to run Sage from the command line, you need to open a
shell, also called a command-line prompt. You will see some sort of prompt, which can vary quite
a bit; whenever we mean a shell prompt we’ll simply put a blue greater-than symbol: >. At the
prompt, type sage, press Enter, then wait for Sage to start up. This might take a few seconds, but
eventually you will see something to this effect:

> sage

SageMath Version 6.7, Release Date: 2015-05-17

Type "notebook()" for the browser-based notebook interface.

Type "help()" for help.
sage: _

The underscore (_) might actually look like a little box on your system. Once you see that, you’re
in good shape for the next chapter. If you don’t see it, or if you see some sort of error, you need
to talk with your instructor or tech support and see what went wrong.

If you’d like to run a Sage worksheet in a browser, but don’t want to run SageMathCloud
and don’t have access to another server, type notebook() and press enter. You will see a lot of
messages, for instance:

GETTING HELP 21

sage: notebook()

The notebook files are stored in: sage_notebook.sagenb

Open your web browser to http://localhost:8080

Executing twistd --pidfile="sage_notebook.sagenb/sagenb.pid" -ny

"sage_notebook.sagenb/twistedconf.tac"

/Applications/sage-6.7-untouched/local/lib/python2.7/site-packages/

Crypto/Util/number.py:57: PowmInsecureWarning: Not using

mpz_powm_sec. You should rebuild using libgmp >= 5 to avoid timing

attack vulnerability.
_warn("Not using mpz_powm_sec. You should rebuild using libgmp >=

5 to avoid timing attack vulnerability.", PowmInsecureWarning)

2016-05-27 14:30:49+0300 [-] Log opened.

2016-05-27 14:30:49+0300 [-] twistd 14.0.2

(/Applications/sage-6.7-untouched/local/bin/python 2.7.8) starting

up.

2016-05-27 14:30:49+0300 [-] reactor class:

twisted.internet.selectreactor.SelectReactor.

2016-05-27 14:30:49+0300 [-] QuietSite starting on 8080 2016-05-27

14:30:49+0300 [-] Starting factory <__builtin__.QuietSite instance

at 0x1181bb638>

For the most part, you do not need to worry about those messages.14 You don’t even have to
follow the directions to open your web browser to that site; on many machines, the browser will
open the webpage automatically. Besides, it will take a few seconds for things to get started, so
sit back and relax a few seconds. If your browser doesn’t open, Don’t Panic! Open it yourself
and see if the web address your Sage advises works. If it does, you’re in good shape for the next
chapter.

If it doesn’t,

PANIC!
Yes, it really is okay to panic once in a while. Get it out of your system. Once you’re done, look
carefully at the messages, and see if any are error messages; these would be helpful. Then visit

https://groups.google.com/forum/#!forum/sage-support

and search to see if that error message has been discussed. If not, start a new post, inquiring about
what’s going wrong.

Getting help

If you’re reading this as part of a class, then your instructor should be helpful. (Maybe not very
helpful, but helpful all the same.) We already mentioned the sage-support forum last chapter.
Aside from these options, Sage will answer many questions on its own.

Docstrings. If you want to know how a command works, type the name of the command,
followed by a question mark, then execute the command. Sage will provide you useful informa-
tion on the command, typically with examples.

14Well, maybe the security warnings about libgmp, if you see them. I should look into that.

https://groups.google.com/forum/#!forum/sage-support

GETTING HELP 22

sage: simplify?

Signature: simplify(f)

Docstring:

Simplify the expression f.

EXAMPLES: We simplify the expression i + x - x.

sage: f = I + x - x; simplify(f)

I

In fact, printing f yields the same thing - i.e., the simplified

form.

Init docstring: x.__init__(...) initializes x; see help(type(x))

for signature

File: /Applications/sage-6.7-untouched/local/lib/python2.7/site-

packages/sage/calculus/functional.py

Type: function

Finding methods for objects. Another way to get help is to see what commands an object
will accept as methods. A “method” is a command that is very specific to a particular Sage object;
you invoke it by typing the object’s name, followed by a dot, then the name of the method.15 To
find the names of all the methods an object accepts, type its name, followed by a dot, then press
the Tab key.

For example, simplify() doesn’t work very well on the following expression:

sage: rats = 1/(x**2 - 1) + 1/(x - 1)

sage: simplify(rats)

1/(x**2 - 1) + 1/(x - 1)

We really want to simplify that expression as fully as possible, so let’s see if it accepts a method
that will perform a more thorough simplification. Type rats. and then press Tab; you should
see over 200 possible methods. Some of them are not really appropriate for f; we won’t go into
the reasons for this, but if you look carefully, you should find at least two useful methods. One
of them is full_simplify().

sage: rats.full_simplify()

(x + 2)/(x^2 - 1)

That’s a very nice result.
The thought of hunting through over 200 possible methods may seem intimidating, but many

objects accept very few methods. In practice, this isn’t such a difficult technique, since there are
many ways to search through the list.

15Another term for “method” is “message;” both terms are used in computer science, but “method” is the jargon
for Sage.

EXERCISES 23

Exercises

True/False. If the statement is false, replace it with a true statement.
1. This is just another programming textbook.
2. Mathematics is about counting numbers.
3. While students don’t much care for fractions, computers find it easier to work with fractions

than with floating point numbers.
4. “Free” software is written by unemployed slackers living in their parents’ basements.
5. All famous mathematical results were appreciated from the start for their clear, elegant proofs.
6. Bytecode is technically not an interpreted language.
7. Interpreted languages are appreciated above all else for their speed.
8. Some software of significant size is bug-free.
9. Abstract mathematics is useless in the real world.
10. It is easy to verify and improve on proprietary mathematics packages.
11. Bonus: The answer to all these True/False questions is “False.”

Multiple Choice.
1. Which of the following is not an example of a computer algebra system?

A. A package that performs fraction arithmetic without any roundoff error at all.
B. A package that assigns numbers to musical notes and uses fractals to produce new music.
C. A package that performs polynomial arithmetic with approximate values for coefficients.
D. A package that focuses on sets of abstract objects defined by precise properties.

2. Which of the following is not a step in the usual process of compiling a program?
A. The compiler reads the source from a file.
B. The compiler translates each symbol into a combination of on and off signals.
C. The compiler saves the translation to a file, called an executable or a library.
D. The compiler executes the translated commands immediately before quitting.

3. Sage’s primary focus is what kind of computational mathematics?
A. numerical computation with approximate values
B. statistical computation with probable values
C. symbolic computation with exact values
D. fuzzy computation with uncertain values

4. Which of the following computer algebra systems would you use to compute a derivative?
A. Maxima
B. PARI
C. Schoonship
D. SINGULAR

5. Which of the following well-known computer languages tries to straddle the gap between
interpreted and compiled languages?
A. C/C++
B. Fortran
C. Java
D. Python

6. Which of the following is a primary motivation of the movement for “free” mathematics
software?
A. Antipathy to censorship
B. International collaboration

EXERCISES 24

C. Lack of grant funding
D. Verifiability of results

7. Which of the following mathematicians is famous in spite of popularizing a “fact” that was
very wrong?
A. Pierre de Fermat
B. Marin Mersenne
C. William Stein
D. Andrew Wiles

8. Which of the following mathematicians is famous in spite of his non-scientific day job?
A. Pierre de Fermat
B. Marin Mersenne
C. William Stein
D. Andrew Wiles

9. Which of the following is not an advantage to working with Sage?
A. You acquire practical skills that employers value.
B. You work with cutting-edge software.
C. You no longer have to worry about careful computation.
D. You can use the material learned here in other classes.

10. In which of these ways does Sage work with Python?
A. Sage’s interface is essentially a Python interface.
B. Sage is a Python library you can load into any Python interpreter.
C. Python is one of the computer algebra systems in Sage.
D. Sage uses the Cython compiler to compile all Python programs.

Bonus: Which answer is correct?
A. The next one.
B. The next one.
C. The next one.
D. The first one.

Short answer.
1. Explain how the quote at the beginning of this chapter is related to its main thesis.
2. Describe a real-world analogy for the difference between compiled, interpreted, and bytecode

languages.
3. A common problem in mathematics textbooks is to compute the 1001st derivative of cos x.

The best way to find the answer is not to compute all 1001 derivatives; instead, you compute a
few, notice a pattern, and deduce quickly what the 1001st derivative should be. Explain how
this compares to what we want you to get out of this text.

4. Not all mathematicians find the arguments in favor of free software convincing, and the use
of proprietary software is widespread. Why do you think this is the case?

5. Even if Sage is less popular than a proprietary package like Maple or Mathematica, learning
Sage can make it easier to work with those packages, as well. Why?

Basic computations

Create a new worksheet and call it “My First Sage Worksheet.”
To describe interaction with Sage, we use the following format:

sage: some input

some output

The text “some input” indicates a command you type into Sage. If you are using Sage from the
command line, you will type this at a blue “sage:” prompt; hence the blue color and the label.
If you are using Sage from a worksheet, you will not see a prompt; instead, you will type the
command in a “cell,” which in some versions of Sage is outlined by a small box.

To execute the command:

• at the command line, press the Enter or Return key;
• in a worksheet, hold Shift and press the Enter or Return key.

Sage will then interpret and process your command. The worksheet interface will show a colored
or flashing bar while Sage does this; the command-line interface will simply pause.

Once the output is complete, you will see the text indicated by “some output.” If the com-
mand succeeded, you will see an answer that looks more or less sensible. If an error occurred,
the text will include a lot of information, some of it in red (the last line especially, which is all we
will copy) and probably won’t make sense unless you already know Python. For instance:

sage: some bad input

SomeError: some message to explain the error

We will explain several types of errors as we progress through our explorations of Sage. As a con-
venience, we are adding errors to the textbook’s index. If you are working on some computation,
and you run across some error you don’t recognize, see if you can find it in the index; if so, the
page numbers it references will prove helpful.

Here’s an example of a successful computation; you should try this yourself now and make
sure you get the same result.

sage: 2 + 3

5

That looks reassuring; at least Sage can do that! Here’s one where the user forgot to let go of the
Shift key before pressing the number 3.

25

YER BASIC ARITHMETIC 26

sage: 2 + #

SyntaxError: invalid syntax

If you actually run this in Sage, you’ll notice there’s a bit more text in the error, as well, as well
as a lot of color changes. In our case, this turns out to look like:

File "<ipython-input-3-7c2c726856a7>", line 1

Integer(2) + #

^

SyntaxError: invalid syntax

You’ll notice we only copied the last line, which specifies the type of error! When necessary for
the discussion, we’ll sometimes include the rest of the information as well, but you can often
figure out the problem just from looking at the last line.

It may happen that the line you have to type is too long to fit in one line. It will happen to
the authors of this text, since we don’t have that much horizontal space on the page. In cases like
this, you can keep typing, which can make the code harder to read, or you can tell Sage you want
to continue on the following line by typing a backslash \, which Sage interprets as “line break,”
then pressing Enter. We will do this rather regularly to help make code more readable. There is
no need to wait until we bump up to the end of the line for this, and sometimes it may be more
readable to add the line break early. For instance:

sage: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 \

....: + 11 + 12 + 13 + 14 + 15

120

(When using a Sage worksheet). One advantage to using Sage worksheets is that you can use
HTML commands to add explanatory narrative to your work. Simply type

sage: %html

. . . and everything following that line will be considered HTML text. The toolbar will change
to allow for HTML formatting, but if you are familiar with HTML tags then you can add them
directly. You can format it the same way as you execute a Sage command: hold shift, press enter.
If needed, you can then edit the HTML cell again by double-clicking on it. This is enormously
useful when breaking up a long worksheet into sections, with headers that organize related parts
of the work.

Yer basic arithmetic

As you might expect, Sage offers the same basic arithmetic functions you can find in any
calculator. Here are a few that will prove useful.16

16You can also type a^b for exponentiation, but for various reasons we don’t recommend it: in some situations,
Sage will interpret it as a different operator.

YER BASIC ARITHMETIC 27

a+b adds a and b
a-b subtracts a and b
a*b multiplies a and b
a/b finds the ratio of dividing a by b

a // b finds the quotient of dividing a by b
a%b finds the remainder of dividing a by b
a**b raises a to the b th power

sqrt(a) the square root of a
abs(a) the absolute value of a

TABLE 1. Sage operators for basic arithmetic

Go ahead and try these with some numbers, both approximate and exact.

Yer basic comparisons. Sage can also compare objects, to a certain extent.

a>b is a strictly greater than b ?
a>=b is a greater than or equal to b ?
a==b is a equal to b ?
a<=b is a less than or equal to b ?
a<b is a strictly less than b

TABLE 2. Sage operators for basic comparisons

When using these comparisons, Sage will return True or False, which obviously correspond to
“yes” or “no.”

sage: 2 < 3

True

sage: 2 > 3

False

You have to be careful with comparison of equality, as the sign is doubled. Problems will arise if
you forget it.

sage: 2 = 3

ValueError: The name "2" is not a valid Python identifier.

If you see that error message, the problem is almost certainly due to the use of only one equals
sign when you need two.

Aside from comparing numbers, many symbolic objects can be compared. We won’t talk
about sets for quite some time, for instance, but there is a natural ordering of sets based on subset

YER BASIC ARITHMETIC 28

properties, and Sage will compare sets based on that face. Consider, for instance, the sets {2,3},
{2,4}, and {2,3,4,5}:

sage: {2,3} < {2,3,4,5}

True

sage: {2,3,4,5} > {2,3}

True

sage: {2,3} < {2,4}

False

Exact v. approximate values. Sage offers symbols to represent the exact values of some im-
portant numbers; these should be easy to remember.

pi π, the ratio of a circle’s circumference to its radius

e
e = lim

x→∞

�

1+
1
x

�x

, or,

the value of a such that the derivative of ax is ax

I i , the “imaginary” number (i 2 =−1)
oo or ∞, infinity (unbounded above)

+Infinity

-oo or −∞ (unbounded below)
-Infinity

TABLE 3. Sage symbols for important constants

We italicize these identifiers in the text, both to help with readability and to highlight that they
should represent fixed values.17 Sage does not italicize them in output.

We explained already that the strength of a computer algebra system like Sage lies in its ability
to manipulate exact values, rather than approximate values. Nevertheless, we sometimes need to
compute with approximate values, and Sage allows this as well.

To use approximate arithmetic, type at least one number as a decimal!
To see how it works, consider the following commands and their results.

sage: 2/3

2/3

sage: 2./3

0.666666666666667

In the first case, you entered exact values, so Sage gives you the exact quotient of dividing 2 by 3,
the fraction 2/3. In the second case, you’re specifying at least one decimal, so you’re getting the
approximate quotient of dividing 2 by 3. This may look like floating-point, but it’s not quite; it’s
actually an object Sage calls a RealNumber. Don’t worry about those details right now.

17As we note on page 29, though, Sage does not have true constants, so a user or program can change the symbols’
meanings.

CONSTANTS, VARIABLES, AND INDETERMINATES 29

Constants, variables, and indeterminates

A subtle distinction in usage. The mathematical symbols e , π, and i represent constants,
by which we mean their values are definite and fixed. If someone writes Euler’s equation,

e iπ+ 1= 0,

then every educated mathematician will know the values of e , i , and π, even if this is the first
time they see the equation. Thanks to the symbols we described above, this holds true in Sage,
as well:

sage: e**(i*pi) + 1

0

Of course, there are times when any of these symbols can mean something else. For instance, xi
refers to the i th number in a list, not to some manipulation of x by the imaginary number.

Other one-letter symbols in mathematics represent one of two kinds of variables, by which
we mean their values are not necessarily fixed during a problem. The symbol x, for instance, can
represent any of an infinite number of values. Mathematicians generally work with two kinds of
variables; and in ordinary parlance, we tend to refer to both kinds as variable, but in fact there is
an important distinction, which we can see in an expression as simple as the polynomial

x2− c2.

• In many situations, specific values for x and c are very important. The equation

x2− c2 = 2

is not always true; it depends on the values of x and c , and in practice we often try to
find values for which this is true.
• In other situations, however, x and c represent arbitrary values. The equation

x2− c2 = (x + c) (x − c)

is true regardless of the values of x and c .

This matters a great deal for computer algebra systems, because a symbol can likewise refer to
a specific or indeterminate value, and we need to pay attention to this distinction from time to
time. We will agree on the following convention:

• When a symbol has been assigned a specific value, we usually call it a variable, because
we can change that value at any time.
• When we have no intention of changing a variable’s value, we call it a constant.
• When a symbol is not to hold any specific value, but is purely symbolic for an arbitrary

value from some set, we call it indeterminate.

Sage provides only one indeterminate at startup: x. If you want to work with another indetermi-
nate, such as y, you have to create it.

Sage does not offer a way to define your own constants, the way some programming languages
do. In Sage, a constant is just a variable that you try really hard not to change.

CONSTANTS, VARIABLES, AND INDETERMINATES 30

Resetting a variable or indeterminate. Since Sage has no way for you to define true con-
stants, you can, if you choose, reassign the value of I to something else, and it is very likely that
you will do that someday, in some circumstance. If that happens, it is easy to fix with the reset()
command; include the symbol between quotes inside the parentheses.

sage: I^2 + 1

0

sage: I = 2

sage: I^2 + 1

5

sage: reset(’I’)

sage: I^2 + 1

0

Creating variables and indeterminates. To create a variable, use the assignment construct,
identifier = expression

where identifier is a legitimate name for an identifier of a symbol and expression is a legitimate
mathematical expression. For instance,

sage: sqrt2 = sqrt(2)

assigns the value of
p

2 to the symbol sqrt2. After making this assignment, you can use the
symbol sqrt2 in any expression, and Sage will see it as

p
2. For example:

sage: sqrt2**2

2

To create an indeterminate, Sage provides a command, var(). Type the name you’d like the
indeterminate to have between the parentheses, in quotes. You can create several such indeter-
minates by listing them between the quotes, as well; just leave a space between each name. If
successful, Sage will print the names of the newly created indeterminates between parentheses.
For example:

sage: var(’y z’)

(y, z)

You can then manipulate these variables to your heart’s content.

sage: (y + z) + (z - y)

2*z

Valid identifiers. Each variable or indeterminate needs a valid identifier. Sage accepts iden-
tifier names using the following sequences of characters:

• The name must start with a letter (uppercase or lowercase) or the underscore (_).

EXPRESSIONS, AND COMMANDS TO MANIPULATE THEM 31

• The name can contain any mix of letters, numbers, or the underscore.
• The name cannot be a reserved word, also called a keyword. You’ll encounter these

throughout the course, but it’s unlikely you’d choose them.
Unlike mathematical convention, the names of variables and indeterminates can be longer than
one symbol; we see this already in pi, which Sage offers at the start. In many cases, a name that
is longer than one symbol can be understood much more readily than a name that is only one
symbol; compare, for instance, d to derivative. On the other hand, if a name is too long and you
use it repeatedly, it grows tiresome to type and can even make a program harder to understand.
A mathematically literate person, for instance, would understand ddx just as well as derivative,
and might well prefer the former to the latter. In general, we’d recommend somewhere around
four to six characters in a name.

Expressions, and commands to manipulate them

A mathematical expression consists of any meaningful combination of mathematical sym-
bols. One such expression is an equation, and in Sage you can assign equations as the values of
variables. You definitely need to do this this from time to time, but the equals sign already has
a meaning: it assigns the value of an expression to a symbol to create a variable! To refer to an
equation, then, you use two equals signs in a row:

sage: eq = x**2 - 3 == 1

As before, if you forget to double the equals signs, Sage will give you an error:

sage: eq = x**2 - 3 = 1

SyntaxError: can’t assign to operator

If you see that error message, the problem is almost certainly due to the use of only one equals
sign when you need two.

It is often useful to rewrite expressions in different ways, and a computer algebra system
is, essentially, nothing more than a sophisticated tool for rewriting expressions. Here are some
useful commands for rewriting expressions.

factor(exp) factor the expression exp
simplify(exp) simplify the expression exp a little bit
expand(exp) perform multiplication and other operations on the expression exp

round(exp, n) round the expression exp to n places after the decimal

TABLE 4. Some commands to manipulate expressions (there are a lot more)

Some words to the wise. The traditional mathematical symbol for multiplication is the sim-
ple, raised× or the dot symbol ·. Alas, computer keyboards have neither symbol by default; you
generally have to use a workaround if you want to type the symbol. The traditional workaround
is to type the asterisk, and that is what Sage uses.

It is common in mathematics to omit the multiplication symbol: 2x, for instance, or ab cd .
You can’t do this in Sage; that will give you various errors:

EXPRESSIONS, AND COMMANDS TO MANIPULATE THEM 32

sage: 2x

SyntaxError: invalid syntax

sage: var(’a b c d’)

(a, b, c, d)

sage: abcd

NameError: name ’abcd’ is not defined

In both cases, Sage thinks you’re trying to type the name of an identifier, which name it doesn’t
recognize:

• For 2x, you cannot start an identifier name with a number so the error is in syntax.
• For abcd, Sage has no practical way of knowing that you mean the products of a, b, c,

and d, rather than a different identifier named abcd, so the error is in fact one of the
name. (Remember that in Sage, unlike most mathematics, variables and indeterminates
can have names longer than one symbol.)

Both of these expressions work fine if you type the multiplication symbol where you want it to
be.18

Transcendental functions. Sage offers everything a scientific calculator offers. Here are
some common transcendental functions that you will find useful throughout this text and in
your math curriculum:

sin(a), cos(a), tan(a), the trigonometric functions,
cot(a), sec(a), csc(a) evaluated at a

arcsin(a), arccos(a), arctan(a), the inverse trigonometric functions,
arccot(a), arcsec(a), arccsc(a) evaluated at a

exp(a) ea (synonym for e**a)
ln(a), log(a) the natural logarithm of a

log_b(a) the logarithm base b of a

TABLE 5. Sage commands for common transcendental functions

We can also compute the hyperbolic trigonometric functions, and their inverses, by appending h

at the end of the usual name, and before the left parenthesis.
You may have noticed that log(a) is synonymous for ln(a). This is not the usual custom in

American textbooks, where log(a) is synonymous for log10 a. To compute what Americans call
the “common” logarithm, we have to use the log_b() command:

18In some versions of Sage there is a way to make multiplication work without explicitly writing the multipli-
cation symbol in these circumstances, but it is not available by default, so you’d have to run a special command for
it. This is a bad idea for beginners, and you’d still have to type a space between the symbols in any case, so we will
not describe that technique.

EXPRESSIONS, AND COMMANDS TO MANIPULATE THEM 33

sage: log(100)

log(100)

sage: log_b(100,10)

2

Be careful when trying to use these functions in larger expressions. It is common in mathematics
to write sin2 π/4 when you mean (sin (π/4))2. Sage does not make this distinction. There is really
only one way to do it right, and that is to write what you mean:

sage: sin^2(pi/4)

TypeError: ’sage.rings.integer.Integer’ object is not callable

sage: (sin^2)(pi/4)

TypeError: unsupported operand type(s) for ** or pow():

’Function_sin’ and ’int’

sage: (sin(pi/4))^2

1/2

When you see TypeError with these messages, it’s a safe bet you’ve “typed” something wrong.19

• The first kind of TypeError should be easy to debug: look for a place where a number
is followed immediately by the opening of parentheses — in our case, 2(pi)/4. When
this happens, Sage thinks you’re trying to use 2 as a function. The way Sage evaluates
expressions, it sees sin2(π/4), and while it might not seem sensible to us to view 2 (π/4) as a
function 2 evaluated at the point π/4, that’s how Sage views it.
• The second kind of TypeError can be harder. In general, the problem is that you’re

trying to perform an operation with two objects for which Sage doesn’t know how to
perform the operation. Nine times out of ten, you’ve typed something wrong, so re-
examine what you’ve typed. In this case, you’ve typed a convenient shorthand, which
Sage doesn’t understand (with reason).

Mathematical functions and substitution. A useful aspect of indeterminates is that you can
substitute values into them. Unlike assigning a value to a variable, indeterminates don’t retain
that value after the computation. We use three ways to substitute in Sage.

The first way is via the subs() method, which is shorthand for the substitute() method.
Recall that a method is a command that is specific to an object. You access this feature in the
following way:

• Type the expression’s name, then a dot, then subs(.
• After the parenthesis, list the assignments. There are two ways to do this:

– List each assignment as an equation: indeterminate=value.20

– List each assignment as a “dictionary”. To do this, open a pair of braces, list the as-
signments in the form indeterminate:value, separating each assignment by a comma,
then close the braces.

• Now close the parentheses that began after subs: subs(assignments).
19Technically, Sage is referring to the “type” of object, not to what you’ve “typed,” but we’re desperate enough

to roll with the pun.
20This does not always work. We will return to the topic later.

EXPRESSIONS, AND COMMANDS TO MANIPULATE THEM 34

Here is an example:

sage: f = x**2

sage: f.subs(x=2)

4

sage: f.subs({x:2})

4

The first substitution illustrates assignment via equations; the second illustrates assignment via
dictionaries. The second approach is the most reliable, error- and warning-free way to substitute
into any mathematical expression that contains indeterminates.21

You can actually do this without specifying the method’s name!

sage: f(x=2)

4

sage: f({x:2})

4

You should not use this approach without specifying the indeterminate’s name. If you have only
one indeterminate, as with x above, you may forget that you need to name it. In this case, Sage
will issue what’s called a warning:

sage: f(2)

DeprecationWarning: Substitution using function-call syntax

and unnamed arguments is deprecated and will be removed from a

future release of Sage; you can use named arguments instead, like

EXPR(x=..., y=...)

4

This warning might not appear on the last line. It’s not an error, and Sage manages to guess the
correct substitution and outputs the correct answer after the warning. In addition, a nice thing
about DeprecationWarnings is that they appear only once, even if you keep making the same
“mistake.” All the same, it’s a bit scary to see it there, and it’s entirely possible that the threat to
remove this guess-and-go feature will come to pass,22 so try not to make that mistake. This can
be a real problem if you provide too many values; Sage won’t know what to assign where, and
will complain:

sage: f(3,2,1)

ValueError: the number of arguments must be less than or equal to

1

This won’t happen when you specify assignments, as Sage knows what goes where:

21In particular, the second approach works even inside user-defined functions, when you want to pass an inde-
terminate as an argument to the function. We talk about this later on.

22The warning has appeared for quite a few years now.

BASIC CALCULUS 35

sage: f = x^2 - y^2

sage: f(x=3,w=2,z=1)

-y^2 + 9

The third way to substitute is useful when you’re using a mathematical expression called a
function. Recall that a function maps elements of one set, called the domain, to elements of
another set, called the range, in such a way that every input has a well-defined output. Defining
and using functions is straightforward in Sage:

sage: f(x) = x**2

sage: f(2)

4

Functions also have the useful property that they define any indeterminate that appears between
the parentheses of their definition. You can then use those indeterminates in other contexts
without first using the var() command.

sage: f(w,z) = 4*w**2 - 4*z**2

sage: f(3,2)

20

sage: factor(w**2 - z**2)

(w + z)*(w - z)

Notice that we were able to work with w and z directly, even though we didn’t define them.

Basic Calculus

We now turn to the question of Sage’s offerings for the Calculus.

Exact computation. We look at exact computation first. Sage offers three commands that
perform the exact computation for calculus. You can see in Table 6 these commands, with both
synonyms and different usage options:

• For limits, we have the synonyms lim() and limit(), which we can use to compute either
two-sided limits (default) or one-sided limits (specify a direction). You must specify both
the indeterminate (x) and the value (a).
• For differentiation, we have the synonyms diff() and derivative(), which we can use

either to differentiate once or, by specifying an optional argument, to differentiate mul-
tiple times.
• For integration, we have the synonyms integral() and integrate(), which we can use

to compute either the indefinite integral, also called the antiderivative, or if we specify
the limits of integration, to compute the definite integral, which you probably first learn
as the area under a function.

Let’s take a quick look at how these work.

BASIC CALCULUS 36

lim(f , x=a)
compute the two-sided limit of f (x) at x = a

or limit(f , x=a)
lim(f , x=a, dir=direction) compute the one-sided limit of f (x) at x = a, with

or limit(f , x=a, dir=direction) direction one of ’left’ or ’right’
diff(f , x) compute the derivative of f (x)

or derivative(f , x) with respect to x
diff(f , x, m) compute the mth derivative

or derivative(f , x, m) of f (x) with respect to x
integral(f , x) compute the indefinite integral (antiderivative)

or integrate(f , x) of f (x) with respect to x
integral(f , x, a, b) compute the definite integral over [a, b]

or integrate(f , x, a, b) of f (x) with respect to x
TABLE 6. Commands for exact computation of limits, derivatives, and integrals

Limits. First up is limits. Roughly speaking,

• lim
x→a+

f (x) is the y-value approached by f as x approaches a from the right (that is, from

numbers larger than a);
• lim

x→a−
f (x) is the y-value approached by f as x approaches a from the left; and

• lim
x→a

f (x) is the y-value approached by f as x approaches a from both sides.

If a function is continuous at a, we can find the limit by substitution, which is boring.

sage: f(x) = x^2 + 1

sage: limit(f(x), x=1)

2

sage: f(1)

2

Limits are much more interesting when the function is discontinuous at a. Here are some prob-
lems you should remember from your Calculus courses:

sage: limit((x**2 - 1)/(x - 1), x=1)

2

sage: limit(x/abs(x), x=0)

und

sage: limit(x/abs(x), x=0, dir=’left’)

-1

sage: limit(1/x, x=0, dir=’left’)

-Infinity

BASIC CALCULUS 37

The first example shows how Sage automatically detects and works around division by zero,
when possible. The second example shows what can go wrong when there is no way to work
around it: und is shorthand for, “the limit is undefined.” The third and fourth examples show
how to compute one-sided limits in the case where two-sided limits do not exist.

Speaking of 1/x, here is a two-sided result you might not expect:

sage: limit(1/x, x=0)

Infinity

If you know the correct answer, then upon seeing that you might be tempted to

PANIC!
. . . but you shouldn’t. Do not misread that answer. Sage is not claiming the result is∞; it actually
has a separate symbol for that.

sage: limit(1/x, x=0, dir=’right’)

+Infinity

Notice that this is a signed infinity, whereas the previous result was unsigned. What the unsigned
infinity indicates23 is that “the limit of the absolute value of the expression is positive infinity, but
the limit of the expression itself is not positive infinity or negative infinity.” [8]

To avoid this problem, the best thing to do is probably to evaluate your limits from each side
manually; in this case, Sage reports +Infinity or -Infinity as appropriate. You can also check
whether the limit produces unsigned_infinity:

sage: limit(1/x, x=0) == unsigned_infinity

True

. . . but in that case you’ll probably want to check the left- and right-hand limits, anyway.
Derivatives. Recall that the derivative of f (x) at x = a is

• the slope of the line tangent to f (x) at x = a (if such a line exists); or, equivalently,
• the limit of the slopes of the secant lines connecting f at x = a and x = b , as b → a; or,

equivalently,
• the limit of the slopes of the secant lines connecting f at x = a and x = b , as the distance

between a and b approaches 0 (∆x→ 0); or, equivalently,

• lim
∆x→0

f (a+∆x)− f (a)
∆x

.

We can also talk about the derivative as a function; that is, f ′ (x) is

• the value of f ′ (a) whenever x = a; or, equivalently,

23The subsequent quote is taken from the documentation on Maxima, the subsystem Sage uses to evaluate limits.
At the time of this writing, Sage’s documentation lacks this information, and can confuse the user by simplifying
(Infinity == +Infinity).full_simplify() to True. The trouble is that Infinity has one meaning when it appears
in the output of limit(), and another meaning altogether when you type it at a command line.

BASIC CALCULUS 38

• lim
∆x→0

f (x +∆x)− f (x)
∆x

, which you probably spent a lot of time manipulating in your

calculus class with an h instead of a∆x.

Sage’s diff() and derivative() functions compute the derivative as a function; if you want to
compute the derivative at a point, define a function and substitute.

sage: diff(x**2, x)

2*x

sage: df(x) = diff(x**2, x)

sage: df(1)

2

sage: diff(cos(x), x, 1042)

-cos(x)

That last example gave us the 1042th derivative of cos x. That would take an awful long time to
do by hand, unless you happened to notice a pattern.

Integrals. The word “integral” has two different meanings.
The indefinite integral of f (x) is its antiderivative; that is,

∫

f (x)d x = F (x) where F is
any function such that F ′ (x) = f (x). There are actually infinitely many such antiderivatives; an
important result of calculus is that any two of them differ only by a constant. You usually resolve
this in calculus by adding a “constant of integration” to your integral; for example,

∫

cos2x d x =
1
2

sin2x +C .

As you will see, Sage omits the constant of integration.24

The definite integral of f (x) over the interval I is the limit of weighted sums over n subinter-
vals of I as n approaches∞. Speaking precisely,

∫

I
f (x)d x = lim

n→∞

n
∑

i=1

f (xi)∆x, where xi is on the i th subinterval of I .

The interval can be either finite — [a, b] — or infinite — [a,∞) or (−∞, b] — so long as the
integral converges and is not improper. If it is improper, you have to break it into pieces; for
example,

∫ 1

−1

1/x3d x = lim
t→0−

∫ t

−1

1/x3d x + lim
t→0+

∫ 1

t

1/x3d x.

Sage, though, can handle such integrals without your breaking them apart.
You have seen from the table that Sage allows you to compute both indefinite and definite

integrals.

24Your calculus instructor would be appalled, absolutely appalled.

BASIC CALCULUS 39

sage: integrate(x**2, x)

1/3*x^3

sage: integrate(x**2, x, 0, 1)

1/3

sage: integrate(1/x**(1/3), x, -1, 1)

0

sage: integrate(1/x, x, 1, infinity)

ValueError: Integral is divergent.

These seems straightforward:

• the first gives us
∫

x2d x;
• the second gives us

∫ 1
0

x2d x;

• the third gives us
∫ 1
−1

1/ 3px d x, which is improper due to an asymptote at x = 0, though
Sage handles it with ease; and
• the fourth gives us

∫∞
1

1/x d x, which does in fact diverge; you need a power larger than 1
in the denominator to converge.

Sage itself is aware of this latter property; we show this over a series of steps.

sage: var(’p’)

p

sage: integrate(1/x**p, x, 1, infinity)

ValueError: Computation failed since Maxima requested additional

constraints; using the ’assume’ command before evaluation *may*
help (example of legal syntax is ’assume(q>0)’, see ‘assume¿ for

more details)

Is q positive, negative or zero?

Oops! That’s a perfectly sensible request. The error message is also helpful: it introduces a new
command to us, the assume() command. We won’t make very much use of this, but this is one
case where it comes in handy. Let’s assume p > 1:

sage: assume(p > 1)

sage: integrate(1/x**p, x, 1, infinity)

1/(p - 1)

Sage asserts that
∫ ∞

1

1
x p

d x =
1

p − 1

whenever p > 1, a fact that you should be able to verify by hand. Now, if we assume that p is
smaller than 1, we encounter two problems. The first you might not expect:

BASIC CALCULUS 40

sage: assume(p <= 1)

ValueError: Assumption is inconsistent

If you really want to change this, you can; use the forget() command to forget anything you
assume()’d.25 We really do want to change this, so,

sage: forget()

sage: assume(p <= 1)

sage: integrate(1/x**p, x, 1, infinity)

ValueError: Computation failed since Maxima requested additional

constraints; using the ’assume’ command before evaluation *may*
help (example of legal syntax is ’assume(p>0)’, see ‘assume¿ for

more details)

Is p positive, negative or zero?

That may surprise you, but not for long: if p ≤ 0 then we’re looking at xq with q ≥ 0, whereas
p > 0 is what we had in mind. Since Sage can’t read our minds, let’s add the assumption:

sage: assume(p>0)

sage: integrate(1/x**p, x, 1, infinity)

ValueError: Integral is divergent.

Although it reports an error, we should consider this error a success, as it verifies what we already
knew.26

(Don’t forget to forget() when you’re done assume()ing.)

Numerical integration. Integrals feature a twist that derivatives do not: you cannot always
compute an “elementary form” of an integral.27 Consider, for instance,

∫

e x2 d x.

sage: integrate(e**(x**2), x)

-1/2*I*sqrt(pi)*erf(I*x)

You have probably not seen erf (x) before, and that’s fine.28 The point is that it’s not an elemen-
tary function. If you try to get help on it in Sage, you will see the following:

25You can also forget() only part of what you assumed. So aside from the use of forget() as we have shown it,
you could type forget(p <= 1). This would be especially useful if several assumptions were in play, and you wanted
to forget only one.

26It may come as a surprise that Sage requests us to assume that p > 0 when, in fact, the integral diverges for
p ≤ 0, as well. From the mathematical point of view, the only assumption we need is p ≤ 1. Branching through
all the special cases can be too complicated to implement in computer science, however, so the user must frequently
work out some of these things on his own.

27The precise definition of an “elementary form” is beyond the scope of this text, but you can basically think of
it as any algebraic combination of the functions you studied in precalculus, including trigonometric, exponential,
logarithmic, and hyperbolic functions.

28For those who are interested, it’s the Gaussian error function, and you’re likely to see it in a probability course.

BASIC CALCULUS 41

sage: erf?

...

erf(x) = frac{2}{sqrt{pi}} int_0^x e^{-t^2} dt.

...

In other words,

erf (x) =
2
p
π

∫ x

0
e−t 2

d t .

So there’s no way to simplify this further.
The following example appears when you try to compute the arclength of an ellipse centered

at the origin, with horizontal axis of length 2 and vertical axis of length 1.

sage: f(x) = sqrt(1 - x^2/4)

sage: df(x) = diff(f, x)

sage: integrate(sqrt(1+(df(x))**2), x, -2, 2)

integrate(sqrt(-1/4*x^2/(x^2 - 4) + 1), x, -2, 2)

In this case, Sage’s answer to the integral is just another integral. That doesn’t seem especially
helpful, but there’s really not much Sage can do.29 The integral does not reduce to elementary
terms.

In some cases, an integral does reduce to elementary terms, but you get something so compli-
cated that you might well prefer not to work with it. Here’s an example.

sage: integrate(x^10*cos(x), x)

10*(x^9 - 72*x^7 + 3024*x^5 - 60480*x^3 + 362880*x)*cos(x) + (x^10

- 90*x^8 + 5040*x^6 - 151200*x^4 + 1814400*x^2 - 3628800)*sin(x)

. . . and that’s not even that bad.
In many cases, you really just want a numerical value for the integral. Perhaps you want the

area, or some accumulation of values, or some other application. In this case, you don’t have
to go through the indefinite integral; you can approximate the definite integral using one of the
techniques of numerical integration. Sage’s command for this is numerical_integral().

numerical_integral(f , a, b) estimate
∫ b

a
f (x)d x

numerical_integral(f , a, b, max_points=n) estimate
∫ b

a
f (x)d x using no more

than n points
Its usage requires a little explanation, but before we do that, let’s consider an example.

sage: numerical_integral(sqrt(1+(df(x))**2), -2, 2)

(4.844224058045445, 4.5253950830572916e-06)

29At least one other computer algebra system will answer something to the effect of EllipticE(. . .), which
looks promising until you read the documentation on it. Like erf(. . .), it just restates the original integral. In this
case, the name reflects that it’s an elliptic integral.

MATHEMATICAL STRUCTURES IN SAGE 42

Right away you should notice several differences.
• We do not specify the variable of integration for numerical_integral().
• The result consists of two numbers. The second one is in a kind of scientific notation,

which in this case you should recall as being approximately 4.525× 10−6.
What we’re receiving as our answer here is an ordered pair. The first value is Sage’s approximation
of the integral; the second is an estimate of the error. In other words, our answer is certainly
correct up to the 4th decimal place, though rounding prompted by the 6th decimal place (where
the error may occur) creates some ambiguity in the 5th. We can say that the integral lies within
the interval (4.8442195,4.8442286):

sage: A, err = numerical_integral(sqrt(1+(df(x))**2), -2, 2)

sage: A - err, A + err

(4.844219532650363, 4.844228583440528)

Mathematical structures in Sage

This is an opportune time to introduce you to one of the more powerful features of a com-
puter algebra system: its ability to work in different mathematical contexts. In this course we
will focus especially on rings and fields:

A ring: is a set where addition and multiplication behave according to the properties you’d
expect:

Closure: Adding or multiplying two elements of the ring gives another element of the
ring.

Associative: The result of adding or multiplying three elements doesn’t depend on
which two you add or multiply first: a+(b + c) = (a+ b)+ c and a (b c) = (ab) c .

Identities: You can find two elements “0” and “1”, for which adding “0” changes no
element of the ring, and multiplying by “1” changes no element of the ring: a+0=
a = 0+ a and a× 1= a = 1× a.

Distributive: You can distribute multiplication over addition: a (b + c) = ab + ac .
Addition enjoys two additional properties:

Commutative addition: The result of adding two elements of the ring doesn’t depend
on their order in the sum: a+ b = b + a.

Additive inverses: You can find the “opposite” of any element, so that adding them
returns “0”: d + b = 0 = b + d . We usually denote this opposite as a negative, so
that a+(−a) = 0= (−a)+ a.30

Notice that a ring might not have commutative multiplication or multiplicative inverses. Omit-
ting this allows us to organize sets of matrices as rings, as matrices satisfy the properties listed
above, but do not satisfy the other two.

A field: is a commutative ring where you can also “divide,” by which we mean, you can
find a “multiplicative inverse” for every nonzero element, by which we mean, for each
nonzero a you can find a b in the same ring such that ab = 1. The analogy to division is
only that: an analogy; we do not typically use the division symbol outside of the systems

30You can also think of this property as “closure under subtraction,” but people don’t usually speak of it in such
terms.

MATHEMATICAL STRUCTURES IN SAGE 43

you’re accustomed to; we write them with an exponent of−1: rather than a/b , we write
a · b−1.

The usual suspects. You have already spent a lot of time working in rings and fields, though
you probably were not told this. Sage offers you a number of rings and fields directly:

Set
Traditional

Structure Sage symbolmathematical
symbol

Integers Z ring ZZ

Rational numbers Q field QQ
(integer fractions)

Real numbers R field RR (but see below)
Complex numbers C field CC (but see below)

TABLE 7. Common rings and fields in Sage

When you type some value, Sage makes an educated guess as to which type of object you want.
You can find this using a type() statement:

sage: a = 1

sage: type(a)

<type ’sage.rings.integer.Integer’>

sage: b = 2/3

sage: type(b)

<type ’sage.rings.rational.Rational’>

sage: c = 2./3

sage: type(c)

<type ’sage.rings.real_mpfr.RealLiteral’>

sage: d = 1 + I

sage: type(d)

<type ’sage.symbolic.expression.Expression’>

That last one is not actually in the complex ring C, as we’d expect! While 1 + i is in fact a
symbolic expression, and that will suffice for most of our purposes, we can compel Sage to view
it as an element of C. We do this by typing CC, followed by parentheses, in which we type the
complex number we want to work with. The drawback is that we lose the precision of symbolic
computation:

MATHEMATICAL STRUCTURES IN SAGE 44

sage: d2 = CC(1+I)

sage: type(d2)

<type ’sage.rings.complex_number.ComplexNumber’>

sage: d3 = d2 + (1 - I)

sage: d3

2.00000000000000

Do you see what happened? Instead of receiving the exact value 2, we received an approxima-
tion of 2. In this case, the approximation looks exact, but that’s beside the point; work it hard
enough, and error will start to creep in. For instance:

sage: d3 - 1.999999999999

1.00008890058234e-12

Why did this happen? In order to compute effectively in the real and complex fields, Sage
resorts to approximations of the numbers involved. You’ll see this right away if you look at d2:

sage: d2

1.00000000000000 + 1.00000000000000*I

The very process of converting d2 into a “complex” number means we have surrendered some
precision. The same will happen if you work in RR. Sometimes you just have to do that, but it’s
a fact you have to keep in mind. Forgetting it can lead to puzzling results, such as:

sage: 2.99 - 2.9

0.0900000000000003

Oops!
It is often useful to separate the real and imaginary parts of a complex number. Sage pro-

vides two useful commands to do this. They work whether the complex number is a symbolic
expression or the number lies in CC.

real_part(z)
real part of z

imag_part(z)
imaginary part of z

sage: real_part(12-3*I)

12

sage: imag_part(CC(12-3*I))

-3.00000000000000

The norm of a complex number is also available.

norm(z)
norm of z

MATHEMATICAL STRUCTURES IN SAGE 45

If you are unfamiliar with the norm of a complex number, it is comparable to the absolute value
of a real number, in that it gives an idea of the number’s size. Speaking precisely, the norm is

‖a+ b i‖= a2+ b 2.

If this reminds you of the Pythagorean Theorem, it should, as it is nearly identical to the Eu-
clidean distance formula.

sage: norm(2+3*I)

13

You can sometimes convert from reals to integers, but not always.

sage: a = ZZ(1.0)

sage: a

1

sage: b = ZZ(1.2)

TypeError: Attempt to coerce non-integral RealNumber to Integer

Another symbol you will encounter from time to time is N, the set of nonnegative integers,
also called the natural numbers. This is not a ring because, for instance, 1 ∈ N but −1 6∈ N.
Nevertheless, it is important enough that you will see it from time to time.

The unusual suspects. A lot of the applications of mathematics of the last half-century arise
in the context of “modular arithmetic.” Without going into too much detail, modular arithmetic
consists of performing an operation, then taking the remainder after division by a fixed number,
called the modulus. A very old example of this arises when dealing with time:

sage: current_hour = 8

sage: hours_busy = 20

sage: time_free = current_hour + hours_busy

sage: time_free

28

The problem here is obvious: there is no “28th” hour of the day. We can find the correct time by
dividing by 12, and taking the remainder:

sage: time_free = (current_hour + hours_busy) % 12

sage: time_free

4

It is now obvious that the individual in question is not free until 4:00.
Explicitly asking for modular arithmetic in each operation is burdensome. Fortunately, it

turns out that modular arithmetic makes for a perfectly acceptable ring, so that we can add one
new row to our table of rings and fields:

EXERCISES 46

Set
Traditional

Structure Sage symbolmathematical
symbol

Integers modulo n Zn ring ZZ.quo(n)
(n > 1)

TABLE 8. Common rings and fields in Sage

Let’s see how this works in practice. We’ll test our previous problem by working in Z12.

sage: Z_12 = ZZ.quo(12)

sage: current_hour = Z_12(8)

sage: hours_busy = Z_12(20)

sage: time_free = current_hour + hours_busy

sage: time_free

4

The advantages to this approach will not look as apparent here as they are in practice, but they
really are there: exponentiation by large numbers, for instance, is much faster when we go this
way. Because modular arithmetic is a powerful tool, we will have you work with it quite a lot
from here on.

Exercises

True/False. If the statement is false, replace it with a true statement.
1. Although it works for exponentiation, you should avoid using the ^ symbol in that context.
2. 6 // 4 == 1 and 6 % 4 == 2 .
3. Although i is a fixed mathematical constant and Sage provides the symbol I to represent it,

you cannot always count on the equation I**2 == -1 to be true in Sage.
4. You use the var() command to create new variables. You create new indeterminates by as-

signing values to them.
5. If you assign e = 7 and later want to restore e to its original value, so that ln(e) == 1, use

reset(’e’).
6. The name l337 satisfies the requirements for a Sage identifier. (The first symbol is a lower-case

L.)
7. The name 1337 satisfies the requirements for a Sage identifier. (The first symbol is the number

1.)
8. In Sage, log(a) == ln(a) for any value of a.
9. Before defining a function with the indeterminate w, you have to define the indeterminate w.
10 If a one-sided limit() returns +Infinity, then the corresponding limit is∞.
11. If a two-sided limit() returns Infinity, then you need to check the limit from both sides.
12. Sage can simplify all integrals to elementary form using the integral() command.
13. An indefinite integral has infinitely many solutions, but Sage provides only one.
14. Sage cannot handle definite integrals when there is an asymptote in the interval.
15. Z_12(12) == 0 .
11. Bonus: The answer to all these True/False questions is “False.”

EXERCISES 47

Multiple Choice.

1. If you encounter an AttributeError while working in Sage, which of the following is not an
appropriate course of action?
A. Ask your instructor.
B. Look in the index to see if something like it is covered somewhere in the text.
C. PANIC!
D. When all else fails, inquire at the sage-support website.

2. For which of the following expressions does Sage seem to return a nonzero value? (But see
Short Answer #3 below.)
A. e**(I*pi) + 1

B. I**2 + 1

C. (cos(pi/3)+I*sin(pi/3))**6 - 1

D. sin(pi/4)**2 + cos(pi/4)**2 - 1

3. Which of the following options does Sage not offer, even though many programming lan-
guages do?
A. constants
B. variables
C. identifiers
D. indeterminates

4. Which of the following identifier names is probably not the wisest idea for the i the value of
a in a sequence?
A. a

B. a_curr

C. ai

D. a_i

5. Which of the following identifier names might not be the wisest idea for the value of a func-
tion at a point x0?
A. y0

B. y_0

C. function_value

D. yval

6. One way to compute an approximate value of log10 3 in Sage by typing log_b(10.,3.). Which
of the following would also work?
A. log(3.)

B. log(3.)/log(10.)

C. log(10.)/log(3.)

D. log(10.^3)

7. Which of the following methods of substituting 2 for x in a mathematical function f is guar-
anteed to work in every circumstance?
A. f(2)

B. f(x=2)

C. f.subs(x=2)

D. f({x:2})

8. Which of the following methods of substituting 2 for x in a mathematical expression f is guar-
anteed to work in every circumstance?
A. f(2)

EXERCISES 48

B. f(x=2)

C. f.subs(x=2)

D. f({x:2})

9. Which of the following would you expect as the result of the command, limit(1/abs(x),
x=0)?
A. Infinity

B. +Infinity

C. ind

D. und

10. Which of the following would you expect as the result of the command, limit(1/(x-1),
x=1, dir=’right’)?
A. Infinity

B. +Infinity

C. ind

D. und

11. Which of the following would you expect as the result of the command, limit(sin(1/x),
x=0, dir=’right’)?
A. Infinity

B. +Infinity

C. ind

D. und

12. Sage will do your Calculus homework for you on the following integrals:
A. Exact integrals, because Sage can simplify every integral to elementary form.
B. Approximate integrals, because Sage only provides one answer for an indefinite integral,

rather than all possible answers.
C. Any kind of integral, because Newton figured those out centuries ago, though computers

have only now become efficient enough to do them.
D. None of them, because a good Calculus teacher checks the steps, not just the answer, and

Sage doesn’t show the steps.31

13. Which of the following is not a guaranteed property of a ring?32

A. Closure of multiplication
B. Existence of a smallest element
C. Existence of an additive identity
D. Closure of subtraction

14. Which of the following is not a good reason to perform arithmetic integers modulo n?
A. Confusing other people
B. Modeling “real world” problems
C. Faster solution to some problems
D. Mathematical curiosity

15. If R is a variable that references a ring, which command will compel Sage to view the number
referenced by the variable a as an element of R, rather than as an integer?
A. R(a)

B. R a

C. a: R

31. . . and every Calculus teacher is good, right?
32Be careful on this one; we’re being a bit tricky — but only a bit.

EXERCISES 49

D. R: a

Bonus: Which answer is correct?
A. All of them.
B. Some of them.
C. At least one of them.
D. Any that is not wrong.

Short answer.

1. Describe another situation where modular arithmetic would come in useful.
2. For Multiple Choice question #2, the full simplification is in fact zero for all four answers,

but that Sage doesn’t perform that simplification automatically. What command(s) could you
issue to make Sage detect this?

3. Let’s revisit this Sage interaction that appears earlier in the notes.

sage: d2 = CC(1+I)

sage: type(d2)

<type ’sage.rings.complex_number.ComplexNumber’>

sage: d3 = d2 + (1 - I)

sage: d3

2.00000000000000

sage: d3 - 1.999999999999

1.00008890058234e-12

Sage reports that the difference between d3 and 1.999999999999 is 1.00008890058234×
10−12. This is slightly wrong; the correct answer should be a clean 1× 10−12.
(a) Describe a sequence of commands that use exact arithmetic to give us the correct answer.
(b) Why might someone not care very much that the approach using the ring CC is slightly

wrong?
4. In a number of situations, you have to raise a number a to a large exponent b , modulo another

value n. Choose a not-too-large number a (double digits is fine) and raise it to larger and larger
exponents b , modulo n using the % operator, until you see a noticeable slow down. (Don’t
get too carried away, as once it slows down, it really starts to slow down.) Then compare that
operation when Sage performs it in the ring Zn. Write down these values for a, b , and n, and
indicate whether it really is faster using the ring than using the % operator.

5. We claimed only that Zn is a ring, but for some values of n it’s actually a field. There is no
question of whether multiplication is commutative (it is) but whether every element has a
multiplicative inverse is not so clear. Check this for the values n = 2,3,4,5,6,7,8,9,10 by
testing as many products ab as needed to decide the question.
(a) Do you see a pattern in the values of n for which Zn is a field?
(b) When Zn is not a field, do you see a pattern in the values of a for which you can find a

multiplicative inverse b ?
Hint: We don’t require a multiplicative inverse for 0, 1 is its own inverse (after all, 1× 1= 1),
and in Zn we conveniently have n = 0. Along with the commutative property, this means
you need check at most (n−2)(n−1)

2 products; with n = 10 you need check only 35. So if you’re
clever about it, it’s not as burdensome a problem as you might think.

EXERCISES 50

Bonus: Why were we able to say, with confidence, that in #5 we need at most (n−2)(n−1)
2 products

to determine whether Zn is a field?

Pretty (and not-so-pretty) pictures

Visualization often provides insights we do not obtain by other methods. This doesn’t apply
merely to mathematics; hence, the saying, “A picture is worth a thousand words.” Many of the
exercises and labs we assign will ask you to produce some pictures, then draw conclusions from
them.

Sage offers a very nice set of tools to draw graphs, along with an intuitive interface for using
them. This chapter takes a look at the two-dimensional objects you might have to use. Everything
we do here is strictly Cartesian geometry; that is, we assume that we’re working on a Cartesian
plane.

Starting in this chapter, we won’t merely list commands with a short explanation; rather, we’ll
list the commands and their options. Keep in mind that the description we give of the options may
not be complete:

• We focus only on a few aspects of the command that we think are most useful for the
tasks at hand and for what you’d need in the future.
• Sage is bound to change in the future, and it’s unlikely every Sage command would long

remain the same as what it is now.
Remember that every Sage command will offer you a fuller explanation and list of options if you
simply type its name, followed by the question mark. For instance:

sage: point?

Signature: point(points, **kwds)

Docstring:

Returns either a 2-dimensional or 3-dimensional point or sum of

points.

. . . and so forth.

2D objects

We start with a look at some fundamental two-dimensional objects.

“Straight” stuff. You can illustrate an awful lot of mathematics just by looking at points and
line segments. Sage offers three commands to graph such things: point(), line(), and arrow().
Strictly speaking, line() produces a crooked line segment, not necessarily a straight line.

Every description starts with a template for the command, listing required information and
optional information (usually named options), followed by a bulleted list describing the informa-
tion. You don’t necessarily have to give all the information, so for each piece of information, we
add in parentheses the value Sage assumes for that information when you omit it.

Both commands refer to “collections.” We cover collections in depth later on, but for now
you can use tuples, a sequence of objects enclosed in parentheses. For instance, (2,3) is a tuple of

51

2D OBJECTS 52

point(position, options)
• position is

– an ordered pair, or
– a collection of ordered pairs

• options include:
– pointsize = size (10)

FIGURE 1. point()

line(points, options)
• points is a collection of ordered pairs
• options include:

– thickness = thickness (1)

FIGURE 2. line()

arrow(tailpoint, headpoint, options) or arrow(path, options)

• tailpoint is an ordered pair; the arrow starts here
• headpoint is an ordered pair; the arrow ends here
• options include:

– arrowsize = arrowhead’s size (5)
– head = arrowhead’s location (1)

∗ 0 means “at tailpoint”
∗ 1 means “at headpoint”
∗ 2 means “both endpoints”

– width = stem width (2)

FIGURE 3. arrow()

The following options are common to all 2D objects:
• alpha= transparency (1.0)
• color= color, which we discuss in a dedicated section (’blue’ or (0,0,1))
• linestyle= drawing style of the line, which can be ’dashdot’, ’dashed’, ’dotted’, or
’solid’ (’solid’)
• zorder= distance to viewer, compared to other objects (0)

FIGURE 4. Options common to all 2D objects

2D OBJECTS 53

integers. In this case, there are only two elements in the tuple, so we also call it an ordered pair.
Tuples can be much longer: (x, x**2, x**3, x**4) is a tuple of symbolic expressions, though
not an ordered pair.

Figure 4 lists some common options for all two-dimensional objects. In this section, we’ll
discuss all the options but color; we dedicate a special page to that.

In addition to illustrating the objects, our first example will show how intuitive it is to com-
bine several images into one: simply add them with the + operator. To aid in readability, we will
assign several objects to variables and combine them at the end.

sage: p1 = point(((1,3),(4,0)), color=’red’, \

pointsize=60)

sage: p2 = line(((1,3),(4,0)), color=’black’, \

thickness=2)

sage: p1 + p2

We have a nice, black line that connects two red dots. (Notice the use of the line break to start
a new line. Remember that you don’t have to do this, especially in the likely circumstance that
you have more space than we do.)

If you look closely, you’ll notice that red dots lie underneath the black line. Most people
don’t think that looks very good, and there’s a surefire way to fix it; this is where the zorder

option comes in. We’ve already noted that an object’s zorder indicates how close it should seem,
relative to other objects in the image. The larger the number, the “closer” to the viewer. You can
think of the number 0 as being a “middle location;” positive numbers will appear “in front of”
zero, and negative numbers will appear “behind” it.

We can use this to “lift” the points over the line.

sage: p1 = point(((1,3),(4,0)), color=’red’, \

pointsize=60, zorder=5)

sage: p2 = line(((1,3),(4,0)), color=’black’, \

thickness=2)

sage: p1 + p2

2D OBJECTS 54

Sage now considers the points to be at level 5, closer to the viewer, while the line remains at level
0, farther away. This is why the points now lie above the line.

Why this option called zorder? This will make sense if you’re acquainted with 3-dimensional
graphs: it indicates the z-value of the graphics object, when viewed from above the x-y plane.
We illustrate this with a 3D image:

Imagine yourself standing above this, looking down: you would see the red dots, at z = 5, in
front of the line, at z = 0. (The dashed lines illustrate that the red points lie above the endpoints
of the line.)

We mentioned earlier that the line() command really produces a “crooked” line segment.
Here’s an example of this at work.

sage: line(((0,0),(1,4),(3,3),(4,1),(0,0)), color=’green’)

In this case, we’ve used the line to draw a closed figure. While you can do this, it would be more
convenient to use the polygon() command, especially if you wanted to fill the object. With a
polygon, you don’t have to specify the first point again as the last point, because the implicit
meaning of a polygon is a closed figure.

sage: polygon(((0,0),(1,4),(3,3),(4,1)), color=’green’)

2D OBJECTS 55

polygon(points, options)
• points is a collection of ordered pairs
• options include:

– color = fill color (’blue’ or (0,0,1))
note that this differs from the usual interpretation of color

– edgecolor = edge color (’blue’ or (0,0,1))
– fill = whether to fill the polygon (False)
– thickness = edge thickness (1)

FIGURE 5. polygon()

You don’t have to fill a polygon, though. Let’s add another polygon beneath this one. While
we’re at it, we’ll add a red edge to this one, just to make it stand out.

sage: p1 = polygon(((0,0),(1,4),(3,3),(4,1)), color=’green’, \

edgecolor=’red’, thickness=2)

sage: p2 = polygon(((1,0),(2,5),(3,0)), thickness=4, fill=False, \

zorder=-5)

sage: p1 + p2

In some situations, we want to “see through” the top figure, to see the one underneath. This is
where the alpha option comes into play. This option controls the transparency of an object. Its
values range from 0 (invisible) to 1 (opaque).

2D OBJECTS 56

sage: p1 = polygon(((0,0),(1,4),(3,3),(4,1)), color=’green’, \

edgecolor=’red’, thickness=2, alpha=0.5)

sage: p2 = polygon(((1,0),(2,5),(3,0)), thickness=4, fill=False, \

zorder=-5)

sage: p1 + p2

That’s a little too transparent. We just want a hint that something lies underneath; we don’t want
to make the blue triangle seem as if it’s actually on top. We modify alpha accordingly.

sage: p1 = polygon(((0,0),(1,4),(3,3),(4,1)), color=’green’, \

edgecolor=’red’, thickness=2, alpha=0.8)

sage: p2 = polygon(((1,0),(2,5),(3,0)), thickness=4, fill=False, \

zorder=-5)

sage: p1 + p2

Be careful with the polygon() command. It can’t read your mind; it follows the points in the
precise order you specify. It doesn’t take much to change a pentagon to a pentagram.

sage: polygon(((1,0), (cos(2*pi/5),sin(2*pi/5)), \

(cos(4*pi/5),sin(4*pi/5)), \

(cos(6*pi/5),sin(6*pi/5)), \

(cos(8*pi/5),sin(8*pi/5))), thickness=2)

2D OBJECTS 57

circle(center, radius, options)
• center is an ordered pair
• radius is a real number
• options include

– fill = whether to fill the circle (False)
– edgecolor = color of the circle’s edge (’blue’ or (1,0,0))
– facecolor = color used to fill the circle (’blue’ or (1,0,0))
– if you specify color, then Sage ignores edgecolor and facecolor even if you specify

them explicitly

FIGURE 6. circle()

sage: polygon(((1,0), (cos(4*pi/5),sin(4*pi/5)), \

(cos(8*pi/5),sin(8*pi/5)), \

(cos(2*pi/5),sin(2*pi/5)), \

(cos(6*pi/5),sin(6*pi/5))), thickness=2)

We won’t illustrate arrows as defined in this section; see an example in a following section.
Feel free to experiment with them on your own.

“Curvy” stuff. We consider three more objects: circles, ellipses, arcs, and text.33

The first example is an arc, primarily to illustrate the relationship between angle, radius, r2,
and sector. To that end, we’ll add some dashed lines to help illustrate, obtaining the added benefit
of illustrating the linestyle option.

33Text is “curvy”!

2D OBJECTS 58

ellipse(center, radius, options)
• center is an ordered pair
• radius is a real number
• options include

– fill = whether to fill the circle (False)
– edgecolor = color of the circle’s edge (’blue’ or (1,0,0))
– facecolor = color used to fill the circle (’blue’ or (1,0,0))
– if you specify color, then Sage ignores edgecolor and facecolor even if you specify

them explicitly

FIGURE 7. ellipse()

arc(center, radius, options)
• center is an ordered pair
• radius is a real number
• options include

– angle = angle between arc’s axis and x-axis; length of this axis will be radius (0)
– r2 = a second radius, for the arc of an ellipse; perpendicular to angle (equal to radius,

obtaining the arc of a circle)
– sector = an ordered pair, indicating the angles that define the beginning and the

end of the sector ((0,2π))

FIGURE 8. arc()

sage: p1 = arc((0,0), 2, angle=pi/6, r2=4, sector=(pi/4,5*pi/6), \

thickness=2)

sage: p2 = line(((0,0), (2*cos(pi/6),2*sin(pi/6))), color=’red’, \

linestyle=’dashed’)

sage: p3 = line(((0,0), (4*cos(pi/6+pi/2),4*sin(pi/6+pi/2))), \

color=’red’,linestyle=’dashed’)

sage: p4 = ellipse((0,0),2,4,pi/6,color=’red’,zorder=-5)

sage: p1 + p2 + p3 + p4

2D OBJECTS 59

Notice is that the ellipse’s “horizontal” axis is tilted at the angle π/6, as illustrated by the dashed red
line in the first quadrant. The “vertical” axis is likewise tilted; so the angle option has effectively
rotated the entire affair by π/6. To draw the arc, we specified the sector (π/4,π/6). This starts the
arc at the angle π/4+ π/6= 5π/12.

You may be wondering how that last statement can be true when the blue arc clearly starts
in the second quadrant, rather than the first quadrant — after all, 5π/12< 6π/12= π/2, and π/2 is the
vertical axis. The answer lies in the distortion caused be the ellipse’s “vertical” axis; it pulls the
arc’s endpoint “upward,” but since the ellipse rotated, “upward” effectively means to the north-
by-northwest, obtaining a point in the second quadrant. Don’t take our word for it, though; try
it with a circle by omitting any specification of r2, and see how things make more sense.

sage: p1 = arc((0,0), 2, angle=pi/6, sector=(pi/4,5*pi/6), \

thickness=2)

sage: p2 = line(((0,0), (2*cos(pi/6),2*sin(pi/6))), color=’red’, \

linestyle=’dashed’)

sage: p3 = line(((0,0), (2*cos(pi/6+pi/2),2*sin(pi/6+pi/2))), \

color=’red’, linestyle=’dashed’)

sage: p4 = circle((0,0),2,color=’red’,zorder=-5)

sage: p1 + p2 + p3 + p4

An aside, for those who lack confidence in their trigonometry (as well as for those who
don’t, but should). If you’re wondering where we came up with the ordered pairs for the lines,
let’s review some trigonometry. Recall first that, in radian notation, a full turn is considered to
have an angle of 2π, rather than 180◦. We traditionally split the full turn from there into a half
turn (2π/2 = π), a quarter turn (2π/4 = π/2), a sixth of a turn (2π/6 = π/3), and a twelfth of a turn
(2π/12= π/6).

Meanwhile, the functions cosα and sinα represent the x- and y-values of a point on the unit
circle that lies at angle α from the horizontal. For example, the point on the unit circle at an
angle of π/3 from the horizontal would be

�

cos
�π

3

�

, cos
�π

3

��

=
�

1
2

,

p
3

2

�

.

What if you want a circle of different radius? In this case, the relationship between cosine, sine,
and the triangle formed by the radius and the x- and y-values mean you should scale the point by
multiplying by the circle’s radius. For example, the point on a centered circle of radius 2 at an

2D OBJECTS 60

text(text string, position, options)
• text string is the label, enclosed in either single or double quotes
• position is an ordered pair
• options include

– fontsize = size of text (10)
– rotation = angle to rotate text, in degrees (0)

FIGURE 9. text()

angle of π/6 from the horizontal would be
�

2cos
�π

6

�

, 2 sin
�π

6

��

=
�p

3,1
�

.

One point of a computer algebra system is to save us the trouble of simplifying. Rather than work
out (sqrt(3),1) as a point on the line, we fed Sage the expression (2*cos(pi/6), 2*sin(pi/6))

and let Sage figure out the rest on our behalf.
Likewise, when we wanted to place a point along the angle for the ellipse’s “vertical” axis,

rather than figure out the simplified value, we simplify asked Sage to do the rotation, then find
the corresponding points:

4cos

π

6
︸︷︷︸

start

+
π

2
︸︷︷︸

rotate

, 4 sin

π

6
︸︷︷︸

start

+
π

2
︸︷︷︸

rotate

.

We can illustrate this in Sage:

sage: p1 = circle((0,0),2)

sage: p2 = arrow((0,0),(2*cos(pi/6),2*sin(pi/6)), \

linestyle=’dashed’, color=’red’)

sage: p3 = arrow((0,0), (2*cos(pi/6+pi/2), 2*sin(pi/6+pi/2)), \

linestyle=’dashed’, color=’red’)

sage: p4 = arc((0,0), 2, angle=pi/6, sector=(0,pi/2), color=’red’,\

thickness=2, zorder=5)

sage: p1 + p2 + p3 + p4

-2 -1 1 2

-2

-1

1

2

Notice the use of both arrow() and the linestyle option.

Text. Wouldn’t it be nice to add some labels to that last picture? The text() command lets
us put labels into an image. Our example reuses the images from the previous example.

2D OBJECTS 61

sage: p5 = p1 + p2 + p3 + p4

sage: p6 = text(’pi/2’, (.5,1.5), color=’red’, fontsize=18, \

rotation=30)

sage: p5 + p6

That looks okay, but wouldn’t it be nice if it looked a little more “professional”? Wouldn’t it
be nicer to have the Greek letterπ instead of a couple of Latin characters? One way to accomplish
this would be to change the keyboard layout on your computer so that you can type Greek
letters, but it still wouldn’t look like a real fraction.34 Instead, Sage offers an elegant mathematical
solution via LATEX.

Without getting too far into the weeds, LATEX is a kind of “markup language” developed during
the 1970s and 1980s. It is extremely common for mathematicians to type papers and books in
LATEX (you’re reading an example) because it offers extremely intuitive and flexible commands
to indicate what you mean to write, and automatically arranges the text in a manner consistent
with mathematical tradition, with appropriate placement of exponents, stretching of grouping
symbols, etc.

Sage doesn’t offer the full range of LATEX markup; it offers only a subset, but that subset
suffices for practical work in graphics. To use LATEX markup, you basically need to perform only
two tasks:

• enclose the substring of mathematics in the LATEX delimiters $ and $; and
• use appropriate LATEX markup, as described in the chapter beginning on page 1.

An aside. Users of LATEX will notice that we use double backslashes when ordinarily they’d
expect single backslashes. This is because the single backslash is a control command in Sage35

strings: \n, \r, \t all have special meanings (as do others). You might get away with a single
backslash sometimes, but it can also wreak havoc at the most inconvenient of times. Using a
double backslash consistently avoids potential ambiguities.

And yet. . . If you look at Figure 24 on page 252, you’ll notice we used single backslashes. The
reason is that we later talk about inserting LATEX into the worksheet, and in that case a double
backslash is inappropriate. It’s a rather unfortunate bit of confusion to the learner, but the basic
rule is pretty simple: the markup requires a single backslash, but in a string of text that means
you need a double backslash.

In addition. . . You can use LATEX in a worksheet’s HTML cells, too! (See p. 26 for an ex-
planation on how to create an HTML cell.) Enclose the text in dollar signs, in “backslashed”

34Plus, we tried it. It doesn’t work.
35This is because Sage is built on Python.

2D OBJECTS 62

parentheses, or in backslashed brackets, and you can use LATEX markup to your heart’s content.36

For instance, the following code will give you a nice layout of the definition of the integral:

sage: %html

The definition of the derivative is <i>the limit of

the slopes of the secant lines as the distance between the

points approaches 0;</i> or,\[\frac{d}{dx}f(x) = \lim_{\Delta

x\rightarrow\infty}\frac{f(x+\Delta x)-f(x)}{\Delta x}\]

Back to our regularly scheduled programming. Let’s revisit that previous image, using LATEX
this time to make it look good. If you look at Figure 24, you’ll findπ in the row on Greek letters;
to get the Greek symbol, you’d want the markup \pi, which in a Sage string we write as \\pi.

sage: p7 = text(’$\\pi/2$’, (.5,1.5), color=’red’, \

fontsize=18, rotation=30)

sage: p5 + p7

That looks a lot better. But maybe you’d like it to look like a real fraction, instead of a simple
division? Look at Figure 24 again, and you’ll see a \frac markup. This translates to \\frac in a
Sage string, but it also illustrates something else about LATEX markup: some commands require
additional information. This information is usually passed in pairs of braces, sometimes multiple
pairs. For a fraction, this should make sense: a fraction requires both a numerator and a denom-
inator, so it requires two items of information, so two pairs of braces. We illustrate this in the
example below, which differs slightly from the ones before.

sage: p8 = text(’Rotation of $\\frac{\\pi}{2}$’, (.5,1.5), \

color=’red’, fontsize=18)

sage: p5 + p8

36Well, maybe not to your heart’s content, in more ways than one. Within reason, anyway.

2D OBJECTS 63

Colors. There are several ways to define colors in Sage. One is by name, and Sage offers an
awful lot of colors by name, with intriguing options such as ’chartreuse’ and ’lavenderblush’.
You can get a full list of names by typing the following:

sage: colors.keys()

[’indigo’, ’gold’, ’firebrick’, ’indianred’, ’yellow’,

’darkolivegreen’, ...

At the present time there are nearly 150 predefined colors, so we’ve left out an awful lot.
You can actually obtain several million colors (at least 16 million or thereabouts) by manip-

ulating what are called “RGB values.” Visible light can be broken into three components — red,
green, and blue — and we can ask Sage to assign each of these components, called channels, a value
from 0 to 1. You can think of “0” as meaning the channel is completely off, and “1” as meaning
the channel is completely full. That leads us to the following:

R G B interpretation result

1 0 0 full red, no green or blue red
1 1 0 full red and green, no blue yellow

0.5 0.5 0.5 half-power red, green, blue gray
0.8 0.8 0.8 eight-tenths power red, green, blue lighter gray

To use colors this way in Sage, simply pass the three numbers, enclosed in parentheses, as a color
option.37 To illustrate this, we revisit our pentagon from before.

sage: polygon(((0,0),(1,4),(3,3),(4,1)), color=(0.8,0.8,0.8))

37It would be more precise to specify it as the rgbcolor option, but Sage interprets color as rgb, which is fairly
standard, anyway. If you are familiar with the Hue-Saturation-Value model of color, you can use the hsvcolor option
instead, but we don’t cover that here.

2D PLOTS 64

show(graphics object, options)
• ymax = largest visible y-value (determined by object)
• ymin = smallest visible y-value (determined by object)
• xmax = largest visible y-value (determined by object)
• xmin = smallest visible y-value (determined by object)
• aspect_ratio = ratio of 1 y-unit to 1 x-unit (determined by object)
• axes = whether to show the axes (True)

FIGURE 10. show()

Other options for 2D objects. Some options for 2D objects are more appropriately ma-
nipulated after adding them together. There are several ways to manipulate them, but the most
convenient may be through the show() command, which offers several options to fine tune an
image. We list the ones of most interest to us in Figure 10. We put these to work on p5, the image
above of the circle with the rotation.

sage: show(p5, ymax=1, aspect_ratio=2)

You can see that the largest visible y-value is y = 1, and the circle seems to have been stretched
vertically, so that a unit of 1 on the y-axis is twice as long as a unit of 1 on the x-axis.

It is often convenient to show graphics without the axes; show offers the axes option for this.
We illustrate this later, but you might try reworking some of the graphics listed here to see it in
action. There are other options to control the axes that we do not review here; most of them can
also be controlled via a plot object’s methods. You can read about them by typing the name of a
plot object, followed by the dot, followed by the tab key; select one of interest, type the question
mark, and execute the command to see its help (as explained earlier).

2D plots

By now, you should have learned three basic ways we represent two-dimensional relations we
want to plot. They are:

• Cartesian coordinates, either
– with y as a function of x;
– as an equation in terms of x and y only, but not necessarily a function; or
– with x and y in terms of a third variable, t , called a parameter;

and
• polar coordinates.

2D PLOTS 65

plot(f (x), xmin, xmax, options)
• f (x) is a function or expression in one variable
• xmin is the smallest x-value to use for plotting
• xmax is the largest x-value to use for plotting
• options include

– detect_poles = one of the following (False):
∗ False (draw directly)
∗ True (detect division by zero and sketch appropriately)
∗ ’show’ (same as True, but include an asymptote)

– fill = one of the following (False)
∗ False (do not fill)
∗ ’axis’ or True (fill to the x-axis)
∗ g (x) (fill to the function g (x))
∗ ’min’ (fill from the curve to its minimum value)
∗ ’max’ (fill from the curve to its maximum value)

– fillcolor = color used for the fill, or ’automatic’ (’automatic’)
– fillalpha = transparency of the fill, from 0 to 1 (0.5)
– plot_points = number of points to use when generating an x-y table (200)

FIGURE 11. plot()

Sage offers commands for each of these representations.

Generic plots. The one you’ll use most often is the plot() command, which accepts a func-
tion, or at least an expression in one variable, and produces a plot where the y value is determined
by the x-values, as by an x-y table. This description is quite literal; the command works by cre-
ating a number of (x, y)-pairs and connecting the dots. Its options include those listed in Figure 4
on page 52. One thing to watch for is that xmin and xmax do not mean the same thing here as
they do in the show() command. Here, they correspond to the smallest and largest x-values for
which plot() generates an x-y pair. It is quite possible to show() more or less than this amount
by setting xmin and xmax to different values in the show() command.

We illustrate this command on a function which has poles.

sage: p = plot(x^2 - 3/(x-1), -5, 5, detect_poles=’show’)

sage: show(p, ymin=-10, ymax=10, aspect_ratio=1/2)

2D PLOTS 66

parametric_plot((x (t) , y (t)) , (tvar, tmin, tmax) , options)
• x (t) and y (t) are functions or expressions in terms of a parameter t , which define the

x- and y-value of a point
• tvar is the parameter
• tmin is the smallest t -value to use
• tmax is the largest t -value to use
• options include

– fill = True (to axis) or False (none) (False)
– fillcolor, as in plot()

– fillalpha, as in plot()

FIGURE 12. parametric_plot()

Were we not to constrain the y-values, the image would look very different. (You might want to
try the show() command without ymin and ymax values, to see this for yourself.) Likewise, if you
leave out detect_poles Sage will mistakenly connect the two points closest to the pole, which
usually looks like an asymptote.

sage: p = plot(x^2 - 3/(x-1), -5, 5)

sage: show(p)

As we hinted above, this is technically wrong, because that apparently vertical line is not; it con-
nects two points. If you saw this happen in real life, you might conclude that this was an asymp-
tote, but you might also be wrong to do so; there could well be some interesting feature of the
function taking place there.

Parametric plots. Closely related to the plot() command is the parametric_plot() com-
mand. Parametric plots are frequently used in situations where the values for x and y depend
on the particular time, which happens in physics and engineering. In many cases, t ∈ [0,1],
where “0” indicates “start position” and “1” indicates “end position,” but there are perfectly good
reasons to use other values. The following uses t ∈ [0,2π].

sage: var(’t’)

sage: parametric_plot((cos(4*t),sin(t)), (t,0,2*pi))

2D PLOTS 67

polar_plot(r (θ), (θ, θmi n, θmax) , options)
• r (θ) is a function or expression defined in terms of another variable θ, for which you

can use x

• θ is the independent variable representing the angle
• θmi n is the smallest angle to use
• θmax is the largest angle to use
• options include

– fill = True (to axis) or False (none) (False)
– fillcolor, as in plot()

– fillalpha, as in plot()

FIGURE 13. polar_plot()

This is the entire graph of this parametric function. Play around with different values of tmin
and tmax to see why [0,2π) gives us a complete wave.

The following example demonstrates the use of the fill option.

sage: parametric_plot((t*cos(4*t),t*sin(2*t)),(t,0,2*pi),fill=True)

This is already neat, but you can obtain a neater picture yet if you double that curve in different
ways. Try it and see what happens.

Polar plots. We turn to polar coordinates. These are commonly used when it’s more conve-
nient to describe how an object’s position changes as it rotates around the origin. A number of
images that are difficult to describe in (x, y)-pairs become quite easy with polar coordinates, such
as the abstract fleur-de-lis below.

ANIMATION 68

animate(collection, options)
• collection can be a list, set, or tuple of plots
• options include

– xmin, xmax, ymin, ymax, and aspect_ratio, as in show()

FIGURE 14. animate()

show(animation, options)
• animation is an animation generated using animate() command
• options include

– delay = hundredths of a second before moving to the next frame (20)
– iterations = number of times to repeat the animation from the beginning, where

0 indicates “forever” (0)
– gif = whether to produce a GIF animation or a WEBM animation (False)

FIGURE 15. show()

sage: polar_plot(cos(2*x)*sin(3*x), (x, 0, pi), fill=True, \

thickness=2, fillcolor=’yellow’, \

color=’goldenrod’, axes=False)

Animation

Animation both in film and in computer programming consists of swapping several images
several times a second. Sage offers an animate() command that accepts a collection as input and
creates an animation that we can then show(). In this case, the options we supply to show() are a
little different.

It’s important to observe that we do not specify the traditional show() options xmin, xmax, etc.
when we show() an animation; those really are more appropriate in the animate() command,
which has to put all the frames together, and so needs to know what the largest and smallest x-
and y-values should be. Rather, the options show expects are options that apply to showing an
animation, and which are not proper to the animation itself. That is, it makes sense to show the
same animation with a different delay between frames, as the frames themselves don’t change. It

ANIMATION 69

doesn’t make sense to say that the “same” animation would have a different xmin value; the frames
themselves have changed in this case.

To illustrate how the animate() command works, we’ll play around with our fleur-de-lis from
the previous section.

sage: p1 = polar_plot(cos(2*x)*sin(3*x), (x, 0, pi), fill=True, \

thickness=2, fillcolor=’yellow’, \

color=’goldenrod’, axes=False)

sage: p2 = polar_plot(cos(3*x)*sin(4*x), (x, 0, pi), fill=True, \

thickness=2, fillcolor=’yellow’, \

color=’goldenrod’, axes=False)

sage: p3 = polar_plot(cos(4*x)*sin(5*x), (x, 0, pi), fill=True, \

thickness=2, fillcolor=’yellow’, \

color=’goldenrod’, axes=False)

sage: p4 = polar_plot(cos(5*x)*sin(6*x), (x, 0, pi), fill=True, \

thickness=2, fillcolor=’yellow’, \

color=’goldenrod’, axes=False)

sage: p5 = polar_plot(cos(6*x)*sin(7*x), (x, 0, pi), fill=True, \

thickness=2, fillcolor=’yellow’, \

color=’goldenrod’, axes=False)

sage: p6 = polar_plot(cos(7*x)*sin(8*x), (x, 0, pi), fill=True, \

thickness=2, fillcolor=’yellow’, \

color=’goldenrod’, axes=False)

sage: panim = animate((p1, p2, p3, p4, p5, p6), xmin=-1, xmax=1, \

ymin=-0.5, ymax=1.5, aspect_ratio=1)

sage: show(panim, gif=True)

You should obtain an animation as a result. If you view this text in Acrobat Reader, you should
see the same animation below:

You should take a moment to toy with the options a little bit. For instance, see what happens
when you change the final line of that sequence to

IMPLICIT PLOTS 70

sage: show(panim, gif=True, delay=10)

or to

sage: show(panim, gif=True, delay=40)

You should notice a definite change in behavior.
Another thing to try is to remove the gif=True option. We used it because some common

web browsers do not support the WEBM format at the time of this writing. See what happens
when you remove it.

Using the approach we’ve shown here makes it a little burdensome to create plots for all but
the most trivial animations. In a later chapter we’ll show how you can use loops to speed up the
process.

Implicit plots

Some Cartesian plots are easily described as relations in terms of x and y, but are difficult to
describe as functions. Geometrically, they do not satisfy the “vertical line test” that determines a
function, and it isn’t very easy to rewrite them in parametric or polar form.

Consider the circle. One relation that is not a good example of this difficulty is the circle
x2 + y2 = a2, where a is any constant you like (within reason).38 We can actually express this
curve using a parameter t :

(x, y) = (a cos t ,a sin t)

or using polar coordinates:

r = a.

Nevertheless, the traditional equation of a circle is useful in this respect: it does not admit a
function y in terms of x; after all, if we solve for y, we have

y =±
p

a2− x2 ,

and having a choice of two y values is a bit of a bummer for a function.
Suppose we wanted to graph x2+ y2 = 6. In some systems, the only way to graph this is to

plot the two pieces simultaneously, in this fashion:

38“Within reason?” you are likely muttering. “What on earth does that mean?” We mean a 6= 0. And finite.
And real, definitely real. Complex would be bad, at least for our purposes. So, basically, a ∈R\{0}.

IMPLICIT PLOTS 71

implicit_plot(relation, (xvar, xmin, xmax) , (yvar, ymin, ymax) , options)
• relation is an equation in terms of two variables
• xvar and yvar are the indeterminates in the function for which you want to plot along

the x- and y-axis, respectively
• xmin and xmax are the smallest and largest x-values to use to generate points
• ymin and ymax are the smallest and largest y-values to use to generate points
• options include

– fill = whether to fill the “interior” of the relation; that is, (x, y) pairs where the trans-
formed relation turns negative

– plot_points = number of points to use on each axis when generating the plot (150)
Note that fillcolor, fillalpha, and thickness are not valid options for implicit_plot().

FIGURE 16. implicit_plot()

sage: top = plot(sqrt(5-x**2), -3, 3)

sage: bot = plot(-sqrt(5-x**2), -3, 3)

sage: top + bot

verbose 0 (2733: plot.py, generate_plot_points) WARNING: When

plotting, failed to evaluate function at 38 points.

verbose 0 (2733: plot.py, generate_plot_points) Last error

message: ’math domain error’

verbose 0 (2733: plot.py, generate_plot_points) WARNING: When

plotting, failed to evaluate function at 38 points.

verbose 0 (2733: plot.py, generate_plot_points) Last error

message: ’math domain error’

We don’t have a full circle here; we have a broken circle. The “verbose” warnings illustrate how
Sage wants to make an table of 38 x-y pairs, but fails because the numbers don’t quite line up
favorably.

One solution is to plot it using parametric or polar plots, but this isn’t always available, or
not easily. An alternative is to plot the curve implicitly; in this case, you specify an equation, its
variables, and their range. Sage transforms then transforms the equation

f (x, y) = g (x, y) to f (x, y)− g (x, y) = 0,

builds a grid along the window you’ve specified, checks to see which grid points come reasonably
close to zero, then connects them in a clever fashion to obtain the correct graph of the function.

IMPLICIT PLOTS 72

sage: var(’y’)

sage: implicit_plot(x**2 + y**2 == 6, (x, -3, 3), (y, -3, 3), \

fill=True)

Let’s clarify how Sage decided which points lie in the interior. We are asking it to graph the
equation

x2+ y2 = 6,

so
f (x, y) = x2+ y2 and g (x, y) = 6.

Sage rewrites this as
f (x, y)− g (x, y) = 0,

or more precisely
x2+ y2− 6= 0.

Sage then divides the x- and y-intervals (−3,3) into 150 subintervals, which sets up a grid on the
plane, and substitutes each (x, y) pair on the grid into the left-hand side of the equation. Some
of these points may match 0 exactly, but most will not; for instance, (1.5,1.92) and (1.5,1.96) lie
close to the circle, but the former gives a negative value (−.0636) when substituted into x2+y2−6,
while the second gives a positive value (.0916). This tells Sage three things:

• The circle should pass between these two points; after all, its points have value 0 when
substituted into x2+ y2− 6.
• Of these two points, the point (1.5,1.96) lies closer to the circle than (1.5,1.92), so it’s

best to connect this approximation with other, nearby approximations to the curve.
• Because its value was negative, the point (1.5,1.96) lies inside the circle, and should be

filled if fill=True.
To see this in action, we can experiment with the plot_points option. We’ll plot two unfilled
circles, each with a very different number of plot points.

sage: p1 = implicit_plot(x^2+y^2-6, (-3,3), (-3,3), \

plot_points=5, zorder=5)

sage: p2 = implicit_plot(x^2+y^2-6, (-3,3), (-3,3), \

color=’red’, zorder=-5, \

plot_points=300)

sage: p1 + p2

IMPLICIT PLOTS 73

The blue graph, which was pointed with only 6 plot points on each axis (the subinterval’s end-
points add 1 to the plot_points option), looks jagged and uneven, while the red graph looks
smooth, despite being generated the same way. This illusion of smoothness is due to the much
higher number of points connected to make the graph.

To drive home the importance of the number of plot points in practical situations, let’s look
at a different example.

sage: implicit_plot(x*cos(x*y)-y, (x,-15,15), (y,-15,15))

That curve looks just plain. . . awesome. But is it one, connected curve? It seems to have a large
number of jagged elements. Some parts are also disconnected; this isn’t bad in itself, but along
with the jaggedness, it suggests a problem. This is one case where you would expect an increase
in the number of plot points to be extremely useful, and so it is. If you increase the number of
plot_points by about 50 or so, over and over until things start to become clear, eventually you
come to something like this:

sage: implicit_plot(x*cos(x*y)-y, (x,-20,20), (y,-20,20), \

plot_points=500)

IMPLICIT PLOTS 74

There’s quite a difference in this image, isn’t there! What’s more, there’s quite a difference in the
time it took to plot them, isn’t there? Some things still seem a little unclear, so we can take this
a bit further:

sage: implicit_plot(x*cos(x*y)-y, (x,-20,20), (y,-20,20), \

plot_points=1000)

Notice the tradeoff: more plot points resolves more discrepancies, but also leads to longer time.
At this point, there’s no cause to increase plot_points higher, as there’s no reason to think we’ve
lost any interesting features.

We conclude with a word of warning. It may happen that you neglect to specify xvar and
yvar when creating your implicit plot; it’s a rather natural error to make, especially since plot()

doesn’t require you to specify a variable. In this case, you’ll receive a DeprecationWarning:

sage: implicit_plot(x**2 + y**2 - 6, (-3,3), (-3,3))

DeprecationWarning: Unnamed ranges for more than one variable is

deprecated and will be removed from a future release of Sage; you

can used named ranges instead, like (x,0,2)

The warning here is both explicit and helpful: it tells you what the problem is, and suggests the
workaround. The correct usage is the one we described above, and repeat here for good measure:

sage: implicit_plot(x**2 + y**2 - 6, (x,-3,3), (y,-3,3))

EXERCISES 75

Exercises

True/False. If the statement is false, replace it with a true statement.
1. We have listed all possible options to the plotting commands.
2. You don’t have to give all the information we list for a command.
3. The values for RGB colors range from 0 to 255.
4. No matter what you do, you’re stuck with axes in every Sage plot.
5. The zorder options helps place objects “on top of” each other.
6. One reason to use the polygon() command instead of the line() command is that you don’t

have to re-specify the starting point as the end point.
7. The transparency of a fill can differ from the transparency of the curve being filled.
8. Sage generates plots the same way we learn to do so: connecting the dots between x-y pairs.
9. Like a graphing calculator, Sage is unable to detect places where asymptotes occur.
10. The best way to graph the curve y2 = x3+ x + 1 is to solve for y by taking the square root,

plot the positive and negative branches separately using a plot() command, then combine
them using addition.

11. Bonus: When you don’t know the answer to a True/False question, the best strategy is to
answer, “Maybe,” then pray for partial credit.

Multiple Choice.
1. If an object’s x- and y-coordinates are functions of time, the best choice for plotting a graph

of its motion is probably:
A. plot()

B. implicit_plot()

C. parametric_plot()

D. polar_plot()

2. If an object’s distance from a central point varies as it rotates around the center, the best
choice for plotting a graph of its motion is probably:
A. plot()

B. implicit_plot()

C. parametric_plot()

D. polar_plot()

3. If a function is well-defined by one variable, the best choice for plotting its graph is probably:
A. plot()

B. implicit_plot()

C. parametric_plot()

D. polar_plot()

4. To change how transparent a graphics object is, we use this option:
A. alpha

B. opacity

C. transparency

D. zorder

5. To change which object seems “in front of” another, we use this option:
A. alpha

B. depth

C. level

D. zorder

EXERCISES 76

6. What aspect of a plot might suggest you need to increase the value of plot_points?
A. It looks as if it has an asymptote.
B. Jagged lines or “crooked” curves appear when you expect smoothness.
C. One equation produces two or more curves.
D. You buy a better monitor and want to exploit its high definition.

7. If a plot() produces an image, part of which resembles a vertical line, which option should
you modify to test for an asymptote?
A. detect_poles

B. draw_asymptotes

C. plot_points

D. zorder

8. If you get a NameError when making an implicit_plot(), then in all likelihood you made the
following error:
A. You misspelled the name, implicit_plot()
B. You misspelled the name of an option to implicit_plot()

C. You forgot to define the indeterminate y using var()

D. You forgot to specify x and y as xvar and yvar
9. If you get a SyntaxError when making an implicit_plot(), then in all likelihood you made

the following error:
A. You misspelled the name, implicit_plot()
B. You misspelled the name of an option to implicit_plot()

C. You forgot to define the indeterminate y using var()

D. You forgot to specify x and y as xvar and yvar
10. If we are teaching Calculus, and want to illustrate how to find the area between the curves x2

and x on [0,1], which command would show the region we want?
A. plot(x**2-x, 0, 1, fill=True)

B. plot(x**2, 0, 1, fill=x)

C. plot(x**2, 0, 1, fill=True) - plot(x, 0, 1, fill=True)

D. plot(x**2 - x, 0, 1, fill=x) + plot(x, 0, 1)

Bonus: You are stranded on a desert island. Which of these items would you rather have with
you?
A. a towel
B. a can opener
C. a bottle of sunscreen
D. a working laptop with Sage installed

Short answer.

1. Professor Proofsrock avers that we can view the curve y = x2 as a parametric curve y = t 2,
x = t . Plot both curves, using plot() for the former and parametric_plot() for the latter. Do
you agree with his averral? What, besides the plots, makes you agree?

2. Why do you think that the default values for the show() options ymax, ymin, and aspect_ratio

depend on the object being shown, rather than on specific values? Give a brief explanation for
each option.

Programming.

EXERCISES 77

1. Use Sage to plot the following functions over the interval [1,5] on the same graph. Give each
a different color, and label it by name with a text() object.

x, x2, log10 x, e x

Rank the functions according to which one grows fastest in the long run. Then use Sage’s
Calculus facilities to confirm that your ranking is correct at x = 10 and also at x = 100. Hint:
The derivative tells you the rate of change at a point.

2. Using your knowledge of Calculus, do the following:
(a) Choose a transcendental function f (x) and a point x = a at which the function is defined.
(b) Compute the derivative of f at x = a. If the derivative is 0, return to step (a) and choose

a different point.
(c) Plot f in a neighborhood of a. Make this curve black, of thickness 2.
(d) Add to this a plot of the line tangent to f at x = a. Make this line blue, and dashed.
(e) Add to this a plot of the normal line at x = a. Make this line green, and dashed.

Hint: The normal line passes through x = a and is perpendicular to the tangent line.
(f) Add a big red point at (a, f (a)).
(g) Add labels for the point, the curve, and the line. Use LATEX. Each label’s color should

correspond to that of the object it labels.
(h) show() the image at an aspect ratio appropriate to a pleasing result.

3. The Mean Value Theorem of Calculus states that if f is a continuous function on the interval
[a, b], then we can find some c ∈ (a, b) such that

f (c) =
1

b − a

∫ b

a
f (x)d x,

and this y-value (f (c)) is in fact an “average” value of the function on the interval. In this
problem, you will illustrate this result.
(a) Choose some quadratic function f (x). Choose a reasonable interval [a, b]. Plot the graph

of f over [a, b], filling to both the minimum and maximum y-values. (This technically
requires you to create two plots, then combine them.)

(b) Solve for the value of c that satisfies the Mean Value Theorem. (You’ll have to do this
by hand, as we haven’t yet discussed how to use Sage to solve problems. It’s a quadratic
equation, though, so it shouldn’t be that hard.)

(c) Add the line y = f (c) to your filled plot of f (x). Also add a line from (c , 0) to (c , f (c)).
These lines should have a color different from the plot or its fill.

(d) Explain how this final image illustrates the Mean Value Theorem.
4. A complex number has the form a+ b i . The complex plane is a representation of the field C

in the Cartesian plane, with the point (a, b) corresponding to the number a+ b i .
(a) Choose three complex numbers a + b i , with each corresponding point of the complex

plane in a different quadrant. Create arrows connecting the origin to each point, each
arrow in a different color.

(b) Use Sage to evaluate the product i (a+ b i) for each of the points you just chose. Create
three new arrows connecting the origin to each point, in a color corresponding to the
color you used for the original point.

(c) Plot all six arrows simultaneously. What is the geometric effect of multiplying (a+ b i) by
i?

EXERCISES 78

5. A great deal of higher mathematics is concerned with elliptic curves, which are smooth, non-
self-intersecting curves with the general form

y2 = x3+ ax + b .

Graph several curves of this form, using different values for a and b . Which value(s) produce(s)
elliptic curves? Which value(s) do(es) not? Describe the general pattern of what happens as
the values of a and b change.

6. We build on the previous problem. A great deal of higher mathematics considers elliptic curves
over a finite field, such as Zp where p is prime. Choose one of the elliptic curves from the
previous problem. Let p = 5, and substitute all possible values of x and y into the equation.
(There are only 25, so this isn’t too burdensome, and you can probably do a lot of them in
your head. Just don’t forget to do them modulo 5.) Plot the points in the plane. Does this
curve bear any resemblance to the one you had before?

Bonus: Why were we able to say, with confidence, that in #6 there are 25 possible values of x and
y to substitute? What if we had chosen p = 7; how would the number of points have changed?

Writing your own functions

Solving more difficult problems requires a bit more than a simple, straightforward list of
commands. It is often helpful to organize many, oft-reused tasks into one command that gives
us a convenient handle on all of them. Doing this would also allow us to deal with tasks more
abstractly, helping us see the forest rather than the trees. It makes it easier to reuse the same code
in different places, and likewise for someone else to read and, if desired, modify the code to their
own purposes. This idea of modularity makes us more “productive,” in the sense that we become
better problem-solvers.

Technically, you’ve already been doing this: each Sage command you’ve been using to simplify
expressions and draw pictures is really a package of other commands that was designed (usually
carefully) to tackle that particular task. You can actually view some of the code for most Sage
commands using a double question mark:

sage: simplify??

Signature: simplify(f)

Source:

def simplify(f):

r"""

Simplify the expression ‘f‘.

EXAMPLES: We simplify the expression ‘i + x - x‘.

::

sage: f = I + x - x; simplify(f)

I

In fact, printing ‘f‘ yields the same thing - i.e., the

simplified form.

"""

try:

return f.simplify()

except AttributeError:

return f

File: /Applications/sage-6.7-untouched/local/lib/python2.7/

site-packages/sage/calculus/functional.py

Type: function

79

DEFINING A FUNCTION 80

This actually gives us a little more than the code. It first lists the command’s signature, a
template for how the command is used. It then lists the “source code,” the list of commands
that define the simplify() command. These commands start after the line labeled Source: and
continue until the line labeled File:; this latter line indicates the file on disk where the command
is found. Were you to open that file, you would find the same source listed above therein. Notice
that most of the source code in this case consists of the same documentation you see when you
type simplify? , reflecting that Sage’s documentation is embedded in the code itself.

Much of the rest of this text is dedicated to helping you understand what all that source code
means, and how to use it to your own ends. We don’t expect you to become a full-fledged Sage
developer by the time you’re done (that would go far beyond its scope) but we do expect you to
be able to write new, simple commands that accomplish specific tasks that would be useful for
research and education. That requires some dedication on your part, but don’t fret: it requires
dedication on our part, too, for which we now roll back our figurative sleeves and delve in.

Defining a function

The commands you define in Sage are called functions, which agrees with the mathematical
use in that you provide arguments to a function, and it provides some result.

The basic format. To define a function, we use the following format:

sage: def function_name(arguments):

first_statement

second_statement

...

You can think of def as shorthand for “define.” It is an example of a keyword or a reserved word,
a sequence of characters which carries special meaning in a programming language, and which
the programmer cannot assign some other meaning. What follows next is a valid identifier name
(review the rules on p. 30) and is the name of your new function. You must next open and close
parentheses. Optionally, you can include additional identifiers within the parentheses; while this
is not required, it gives the best, most reliable to pass information to the your function. We call
these identifiers arguments,39 and will look at them more carefully in a moment.

The next thing to notice is that the “statements” are indented. This is an important principle
that Sage inherits from Python, which you’ll recall is the programming language we use to interact
with Sage: whenever we come to a point in a program where we need to organize statements
“within” other statements, or where some commands “depend” on others, we indicate which
statements depend on the others using indentation.40 This setup is called a control structure;
here, the control structure is the def statement, which defines a function, which for our purposes
can be considered a shorthand for a list of other statements.

For now, let’s look at a fairly simple function. It takes no arguments, but is not entirely
useless.

39Aptly named, as writing a program so often feels like an argument with the computer.
40Most computer languages do not require indentation, but designate keywords or special characters to indicate

where a control structure begins and ends. For instance, many languages follow C in the use of braces {. . .} to open
and close a structure; others use variations on BEGIN. . .END.

DEFINING A FUNCTION 81

sage: def greetings():

print ’Greetings!’

You can use either single or double quotes around the word “Greetings,” but be sure to do it
consistently.

If you’ve typed this correctly, Sage will accept it silently. If you type something wrong and
Sage detects it, it will report an error. For instance, if you forget to indent, you will see this:

sage: def greetings():

print ”Greetings!”

File "<ipython-input-33-33dcc1adcd0e>", line 2

print "Greetings!"

^

IndentationError: expected an indented block

If you want to paste code into IPython, try the %paste and %cpaste

magic functions.

It’s somewhat unlikely that you’ll see an IndentationError if you type your program in a work-
sheet or at the command line, as Sage automatically indents for you at times you should do it.

Here’s another error you may see:

sage: def greetings()

File "<ipython-input-34-583f0b909fc6>", line 1

def greetings()

^

SyntaxError: invalid syntax

Do you see the problem here? If not, spend a few minutes comparing this attempt with the
successful one. In particular, look at the end of the line, which is where the carat symbol ^ is
pointing. That position is where Sage encounters its problems.

We now return to the assumption that you’ve defined the function successfully. You can use
your new function by typing it, followed by a pair of parentheses, and executing the line.

sage: greetings()

Greetings!

Sage has done what you requested. It looked up the function named greetings(), saw that this
function needs to print ’Greetings!’, and does what was requested.

An aside. The meaning of the print command is hopefully obvious: it prints whatever fol-
lows. This is another keyword; you cannot assign it a new value:

ARGUMENTS 82

sage: print = 2

File "<ipython-input-38-7c34f307b821>", line 1

print = Integer(2)

^

SyntaxError: invalid syntax

In a way, print is like a function, but you don’t use parentheses to send arguments. If you type
parentheses around the text. Since it sends text onto the screen, the print command can be useful
for inspecting a program to see where something went wrong, and we will do this from time to
time.

Alas, print does not cooperate with LATEX, so you can’t generate pretty output that way. To
do that, you have to use LATEX from an HTML cell (see p. 26), or create a plot.

Another aside. Programmers commonly leave comments in code to explain how a funciton
is supposed to work. The main way of doing this in Sage is with the # symbol; whenever Sage
sees this symbol, it ignores everything that follows. For instance, the following implementaiton
of greetings() is equivalent to the one above.

sage: def greetings():

greet the user

print ’Greetings!’

Sage simply ignores the line that begins with the # symbol, and moves immediately to the next
one.

It is a very good idea to leave comments in functions, especially at the beginning of a sequence
of complicated lines. The authors can attest to the fact that they have written code one year that
seemed obvious in the moment of programming it, then returned to it weeks, months, or even
years later and wondered, “What on earth did I do that for?” This then requires several minutes,
hours, or even days of puzzling over the code to figure out how it worked. Most of the function
we write in this text are not very long, but we will still include comments in many of them as a
way to illustrate the need.

Arguments

An argument is an variable that a function uses to receive necessary or merely useful informa-
tion. We can view an argument as a placeholder for data; its name exists only inside the function,
and the information is forgotten once the function terminates. An argument contains only a copy
of the information sent — not the original information itself. We can illustrate the basic idea by
modifying the function of the previous section:

sage: def greetings(name):

print ’Greetings,’, name

Here, name is an argument to greetings(). It’s also a mandatory argument, as we specified no
default value. We’ll discuss mandatory v. optional arguments presently; for now, it suffices to

ARGUMENTS 83

understand that you must supply a value for mandatory arguments. For example, the following
usage of greetings() is legitimate in Sage:

sage: greetings(’Pythagoras’)

Greetings, Pythagoras

What happened? When Sage reads the command, it sees that you want to call greetings() with
one argument, which is the string ’Number 2’ . It copies that information into the variable name ,
then proceeds to execute all the commands indented beneath the definition of greetings().

On the other hand, now that we have redefined greetings(), the following usage results in
an error, even though it worked fine earlier:

sage: greetings()

TypeError Traceback (most recent call last)

<ipython-input-44-deb3f0bd6096> in <module>()

----> 1 greetings()

TypeError: greetings() takes exactly 1 argument (0 given)

A particular example: the equation of a tangent line. We’ll focus on a particular usage for
this: suppose you want to write a function that automatically computes the equation at a point
x = a of a line tangent to a curve defined by a function f (x). You will recall that the equation of
a line with slope m and through a point (a, b) has the form

y − b = m (x − a) ,

which we can rewrite as

y = m (x − a)+ b .

In this case, m is the derivative of f at x = a; or, m = f ′ (a). So we can rewrite the equation as

y = f ′ (a) · (x − a)+ b .

We want a function that produces such an equation, or at least the right-hand side of it.
To define this function, we have to answer several questions:

• What information does the function need?
We need the function f (x), and the x-value a.

• How do we use that information to obtain the result we want?
– We first need to compute f ′ (a). That requires computing f ′ (x), then substituting

x = a.
– We also need to compute b . That is the y-value at x = a, so it suffices to compute

f (a); that is, substituting x = a into f (x).
• How do we communicate the result to the client?

For now we’ll just print it, but eventually we’ll discuss a better way.

Putting this information together leads us to the following definition:

ARGUMENTS 84

sage: def tangent_line(f, a):

point-slope form of a line

b = f(a)

df(x) = diff(f,x)

m = df(a)

result = m*(x - a) + b

print ’The line tangent to’, f, ’at x =’, a, ’is’

print result, ’.’

Let’s put this into practice. A simple example that you can verify by hand is the equation of
a line tangent to y = x2 at x = 1.

sage: tangent_line(x**2, 1)

/Applications/sage-6.7-untouched/src/bin/sage-ipython:1:

DeprecationWarning: Substitution using function-call syntax

and unnamed arguments is deprecated and will be removed from a

future release of Sage; you can use named arguments instead, like

EXPR(x=..., y=...)

See http://trac.sagemath.org/5930 for details.

#!/usr/bin/env python

The line tangent to x^2 at x = 1 is 2*x - 1 .

Oops! we encountered that DeprecationWarning again. This is a one-time thing in each Sage
session, and we do get the right answer in the end (2*x - 1).

Even so, we ought to change it. Only, where is it occurring? We have to check each statement
of the function:

• df(x) = diff(f,x)

This can’t be the problem, as it defines a function.
• m = df(a)

This uses df in function-call syntax, so it’s a candidate for the problem. However, it
can’t actually be the problem, because we defined df properly as a function. It is appro-
priate to use function-call syntax with functions.
• b = f(a)

This uses f in function-call syntax, so it’s a candidate for the problem. As f is an
argument, into which Sage copied the value supplied when we called tangent_line(),
we have to look outside the function to see if it is indeed the problem. We called it using
the command,

tangent_line(x**2, 1)

This must be the problem, as x**2 is an expression, not a function.

So one way to avoid this warning is to define a function before calling tangent_line(), as follows:

ARGUMENTS 85

sage: f(x) = x**2

sage: tangent_line(f, 1)

The line tangent to x |--> x^2 at x = 1 is 2*x - 1 .

This isn’t very convenient, though, as it requires a lot more typing. It also imposes a condition
on the client.

A much better solution is to adjust the program itself, so that it does not assume it receives
a function when, in fact, it does not.41 We can do this by changing the line b = f(a) to use an
explicit substitution, b = f(x=a) . Let’s try that.

sage: def tangent_line(f, a):

point-slope form of a line

b = f(x=a)

df(x) = diff(f,x)

m = df(a)

result = m*(x - a) + b

print ’The line tangent to’, f, ’at x =’, a, ’is’

print result, ’.’

Now we try to execute it:

sage: tangent_line(x^2, 1)

The line tangent to x^2 at x = 1 is 2*x - 1 .

Since a DeprecationWarning appears only once, it may not be obvious that we have actually
fixed the problem, as Sage may be suppressing the warning again. You can verify this by restarting
Sage: in worksheet mode, click on the Restart button; on the command line, type exit, then
restart Sage.

Optional arguments. Sage also allows optional arguments. In this case, it often makes sense
to supply a default value for an argument. This way, you need not supply “obvious” values for
the general case; you can supply them only when necessary.

You have already encountered this. Look back at, for instance, Figure 1 on page 52 and Fig-
ure 4 on page 52. Both of them speak of options, which are really optional arguments to the
functions. For example, you can type

sage: point((3,2))

or you can type

41If you are accustomed to typed languages such as C, Java, or Eiffel, you will notice that this is one case where
the use of types — which can often seem overly constrictive — actually helps the programmer. Not only does Sage
not require types, it really offers no facility for them at all, unless you use Cython. We discuss Cython at the end of
the text.

ARGUMENTS 86

sage: point((3,2), pointsize=10, color=’blue’, alpha=1, zorder=0)

as both mean the same thing.
This example also illustrates how optional arguments also allow you to focus on the problem.

You often don’t care a hoot what color a point is, what size it is, and so on; you just want to see
where it’s located, typically relative to something else. If useful, you might want to specify some
of those other options; for instance, you could be looking at several points on a curve, and to
help distinguish them you’d color them differently. But this might be completely unnecessary,
and even if you wanted to specify the color, the precise size, transparency, and z-order still might
not matter. Making these arguments optional means you don’t have to specify them.

So how do you name an optional argument when writing your own functions? After the
variable’s name, place an equals sign, followed by the default value that it should take on. Let’s
see how we can do this in our function to greet someone: perhaps we’d like the default value to
be ’Leonhard Euler’.

sage: def greetings(name=’Leonhard Euler’):

print ’Greetings,’, name

The argument name is now optional. As with the previous version, we can now supply a name:

sage: greetings(’Pythagoras’)

Greetings, Pythagoras

. . . and you can also name the optional argument explicitly (this is useful when there are multiple
optional arguments, and you don’t want to worry about listing them in the correct order):

sage: greetings(name=’Pythagoras’)

Greetings, Pythagoras

. . . but unlike the previous version, we can use the function without a default value:

sage: greetings()

Greetings, Leonhard Euler

Supplying indeterminates as default arguments. It is often useful to supply an indetermi-
nate as a default argument. To see an example, we return to our example with the tangent lines.
It works just fine if the expression is defined in terms of x, but many expressions are more aptly
defined in terms of another indeterminate, such as t . Will our function still compute tangent
lines for those expressions?

sage: var(’t’)

sage: tangent_line(t**2, 1)

The line tangent to t^2 at x = 1 is t^2 .

ARGUMENTS 87

That’s definitely not right. The answer should have been 2t − 1, not t 2. What went wrong?
Several things:

• df(x) = diff(f, x) differentiates f with respect to x, not with respect to t. The result
is that df(x) ends up being 0, rather than 2t .
• m = df(a) is working with the wrong value of df(x), so we end up with m = 0 instead

of m = 2.
• b = f(x=a) asks Sage to substitute a in place of x, not in place of t. The substitution

effectively does nothing, with the result that b ends up being t 2, rather than 1.
• Put it all together with m*(x - a) - b and it becomes clear why Sage returns t^2 instead

of 2*t - 1.

One way to fix this would be to write a new function that did its work with respect to t instead
of with respect to x. This is a terrible idea, though: the number of possible identifiers is quite
large; aside from all 52 upper- and lower-case letters of the Latin alphabet, one can also have
combinations of these letters with numbers and the underscore. All of the following names of
indeterminates could be used in some perfectly legitimate mathematical context:

• x

• x0

• x_0

• xi

• x_i

. . . and that’s just indeterminates that start with x. You can play this game with y, t , a, . . . you
get the idea.

So that approach is impractical. The proper way to do it is to specify the indeterminate as
an argument to the function itself, something like tangent_line(f, 1, t). Even better would be
to make the indeterminate an optional argument, with default value x, so that the client need only
specify the indeterminate when necessary. That way, tangent_line(f, 1) and tangent_line(f, 1, x)

mean the same thing. A naïve approach to this would be the following:

sage: def tangent_line(f, a, x=x):

point-slope form of a line

b = f(x=a)

df(x) = diff(f,x)

m = df(a)

result = m*(x - a) + b

print ’The line tangent to’, f, ’at’, x, ’=’, a, ’is’

print result, ’.’

The statement x=x may look odd, but it makes perfect sense: the first x specifies the name of the
argument in tangent_line(), while the second x specifies its default value. Essentially, it states
that tangent_line() has an optional argument named x whose default value is x.42

So what happens when we try it?

42This sort of construction occurs in the Sage source code not infrequently.

ARGUMENTS 88

sage: tangent_line(t**2, 1, t)

The line tangent to t^2 at t = 1 is

t^2 + 2*t - 2 .

PANIC!
. . .Well, no, don’t panic. Let’s analyze instead what happened, and try to fix the issue. To do this,
we introduce a classical debugging technique of desperation, which goes by the technical name,

print
What does that mean? We print everything that Sage computes in the function, and try from
there to see what went wrong. Rewrite the function as follows:

sage: def tangent_line(f, a, x=x):

point-slope form of a line

b = f(x=a)

print b

df(x) = diff(f,x)

print df

m = df(a)

print m

result = m*(x - a) + b

print ’The line tangent to’, f, ’at’, x, ’=’, a, ’is’

print result, ’.’

You can see that we have a print statement after almost every original statement. We left off
result because that’s already printed on the following line. What happens when we execute this
version of tangent_line()?

sage: tangent_line(t**2, 1, t)

t |--> 2*t

2

t^2

The line tangent to t^2 at t = 1 is

t^2 + 2*t - 2 .

We see that:
• df is correctly computed as 2t ;
• m is correctly computed as 2; but
• b is incorrectly computed as t 2 — as if the substitution didn’t take! Again!

Notice the subtle difference this time: one substitution actually did work. The other one did not.
The difference is that one is a mathematical function defined inside our Sage function; the other
is an expression defined outside our Sage function.

The apparent solution is to redefine f inside our function, as a mathematical function. We
then rely exclusively on function notation. There is no danger in this; thanks to the rules of

AN END TO DYSFUNCTIONAL COMMUNICATION 89

scope, changing the value of f inside tangent_line() does not change its original value outside.
The successful function adds one line:

sage: def tangent_line(f, a, x=x):

point-slope form of a line

f(x) = f

b = f(a)

df(x) = diff(f,x)

m = df(a)

result = m*(x - a) + b

print ’The line tangent to’, f, ’at’, x, ’=’, a, ’is’

print result, ’.’

That first line redefines the parameter f as a function. If f is an expression, we have avoided the
DeprecationWarning; if it is a function, Sage will have no trouble assigning it to itself. Try it out:

sage: tangent_line(t**2, 1, t)

The line tangent to t |--> t^2 at t = 1 is

2*t - 1 .

An end to dysfunctional communication

So far we’ve been displaying the result of a computation using the print command. While this
is useful for demonstrating the print command, as well as for displaying output, it’s an obstacle to
efficient automation. You don’t want your code to wait for you to see the printed result of some
function, then type it into another function. Rather than exhaust yourself this way, it would be
much better to have the functions communicate directly. That way, you could call one function
inside another and sidestep yourself entirely. You can start a computation, walk away, grab a cup
of a caffeinated drink,43 then come back and find your functions have completed their tasks and
are waiting happily for you, tails a-waggin’.

Local v. global scope. Suppose, for instance, that you would like write a function that plots
a function and the line tangent to a function at that point. You could, of course, have it com-
pute the tangent line by copying and pasting the code in tangent_line() into the new function,
but that both wastes resources and makes the new function harder to read. You could instead
employ modularity by letting tangent_line() compute the tangent line, and letting your func-
tion focus purely on plotting the function and the line — but how would the new function use
tangent_line()’s result? On the one hand, tangent_line() has a variable called result, so per-
haps we could do somethign like this?

43This originally referred to a particular caffeinated drink, while taking potshots at another, more popular one,
because one of the authors is a little immature. A second author commented ZOMGPONIES and subsequently
convinced the first to change it to the current, generic discourse on caffeinated drinks.

AN END TO DYSFUNCTIONAL COMMUNICATION 90

sage: def plot_tangent_line(f, a, x=x):

use tangent_line() to find the line

tangent_line(f, a, x)

plot(result, a-1, b-1)

That won’t work, and if we were to try it, we would encounter the following error:

sage: plot_tangent_line(x^2, 1)

NameError: global name ’result’ is not defined

This error tells us that if result exists anywhere, it doesn’t exist in the “global” Sage environment,
so we use its name in vain. We only defined result in the tangent_line() function, so it remained
local to that function.

There are two ways around this. One of them is declare result as a global variable in the
tangent_line() function using the global keyword; afterwards, result would be accessible out-
side it, as well:

sage: def tangent_line(f, a, x=x):

point-slope form of a line

global result

f(x) = f

b = f(a)

df(x) = diff(f,x)

m = df(a)

result = m*(x - a) + b

However, this is a terrible idea, for several reasons. First, result is about as uninformative a name
as you could give. If every function placed its result in a variable named result — well, it could
work, actually, but it would be rather chaotic. Besides, there’s a better way.

Returning from chaos. Sage provides a convenient command for this with another key-
word, return. Every Sage function returns some value, even if you omit this keyword. You can
verify this with the functions we have defined, using a type() statement:

sage: nothing = tangent_line(f, 1, t)

The line tangent to t |--> t^2 at x = 1 is 2*t - 1 .

sage: type(nothing)

<type ’NoneType’>

What Sage returns in these instances is an object called None. Programmers often use None44 to
indicate that something has not been initialized, but that is a different discussion.

Unlike other computer languages, Sage does not constrain you to returning only one result; it
is possible to return several results at once. Simply list them after the return keyword, separating

44Or the analog in other languages: NULL, NIL, . . .

AN END TO DYSFUNCTIONAL COMMUNICATION 91

them with commas. For instance, the following program will return both the derivative and the
antiderivative of a function, assuming both exist:

sage: def deriv_and_integ(f, x=x):

BOOOO-RING

df(x) = diff(f, x)

F(x) = integral(f, x)

return df(x), F(x)

Give it a shot!
What we want to do is modify the tangent_line() function to return the line, rather than

print it. This is fairly straightforward:

sage: def tangent_line(f, a, x=x):

point-slope form of a line

f(x) = f

b = f(a)

df(x) = diff(f,x)

m = df(a)

result = m*(x - a) + b

return result

It’s that simple. What happens when you use it?

sage: tangent_line(t**2, 1, t)

2*t - 1

The output may not seem as informative as before, but that’s because we’ve pruned it to its
essence. You could change the return statement to include the text information we had before,
but the bare essence is much more useful. Why? we can now do the following:

sage: p1 = plot(t**2, 0, 2, color=’black’, thickness=2)

sage: par_line = tangent_line(t**2, 1, t)

sage: p2 = plot(par_line, 0, 2, color=’red’, linestyle=’dashed’)

sage: p1 + p2

PSEUDOCODE 92

Appears in [4] Appears in [5]

Appears in [7] Appears in [6]

FIGURE 17. Pseudocode from various mathematical publications

Notice what we’re doing: we’re taking the result of tangent_line(), assigning its value to a vari-
able named par_line, then passing that as an argument to plot(). You can do this even if you did
not envision plotting the result of tangent_line()! Indeed, you’ll notice we didn’t mention the
possibility of plotting the tangent line at all before this point. Much of the power of functions lies
in the fact that you can use them in situations not imagined when the functions were designed;
clients still enjoy the benefits of having the code already written for them.

Pseudocode

People who are serious about working on a computer have to communicate their ideas to each
other. Not everyone uses the same programming language, and for the sake of abstraction and
communication it’s a good idea to avoid reliance on a particular language to describe the solution
to a problem. For this reason, mathematicians often use pseudocode to describe a computer pro-
gram — or, to be more precise, the algorithm used in the program. An algorithm is a sequence of
steps with well-defined input (information used) and output (information returned).

There are different ways of expressing pseudocode; some examples appear in Figure 17. You
should notice several properties they all share:

• All of them specify the algorithm’s name, required information (“input”), and promised
result (“output”).
• All of them use some form of indentation to show how some code depends on others.
• All of them rely on “plain” English and mathematical symbols to communicate what is

to be done.

PSEUDOCODE 93

• None of them resembles computer code in a particular computer language.
This text will provide pseudocode for you to implement, and will ask you to write your own
pseudocode on occasion. We have to adopt some standard, and we will do the following:

• Identifiers for variables or names of algorithms appear in italics.
• Keywords for control structures and fundamental information will appear in bold type.

Right now, we introduce the following keywords:
– algorithm appears at the beginning, and declares the name of an algorithm
– inputs appears immediately after algorithm, and below it comes an indented list of

the required information, along with the sets they come from
– outputs appears immediately below the list of inputs, and below it comes an in-

dented list of promised information, along with how it relates to the inputs
– do appears immediately below the list of outputs, and below it comes an indented

list of instructions
– return appears as the last statement in the instructions45

We can now describe our tangent_line() function in pseudocode as follows:

algorithm tangent_line
inputs

• a ∈R
• x, an indeterminate
• f , a function in x that is differentiable at x = a

outputs
• the line tangent to f at x = a

do
let m = f ′ (a)
let b = f (a)
return m (x − a)+ b

The following observations of this code are in order.
• We make assignments with the traditional mathematical “let” statement.46

• Not only does it not look much like our Sage code, we omit some Sage-specific tasks,
such as assigning f ′ (x) to a variable.47

• Both the inputs and some of the commands are listed in a different order.
As we go through the text, we will add additional pseudocode keywords, and discuss how to
accomplish additional tasks.

In practice, we almost always formulate pseudocode before implementing it in code. We have
reversed this practice here, mostly to get your hands wet from the start, but an important aspect

45It is common to see return placed in other places within the list of instructions, but we will adopt the conven-
tion that return is always the last statement. While it is sometimes inconvenient to organize the code around this
convention, it can help with both debugging and readability, which is important for those who are first learning..

46As you can tell from the samples in Figure 17, there is quite a bit of variety here. Where we have “let
m = f ′ (a),” some would write “m := f ′ (a)” and some computer languages have adopted this convention so that
assignment has the form m := df(a) (for example, Pascal, Eiffel, Maple). Some will even simply write “m = f ′ (a).”

47Technically, we don’t have to do this in Sage, either, but it makes things a lot easier.

SCRIPTING 94

of working with a computer is to think about how you solve the problem before actually writing
up the solution — and, really, a program is nothing more than the writeup of a solution to the
problem, “How do I do this, that, and the other, given such-and-such and so-and-so?” If you’ve
had another programming class before, you may have been raised in the rather bad tradition of
not thinking about what to do before doing it. Try to resist that; we’ll help in the exercises, by
requiring that you formulate pseudocode as well as writing a program.

Scripting

Many mathematicians have a set of tasks that they need to repeat whenever they work on
something. Writing Sage functions can help simplify this, but if you type them in a particular
session, they apply only to that session, either on the command line or in a worksheet. If you
quit the session or open a different one, Sage forgets those functions, and you have to re-define
them. It isn’t very convenient to copy and paste or (worse) re-type these functions whenever you
start a new session, so it’s convenient to keep a library of files that record them, and that we can
load and use at will.

This is where Sage scripts come in. A “script” is basically a sequence of Sage statements saved
to a file. It is convenient to load the file into Sage, thereby avoiding the hassle of retyping ev-
erything. The format of a Sage script is identical to whatever we’d write in a Sage cell: it can
be a sequence of simple statements, but it can also define one or more functions. Indeed, a large
amount of Sage consists of Sage scripts that people have written on account of some need and,
due to the task’s usefulness, the script subsequently made its way into Sage itself.

To show how to create a Sage script, we recall to our program on computing the line tangent
to a curve:

def tangent_line(f, a, x=x):

point-slope form of a line

f(x) = f

b = f(a)

df(x) = diff(f,x)

m = df(a)

result = m*(x - a) + b

return result

To create a script, do one of the following.

• If you run Sage as a worksheet operated by an independent server, you’ll have to speak
to your instructor or to the server’s administrator. This is not difficult to do, but it is a
little complicated, so we leave it to them.
• If you run Sage from the command line, bring up a text editor on your computer, type

the program above into the editor, then save the file with the name calc_utils.sage. We
recommend saving it to a special directory in your home directory titled, SageScripts,
but you should pick someplace that will be both easy to remember and easy to access.
• If you run Sage through the SageMathCloud server, open a project, then select from the

top menu New.

SCRIPTING 95

In the textbox beneath the directions to, “Name your file, folder, or paste in a link,”
type the name calc_utils.sage. Then click on “File” (over to the right) and Sage will
bring up a new tab with that name.

Go ahead and type the function. If you find the text too small, click on the “larger”
A beneath Settings in the screenshot below. That will make the text larger.48

Save it. (It should actually save automatically every few moments, but it never hurts
to give the button an extra click.)

Once you have written and saved your script, you can turn to a Sage session (either at the com-
mand line or in the worksheet) and, at this point, type the following (don’t actually type until
you read what appears below):

sage: %attach /path/to/file/calc_utils.sage

Before you actually do this, we want to describe two potential errors, as well as indicate a conven-
tion you should be aware of.

First, the convention. We have written /path/to/file/ as a “template” for you to fill in. It’s
basically a fill-in-the-blank used commonly as an indication that you have to fill in the correct
value:

• If you’re using Sage from a worksheet from an independent server, you need to ask your
instructor or the server’s administrator.
• If you’re using Sage from the command line, you should try ’~/SageScripts’, as that

corresponds to the directory we suggested earlier.49

48One of the authors routinely clicks this six to eight times, and that’s not because he’s old. — Well, not that
old.

49The tilde character (~) is a standard way to reference a user’s home directory. We had suggested creating a
directory named SageScripts in your home directory, so that should do the trick.

SCRIPTING 96

• If you’re using the SageMathCloud server and you followed our directions above, you do
not need to type that line at all! Otherwise, if you created a special directory to keep your
Sage scripts, you need to type the path to that directory.

Once we move past this convention, we move to the possible errors.
If you are in the wrong directory, or you typed the filename wrong, or you didn’t follow our

advice above to wait to type that in, you will likely see an error along these lines:

sage: %attach /path/to/file/calc_util.sage

IOError: did not find file u’calc_util.sage’ to attach

This indicates that there is something wrong in what you filled in for /path/to/file/ or in the file-
name itself. In this particular example, both are wrong: we didn’t actually change /path/to/file/
to the correct path, and we left the s off the filename calc_utils.sage .

Now for the second error. We sometimes type things wrong. That’s alright; it’s part of being
human; no need to get worked up about it. After all, the computer will get worked up on its
own. It is possible to type something wrong, and when that happens, you will get a Syntax error.
A common one for beginners will likely be this one:

sage: %attach /path/to/file/calc_util.sage

IndentationError: unindent does not match any outer indentation

level

In this case, pay attention to the line where Sage complained, and make sure the indentation lines
up with a previous block of code. A similar error will be this one:

sage: %attach /path/to/file/calc_util.sage

b = f(a)

^

SyntaxError: invalid syntax

This should not happen to you, but in case it does, and everything looks exactly perfect: the
problem is that you copied and pasted text. Appearances in a text editor can be deceiving, and
when you copy from one file to another, you can pick up hidden formatting characters, or some-
thing similar. The solution in this case is to eliminate the hidden formatting character by deleting
those spaces, then retyping them.

With those clarifications out of the way, now try to load the file. If all goes well, Sage will
remain silent. You should then be able to execute your function in the usual way:

sage: %attach /path/to/file/calc_util.sage

sage: tangent_line(x**2, 2)

4*x - 4

Once you successfully attach calc_util.sage to a Sage session, you can make changes to it
and Sage will automatically incorporate the changes, leaving a message along these lines:

INTERACTIVE WORKSHEETS 97

reloading attached file calc_util.sage modified at 08:39:00

Interactive worksheets

If you’re working in a Sage worksheet, you have access to a feature that lets you create an
easily-manipulated demonstration. We call this feature interactive worksheets. An interactive
worksheet has one or more interactive functions that allow the user to manipulate their arguments
in a “hands-on” way through interface objects like text boxes, sliders, and so forth. Aside from
the function itself, there are two key steps to creating an interactive worksheet:

• On the line before the function, but in the same cell, type @interact .
• Decide which of the following interface objects you want, and supply the function with

“optional” arguments whose default values are initialized to these objects:
– an input box (to provide a value)
– a slider (to select a value from a range)
– a checkbox (to turn some property on or off)
– a selector (to select some property out of several)
– a color selector (to. . . well, hopefully the reason for this is obvious)

You will find templates for these object in Figure 18, and some common options for all the ele-
ments in Figure 19. This list is not comprehensive, as we have omitted some options that we think
you are less likely to find useful. Other interface objects may also available that we aren’t aware
of (they may have been added after we wrote this).

Sliders and selectors are similar in that they can let you choose from a small range of values;
for instance, slider((0, 0.25, 0.5, 0.75, 1)) and selector((0, 0.25, 0.5, 0.75, 1)) both
let you choose from the same list. In this case, however, a slider would be the better choice, as
you can order the values from left to right, and a slider communicates that sense better. If the
values do not fit well in a left-to-right paradigm, you’d be better off with a selector. Also, sliders
don’t label the individual values, so if you think it especially important that each value be labeled,
it’s best to use a selector even if the values do fit the left-to-right paradigm.50

We illustrate this on two examples. The first is quite simple, merely to illustrate the principle:
it allows the user to type a function f , and plots both f and its derivative on an interval [a, b].

sage: @interact

def plot_f_and_df(f=input_box(default=x**3,label=’f’),\

a=input_box(default=-5,label=’a’), \

b=input_box(default=5,label=’b’), \

w=slider(-19,19,1,default=0, \

label=’squash factor’)):

p = plot(f, a, b, color=’black’)

df = diff(f)

p = p + plot(df, a, b, color=’red’)

show(p, aspect_ratio=(20-w)/20)

50Of course someone will find an exception to each of these guidelines; they are merely recommendations.

INTERACTIVE WORKSHEETS 98

input_box()

a box for the user to type values, usually numbers; specific options
include

• width=box’s width (104)

slider(a, b) a line with a knob the user can slide left and right, ranging from a
to b with intermediate values

slider(a, b, c) similar to slider(a, b), except the user can only slide in increments
of c

slider(L)
similar to slider(a, b), except the user can only select options in
the collection L. (We are still not telling you what a collection is,
but you can still use a tuple, as before.)

checkbox()
a box that the user can click on or off; we illustrate its use in a later
chapter

selector()

a drop-down menu or button bar specific options include
• values=collection of values to select from
• buttons=whether to use buttons (False)
• nrows=number of rows if using buttons (1)
• ncols=number of columns if using buttons (depends on num-

ber)
• width=button’s width, if buttons (depends on value)

Color(name) a button that pops up a color chooser; default color is the one sup-
plied by name, such as ’red’

Color(r, g, b) same as Color(name), except the default color is the red-green-blue
combination given by r, g, b

FIGURE 18. Templates for interface objects in an interactive function

label=string a label, placed to the left; it may include LATEX between dollar signs
default=value the object’s initial value

FIGURE 19. Options common to all interface objects in an interactive function
except Color()

If you type this into a Sage worksheet correctly, you should see something akin to Figure 20.
You can see that the input boxes have nicely-formatted labels. (As you may have guessed from
our use of dollar signs, it’s relying on LATEX.) Unfortunately, that’s not an especially clear plot;
it’s a bit too squashed horizontally. We can fix this by moving the squash factor right; if you slide
the knob on the “squash factor” slider all the way to the right, you get a rather nice picture the
moment you let go:

INTERACTIVE WORKSHEETS 99

FIGURE 20. An unfortunate squashing

You can also change f , a, and b , but they’re input boxes, so rather than sliding anything, you have
to change the text. As a < b you should get a reasonable-looking graph the moment something
changes. Try another function, such as sin x, with a = 0 and b = 2π, and the graph should change
to this (make sure you also change the squash factor back to 0):

You can of course call functions you’ve defined from inside an interactive function. Let’s
write an interactive function that plots f and its derivative on [a, b], as well as a line tangent to
f at a point c somewhere between a and b . We can call the tangent_line() function we already
wrote to generate the tangent line. While we’re at it, we’ll switch the defaults to sin (x) over
[0,2π].

INTERACTIVE WORKSHEETS 100

sage: @interact

def plot_f_and_df(f=input_box(default=sin(x),label=’f’), \

a=input_box(default=0,label=’a’), \

b=input_box(default=2*pi,label=’b’), \

t=slider(0,1,default=0.375,label=’t’), \

w=slider(-19,19,1,default=0,\

label=’squash factor’)):

p = plot(f, a, b, color=’black’)

df = diff(f)

p = p + plot(df, a, b, color=’red’)

c tells us how far to move along the interval [a,b]

0 means a; 1 means b; values in between proportional

c = a + t*(b-a)

p = p + plot(tangent_line(f, c), a, b)

show(p, aspect_ratio=(20-w)/20)

When you put this into Sage, you should see the following:

You may have noticed that we didn’t have the user specify the point c directly. Instead, she
specifies c indirectly, by choosing a value t from 0 to 1. The code then calculates a value of c
between a and b using the following parametrization:

c = a+ t (b − a) .

This parametrization is an enormously useful tool, in part because it is relatively easy:

• when t = 0, then c = a+ 0= a;
• when t = 1, then c = a+(b − a) = b ;
• when t = .5, then c = a+ .5 (b − a) = .5a+ .5b = a+b/2, halfway between a and b ;
• and so forth.

EXERCISES 101

Experiment with the slider to see how various values of t naturally let the user select a good point
between a and b .

We haven’t shown how all the interface objects work, but we have shown the ones we think
are most important, as well as an elegant way to have the user select a point in an interval without
having to check whether the point actually lies in the interval. We encourage you to experiment
with the other objects, especially selecting a color.

Exercises

True/False. If the statement is false, replace it with a true statement.
1. Functions allow us to reuse common groups of commands.
2. If an argument holds the value of some variable outside the function, changing the argument’s

value also changes that variable’s value.
3. Sage allows you to specify optional arguments.
4. If a Sage function does not explicitly return a value, then it returns None.
5. Inside a function, it is best to use dictionary substitution for both functions and expressions.
6. You cannot combine your functions with Sage functions.
7. No one uses pseudocode in real life.
8. Pseudocode communicates ideas using “plain English” and mathematical symbols, rather

than a particular language’s symbols and formats.
9. The best way to reuse a group of Sage functions in different sessions is to copy-and-paste the

code.
10. The %attach command permanently attaches a script to Sage, and automatically reloads it

when you change it.
11. You can use interactive functions from command-line Sage.
12. If the user has to select from 100 equally-spaced values on a number line, it’s best to use a

slider.
13. If the user has to select a function from the set {sin x, cos x, ln x, e x}, it’s best to use a selector.
14. To find the number one-fourth of the distance from 2 to 10, substitute t = 0.25 into the

expression 2+ 8t .
15. A disadvantage to interactive functions is that you can’t break up their tasks into tasks per-

formed by other functions.

Multiple Choice.
1. We start the definition of a function in Sage using

A. algorithm

EXERCISES 102

B. its type
C. its name
D. def

2. The format for an optional argument is
A. not to list it
B. to preface its identifier with the keyword optional

C. to preface the function name with the keyword def

D. to place after its identifier the symbol = and a default value
3. Which of the following is not an accurate description of an argument?

A. a stand-in for a variable outside the function
B. a copy of some data outside the function
C. a variable whose value you may not know in advance
D. information the function may or may not need to perform its tasks

4. The best way to report a function’s result back to the client is to
A. list the result in a return statement
B. assign the value to one of the parameters
C. assign it to a global variable called result

D. assign the function’s name to a variable
5. A function that lacks a return statement:

A. raises an error
B. returns the empty set
C. returns None
D. does nothing special

6. When a list of commands is subject to a control structure such as def or try. . .except, you
should:
A. indent the commands in question
B. add a colon at the end of the control structure’s statement
C. reverse the indentation when the list is finished
D. all of the above

7. Which of the following is not performed in a try. . .except statement?
A. Sage executes every statement indented under the try statement that does not raise an

error.
B. If no error occurs in the statements listed under the try block, Sage skips the statements

indented under the except block.
C. If an error occurs in the try block and the next except statement lists that error, or none

at all, Sage executes every statement indented under the except statement that does not
raise an error.

D. If an error occurs in the statements listed under the except block and the next except

statement lists that error, Sage executes every statement indented under the next except
statement that does not raise an error.

8. Which of the following properties does our pseudocode standard share with Sage code?
A. Statements subject to control structures are indented.
B. We can use def in both pseudocode and Sage code.
C. We specify the inputs’ types in Sage, just as we specify which set an input comes from in

pseudocode.

EXERCISES 103

D. The try. . .except control structure in Sage corresponds to the try. . .except control struc-
ture in pseudocode.

9. The best way in Sage to substitute into an indeterminate that was passed as an argument is
by:
A. function-call syntax
B. dictionary substitution
C. keyword assignment
D. both A and B, through a try. . .except clause

10. Which of the following identifiers can we not assign values to?
A. a valid identifier
B. a keyword
C. a constant
D. a function name

Short answer.
1. Explain modularity and why it is a good practice when writing programs.
2. Are modularity and modular arithmetic the same thing?

Programming.
1. Sage does not automatically add arrowheads to a curve. Since the derivative tells us the slope

of the curve at a given point, we can determine what directions arrows at the end should
point by computing derivatives at the endpoints and putting arrows there Write a function
arrowplot() that takes as argument a function f , two endpoints a and b , and an “arrow
length” ∆x, then plots f on [a, b], adding arrowheads using the principle that (a, f (a)) and
(a−∆x, f (a)− f ′ (a)∆x) would give us two points on a line tangent to f at a (and which
would specify a suitable arrow). (We leave it to you to modify this definition for an arrowhead
at b .)

2. Write pseudocode for a function that computes and returns the normal line to f at x = c .
Then:
(a) Implement this in Sage code.
(b) Use this code and the tangent_line() function to plot both lines at a point x = c on a

transcendental function f .
(c) Write an interactive function to sketch the graph of a function, a tangent line at a point

x = c , and the normal line at x = c . Aside from any obvious interface elements needed,
include at least a slider to control the aspect ratio of the resulting graph.

Your implementation will sometimes fail; for instance, if you use f = (x − 1)2+ 2 and c = 1,
you should encounter a ZeroDivisionError.

DON’T PANIC!
You should actually expect this error, since computing a perpendicular requires a reciprocal,

which means division, which opens the possibility of division by zero. We address this issue
in the chapter on Decision-Making. Make sure your code works with functions and points
that don’t misbehave.

3. Write pseudocode for a function named avg_value whose inputs are a function f , and indeter-
minate x, and the endpoints a and b of an interval I . The function returns the average value
of f on the interval. (You may need to review some calculus to solve this problem.)

4. Let’s define the operation a ∗ b = ab +(a+ 2b + 1).

EXERCISES 104

(a) Write pseudocode for a function that accepts two integers a and b and returns a ∗ b .
(b) Implement this pseudocode as a Sage function.
(c) Test your function on several different values of a and b .
(d) Is there a value of a such that a ∗ b = b , regardless of the value of b ?

5. Write a Sage function named dotted_line_segment() that accepts seven arguments named x1,
y1, x2, y2, color, pointsize, and pointcolor. The colors’ default values should be ’black’,
and the default color of pointsize should be 60. The function returns the sum of:
• a line segment that connects those points and whose color is color, and
• two points, both of color pointcolor and of size pointsize, whose locations are (x1, y1)

and (x2, y2).
(a) Use this function to plot a line segment connecting the points (0,0) and (1,4)whose color

and point color are both black.
(b) Use this function to plot a black line segment connecting the red points (0,6) and (2,0).
You need not write pseudocode for this function.

6. Implement the following pseudocode in Sage.

algorithm Taylor_Truncated4
inputs

• a ∈R
• x, an indeterminate
• f , a function in x that is integrable at x = a

outputs
• the truncated Taylor series for f (x) around x = a

do
let result = f (a)
add f ′ (a) · (x − a) to resulta

add f ′′ (a) · (x − a)2 /2 to result
add f ′′′ (a) · (x − a)3 /6 to result
add f (4) (a) · (x − a)4 /24 to result
return result

aHere’s a hint on this one. To “add . . . to result” use the construction result = result + . . .

Check it by finding the truncated Taylor series for e x at x = 1, and comparing the truncated
series’ value at x = 1.1 with the value of e1.1.

7. Explain how the “squash factor” we used in our interactive functions was used to set the aspect
ratio of the plot. Your explanation should address why the leftmost value squashes the graph
as far left as possible, why the rightmost value stretches the graph as far right as possible, and
why the middle value sits somewhere in between.

Repeating yourself definitely with collections

There are a number of cases where you want to repeat a task several times. A classic example
comes from differential equations; suppose we know

d y/d x = sin y + 2cos x,

that is, at any point (x, y), the value of y is changing by sin y + 2cos x. It is difficult, and often
impossible, to find the exact formula for y in terms of y, so it is necessary to approximate “future”
values of y from a starting point (x, y).51 In this case you usually decide to make a number of very
small “steps forward” with x, and re-evaluate y at each point, tracing out the resulting behavior.
In this case, suppose we start at (0,0); then y ′ (0,0) = 2, which suggests the function wants to
move forward along a line with slope 2. After all, you’re computing the derivative, which is
the slope of the tangent line, which goes in the same direction as the curve at that point. This
technique of moving along the tangent line is known as Euler’s Method.

However, the curve wants to go in the same direction as its tangent line only for a moment;
as soon as we step off the point (0,0), the derivative changes ever-so-slightly, and the tangent line
is no longer valid. To avoid making too much error, we take a tiny step, say ∆x = 1/10, along
this line, which takes us to the point (.1, .2). Here, y ′ (.1, .2)≈ 2.1, so we step out along a line of
slope 2.1, which takes us to the point (.2, .41). Here, y ′ (.2, .41)≈ 2.0, which takes us to (.3, .61).
Here, y ′ (.3, .61)≈ 1.9, which takes us to (.4, .8). Here, y ′ (.4, .8)≈ 1.8, which takes us to (.5, .98).
Here, y ′ (.5, .98)≈ 1.6, which takes us to (.6, 1.14). Go far enough, and you’ll trace out a picture
something like this:

To generate this curve, we used a step size of ∆x = 1/10. Repeat the process from (0,0) with a
smaller step size, say∆x = 1/100, and you’ll get a slightly different result:

51For instance, this is how weather prediction works.

105

HOW TO MAKE A COMPUTER REPEAT A FIXED NUMBER OF TIMES? 106

This reflects the fact that our approximation incorporates some error. Still, it’s not that bad; the
approximations are pretty close. Then again, we obtained the blue curve using 80 points, and the
red curve using 800 points. You don’t want to do that by hand, do you?

When a task (or set of tasks) has to be repeated more than once on the result of the previ-
ous application, we call this repetition iteration. Iteration pops up repeatedly in computational
mathematics, so programming languages typically offer a control structure called a loop. Un-
like Euler’s method, we don’t always know in advance how many times the loop must repeat, so
many loops are indefinite. Nevertheless, it is very often the case that we can determine the exact
number of times a task must repeat from the outset; we call this a definite loop. This chapter
introduces definite loops; we postpone indefinite loops for a subsequent chapter.

How to make a computer repeat a fixed number of times?

Pseudocode. We can describe Euler’s Method in pseudocode as follows.

algorithm Eulers_method
inputs

• d f , the derivative of a function
• (x0, y0), initial values of x and y
• ∆x, step size
• n, number of steps to take

outputs
• approximation to (x + n∆x, f (a+ n∆x))

do
let a = x0, b = y0
repeat n times

add∆x · d f (a, b) to b
add∆x to a

return (a, b)

We use repeat in pseudocode to indicate that a set of tasks are to be repeated a certain number of
times, and indent the tasks to repeat.

HOW TO MAKE A COMPUTER REPEAT A FIXED NUMBER OF TIMES? 107

Sage code. As with most computer languages, Sage has no keyword named repeat.52 For
definite loops, Sage uses a more general-purpose keyword, for. When you know you are to repeat
a task n times, the construction is fairly simple:

for variable in xrange(n):

For variable you choose an identifier that will hold the number of the loop each time you pass
through it.

We can now implement Euler’s Method in Sage:

sage: def eulers_method(df, x0, y0, Delta_x, n):

starting point

a, b = x0, y0

compute tangent lines & step forward

for i in xrange(n):

b = Delta_x * df(a, b) + b

a = Delta_x + a

return a, b

This looks pretty straightforward. Let’s try it out:

sage: df(x,y) = sin(y) + 2*cos(x)

sage: eulers_method(df, 0, 0, 1/10, 80)

If you do try this, you’ll notice it takes an awfully long time to sort itself out, certainly more than
a few seconds. To see why this happens, interrupt the calculation (press the “Stop” button in the
cloud, click the “Action” menu and click “Interrupt” on an independent server, or hold Ctrland
press C at the command line) and run the code again with a smaller value of n:

sage: eulers_method(df, 0, 0, 1/10, 10)

(1, 1/5*cos(9/10) + 1/5*cos(4/5) + 1/5*cos(7/10) + 1/5*cos(3/5) +

1/5*cos(1/2) ...

(The ellipses at the end indicate there’s a lot more after that. Quite a lot more!)
Do you see what’s going on? Sage is computing exact values; and the exact value of this

number grows more and more complicated with each iteration. You can modify the code to
simplify b after each computation, but it doesn’t really help. This simply illustrates a drawback of
symbolic computation: to gain “exact” values, you sacrifice time. But there’s no need to sacrifice
that here! After all, we’re approximating the value anyway. In that case, let’s turn to floating-
point values, and see if that speeds things up. Let’s replace 1/10 by .1, and let’s see how it turns
out.

52Our use of repeat is meant to illustrate how pseudocode aims for clarity of communication, rather than
mimicry of a particular language, and it is not unheard-of to see repeat used in pseudocode. That said, some pro-
gramming languages do feature a repeat structure for loops.

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 108

sage: eulers_method(df, 0, 0, .1, 80)

(7.99999999999999, 4.340418570291038)

This comes to (8,4.34). Not only did we obtain an answer quickly, it was nearly instanta-
neous! It’s clearly a better idea to rely on floating-point when you know you’re approximating
anyway.

What just happened? What takes place when we execute a loop? Let’s examine what hap-
pens, looking closely at the values of a and b each time we pass through the loop.

When we ran the program, both a and b take on the value 0, because that’s what we passed
as the arguments for the initial value. We next come to the line

for i in xrange(n):

Recall that this instructs Sage to repeat the subsequent tasks n times. The value of the loop is
stored in the variable i , in case you need it; we don’t need i for this problem, but a later example
will illustrate how this can be useful.

Now, n is a parameter, and in this case we assigned it the value 80. So the indented tasks will
repeat 80 times. We now illustrate what occurs the first few times:
When i = 0: The first line tells Sage to compute∆xd f (a, b) and add it to b , then assign the result

to b . After this, b = .1 f (0,0)+ 0= .2.
The second line tells Sage to add ∆x to a, then assign the result to a. After this,
a = .1+ 0= .1.

When i = 1: The first line tells Sage to compute∆xd f (a, b) and add it to b , then assign the result
to b . After this, b = .1 f (.1, .2)+ .2≈ .42.
The second line tells Sage to add ∆x to a, then assign the result to a. After this,
a = .1+ .1= .2.

When i = 2: The first line tells Sage to compute∆xd f (a, b) and add it to b , then assign the result
to b . After this, b = .1 f (.2, .42)+ .42≈ .66.
The second line tells Sage to add ∆x to a, then assign the result to a. After this,
a = .1+ .2= .3.

. . . and so forth. Repeat this 80 times, and you end up with the value that Sage reported.

How does this work? or, an introduction to collections

We discuss in more detail how this process works. Definite loops work by passing over a
collection; in general, you can use the for keyword in the form

for variablein collection:
and Sage will perform the following, indented tasks as many times as there are objects in collection.
On the first pass through the loop, variable takes on the value of the “first” element of collection;
on each subsequent pass, variable takes on the value of the element in collection that “follows”
the current value of variable.

We put “first” and “follows” in quotes because in some collections, what Sage considers the
“first” element may not be what you expect, and the value it considers to “follow” the current
value may not be what you consider to follow it. This is not such a problem as you may think,
since it happens only in collections where you should not be expecting a “first,” “second,” etc.
We’ll talk about that in a second.

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 109

But what is a collection? As you’d expect from its name, a collection is an object that “con-
tains” other objects. We can classify collections in two ways.

• The first classification is whether a collection is indexed.
– Indexed collections order their elements that allow you to access any element ac-

cording to its location.
– Unindexed collections do not order their elements, so you can access any element,

but not by its location.
• The second classification is whether a collection is mutable.

– Mutable collections allow you to change their values.
– Immutable collections do not allow you to change their values.

We use five kinds of collections.
A tuple is an indexed, immutable collection; we refer to a tuple of n elements as an n-tuple.

You create a tuple using parentheses or the tuple() command, inserting another collection be-
tween its parentheses; for instance, the following two commands do the same thing:

sage: a_tuple = (3, pi, -I)

sage: b_tuple = tuple([3, pi, -I])

sage: a_tuple == b_tuple

True

You can also create an “empty tuple” by placing nothing between the parentheses, either () or
tuple(). As immutable collections, tuples are useful for communicating data that should not
be changed; i.e., constants. You have already seen and used tuples; we used them extensively to
provide points to the plotting commands.

A list is an indexed, mutable collection. You create a list using brackets or the list() com-
mand, inserting another collection between the brackets or parentheses; for instance,

sage: a_list = [3, pi, -I]

You can also create an “empty list” by placing nothing between the parentheses or brackets, either
[] or list(). As mutable collections, it is easy to modify both a list and its elements. If you need
to store values that might change, you need a list, not a tuple, as you cannot modify a tuple.

A set is an unindexed, mutable collection. You create a set using braces or the set() com-
mand; for instance,

sage: a_set = {3, pi, -I}

sage: a_set

{-I, 3, pi}

Notice how the elements’ “order” changed. You can also create an “empty set” by placing nothing
between the parentheses or brackets, either {} or set(). As they are mutable, you can modify a
set. An important property of a set is that it stores only one copy of any element; trying to add
additional copies leaves us with only one nevertheless. For example:

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 110

sage: another_set = {2, 2, 2, 2, 2, 2}

sage: another_set

{2}

We do not use sets often in this text; while they have important uses, they can be tricky to use, as
they accept only immutable objects, and many Sage objects are mutable. For instance, you can
store tuples in a set, but not lists. For that matter, sets themselves are mutable, so you cannot
store one set inside another.

sage: { a_tuple }

{(3, pi, -I)}

sage: { a_set }

TypeError: unhashable type: ’set’

A frozen set is an unindexed, immutable collection. You create a frozen set using the frozenset()
command; for instance,

sage: f_set = frozenset(a_set)

sage: f_set

frozenset({-I, 3, pi})

You can also create an “empty frozen set” by placing nothing between the parentheses, frozenset().
Frozen sets are especially useful when you need sets of sets: you cannot store a mutable set inside
a set, so you store a frozen set inside a set.

A dictionary is like a list, in that it is an indexed, mutable collection. It is unlike a list in that
the indexing is by entry rather than by position. You create a set using braces and colons; the
braces delimit the dictionary, while the colons indicate a correspondence between keys (dictio-
nary entries) and values (definitions for the entries). For example:

sage: a_dict = {x:2, x^2 + 1:’hello’}

In this (rather silly) dictionary, the entry x corresponds to the value 2, while the entry x^2 + 1

corresponds to the value ’hello’. Another way to create a dictionary is by using the dict()

command with a collection of 2-tuples; the first entry in the tuple becomes the key, the second
becomes the value.

sage: tup_dict = dict(((x,1), (15,-71), (cos(x),3)))

sage: tup_dict[cos(x)]

3

You can also create an “empty dictionary” by placing nothing between the parentheses of a dict()
command, dict(). We have already used dictionaries when performing dictionary substitution.

How does indexing work? The answer to this questions depends somewhat on the type of
collection, but it always involves the brackets, [].

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 111

For a dictionary, you type the key between the brackets, and Sage returns the value assigned
to that key:

sage: a_dict[x^2 + 1]

’hello’

We can now explain how dictionary substitution works in an expression: when you type

sage: f = x^2 + 2

sage: f({x:1})

then Sage uses the dictionary {x:1} to interpret every x in f as a 1 instead.
For tuples and lists, indexing has a meaning analogous to that of a subscript in mathematics.

Just as a1, a2, . . . , ai , . . . indicate the first, second, . . . , i th, . . . elements of a sequence, LorT[i]
indicates the element in position i . The slight difference in wording is important; for Sage you
need to supply a “legal position,” which is not quite the same as you might expect:

sage: a_tuple

(3, pi, -I)

sage: a_tuple[1]

pi

sage: a_tuple[2]

-I

If you look closely at the numbering, you’ll notice that Sage starts numbering its elements at po-
sition 0, not position 1. To read the first element of a_tuple, you would actually type a_tuple[0].

Suppose the collection C is either a tuple or a list, and has n elements. The meaning of “legal
position” corresponds to the following table:

C[0] C[1] C[2] C[n-2] C[n-1] C[n]

which element? PANIC! first second third . . . penultimate last PANIC!
C[-n-1] C[-n] C[-n+1] C[-n+2] C[-2] C[-1]

As usual, PANIC! stands in for, “some sort of error occurs!” We discuss these in the next sec-
tion, but notice something surprising: negative indices have meaning! They take you backwards
through the elements of C. We will not make use of this feature in this text, but there are occasions
where it can be put to good use.

Things you can do with collections. We don’t address here the applications of collections,
so much as the commands use can use on them, and the methods you can send them. We’ve
already seen how you can access elements of indexed collections via the bracket operator.

All five collections. Two commands and one operation are common to all five collections:

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 112

len(collection) the number of elements in collection

element in collection
True if and only if element is in collection (if col-
lection is a dictionary, this means that element ap-
pears as a key)

max(collection) the largest element in collection
min(collection) the smallest element in collection
sorted(collection,
reverse=True or False)

returns a sorted copy of collection (reverse order
if reverse=True)

sorted(collection, key,
reverse=True or False)

returns copy of collection, sorted according to
key (reverse order if reverse=True)

Most of the time, a program doesn’t know beforehand how many elements it has to work with,
so having a way to determine that number is enormously useful.

sage: len(a_set)

3

sage: len(another_set)

1

sage: sqrt(2) in a_list

False

sage: sqrt(-1) in a_tuple

True

sage: sorted(a_tuple)

[3, pi, -I]

Notice how the sorted() command always returns a list, even though we supplied a tuple for its
input.

There are times when you may want to sort a collection in a manner different from Sage’s
default. You can modify the sorting criteria using the key option, a function that returns an
object that serves as a key for sorting, much as a dictionary. We won’t use this often, but the
example above illustrates the point: from the point of view of complex analysis, it seems odd to
sort −i after 3 and π, when its “norm” is smaller. To sort by the norm, we can write a function
that computes the norm of any complex number, and use that as the key:

sage: def by_norm(z):

return real_part(z)**2 + imag_part(z)**2

sage: sorted(a_tuple, key=by_norm)

[-I, 3, pi]

Lists and tuples. The next methods and operations apply only to lists and tuples:

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 113

LorT.count(element)
the number of time element appears in LorT

LorT.index(element)
the location of element in LorT

LorT1+ LorT2 creates a new list/tuple whose elements are those
of LorT1, followed by those of LorT2

It should make sense that you cannot apply these techniques to sets, frozen sets, or dictionaries.
No element or key can appear more than once in a set, frozen set, or dictionaries, so count()

would return at most 1 in each. Sets and frozen sets are unindexable, so index() doesn’t make
sense. For dictionaries, index() might make sense, but it isn’t directly implemented.53

We can only “add” two lists or two tuples; you cannot add a list to a tuple, or vice-versa.
We have exhausted the commands available for tuples, but there’s a bit more you can do with

a list. Since lists are both indexable and mutable, we can modify a particular element of a list
using item assignment:

sage: a_list[0] = 1

sage: a_list

[1, pi, -I]

sage: a_list[0] = 3

sage: a_list

[3, pi, -I]

As usual, we use 0 because Sage considers the first item to have location 0.
Besides item assignment, lists feature some methods not available to tuples; see Table 9.54 A

few distinctions are worth making about these commands:

• .pop() and .remove() differ in that one refers to a location, while the other refers to a
particular element.

sage: a_list.pop(1)

pi

sage: a_list.remove(3)

sage: a_list

[-I]

There was never an element in location 3, emphasizing that remove() looked for an
element whose value was 3. This can be fairly sophisticated, as Sage will perform obvious
reductions to check whether an element has a given value:

53It is actually doable, but somewhat convoluted.
54As usual, the list may not be exhaustive, and probably isn’t. We’re addressing only the commands we think

you’ll need most often, and the ones available at the time of this writing. To see if the list is exhaustive, remember
that you can obtain a list by typing a_list. , then pressing the Tab key.

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 114

L.append(element)
add element to the end of L

L.extend(collection)
append the elements of collection to L

L.insert(location,
element)

add element at the given location (starting from 0)

L.pop() removes (and returns) the last element of the list

L.pop(location) removes and returns the element at the indicated
location (starting from 0)

L.remove(element) removes the named element
L.reverse() reverses the list

L.sort() sorts the list according to Sage’s default mecha-
nism

L.sort(key) sorts the list according to the given key

L.sort(key,
reverse=True or False)

sorts the list in the order opposite that given by
key

TABLE 9. Operatons unique to lists

sage: a_list = [3, pi, -I, (x+1)*(x-1)]

sage: a_list.remove(x**2 - 1)

sage: a_list

[3, pi, -I]

• .sort() differs from sorted() in that it does not copy the list first, and returns None.
The list is sorted “in-place.” You can think of sorted() as leaving the original list intact,
and .sort() as changing the list.

Sets and frozen sets. The methods in Table 10 apply only to sets and frozen sets. Operations
that modify the set do not apply to frozen sets.

Several of the methods correspond to mathematical operations or relations. An important
distinction to make is that messages which end with _update modify the set itself and return None,
while the corresponding, _update-less methods return a new set and leave the original untouched.

Dictionaries. We will not use most of the features available to a dictionary. The only ones we
mention appear in Table 11. We have already shown how to access a dictionary’s elements using
the bracket operator [], so we merely note that you can add or modify entries in a dictionary the
same way that you modify entries in a list.

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 115

S.add(element) add element to the set S

S.difference(C)
returns a copy of the set or frozen set S, mi-
nus any elements in the collection C

S.difference_update(C)
removes elements in the collection C from
the set S itself

S.intersection(C)
returns the set of elements in both the set
or frozen set S and the collection C

S.intersection_update(C) removes from the set S any elements in C

S.isdisjoint(C)
True if and only if the set or frozen set S has
no elements in common with the collection
C

S.issubset(C)
True if and only if all the elements in the set
or frozen set S are also in the collection C

S.issuperset(C)
True if and only if all the elements in the
collection C are also in the set or frozen set
S

S.pop() removes and returns an element of the set S

S.remove(element) removes element if it appears in S; raises a
KeyError if it does not

S.symmetric_difference(C)
returns the symmetric difference between S
and T ; that is, the elements not common to
S and T

S.symmetric_difference_update(C)
remove from S any element that appear in
C, and adds to S those elements in T that
are not in S

S.union(C)
returns the union of the set or frozen set S
with the collection C

S.update(C)
adds all the elements of the collection C to
the set S

TABLE 10. Operations unique to sets

sage: a_dict

{x^2 + 1: ’hello’, x: 2}

sage: a_dict[0] = ’goodbye’

sage: a_dict[0] = -3

sage: a_dict

{0: -3, x^2 + 1: ’hello’, x: 2}

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 116

D.clear()
remove all the entries in D

D.has_key(key)
returns True if and only if key has a value in D

D.pop(key)
removes the entry for key from D and returns its
value

D.popitem()

remove some entry of D and return the tuple
(key, value)

D.update(E)
adds the definitions in E to D

TABLE 11. Operations unique to dictionaries

A shortcut for creating collections. The two functions range() and xrange() assist in the
creation of collections.

The first, range(), creates a list of numbers. There are three ways to use it:

range(n) creates the list of numbers [0,1, . . . , n− 1]
range(a, b) creates the list of numbers [a,a+ 1, . . . , b − 1]

range(a, b, d) creates the list of numbers [a,a+ d , . . . ,a+ kd]
where a+(k + 1)d ≥ b

This gives us an easy way of creating and manipulating a set of integers in a sequence, a useful
construction for many situations. Keep in mind that this function returns an actual list, which
you can manipulate just like any other list.

sage: L = range(1, 10, 2)

sage: L

[1, 3, 5, 7, 9]

sage: L.reverse()

sage: L

[9, 7, 5, 3, 1]

In many cases, you don’t need the actual list of numbers; you just need a way to step through
them all. It would actually be wasteful to create the list, as that takes up computer memory and
time. If you want to run through a list of numbers without actually creating the list, Sage offers a
different command for this: xrange(). You invoke it the same way you invoke range(), and you
can even assign it to a variable and access its elements directly. However, you cannot modify the
variable, so in some sense, you can view the result of xrange() as being a tuple.

HOW DOES THIS WORK? OR, AN INTRODUCTION TO COLLECTIONS 117

sage: L = xrange(1, 10, 2)

sage: L

xrange(1, 11, 2)

sage: L[2]

5

sage: len(L)

5

sage: L.reverse()

AttributeError: ’xrange’ object has no attribute ’reverse’

sage: L[2] = 1

TypeError: ’xrange’ object does not support item assignment

If it remains unclear why these two functions are useful, fret not. One will prove its worth
clear in our next major example (Riemann sums), and the other will prove itself useful eventually.

Errors in creating or accessing collections. It would be wise to review what sort of errors
crop up when you try to create one or access an element.

• When creating a collection using a command rather than symbols, don’t neglect to sup-
ply another collection. Sage will not accept a mere, comma-separated sequence of ele-
ments.

sage: new_tuple = tuple(2, 3, 4)

TypeError: tuple() takes at most 1 argument (3 given)

• Tuples are immutable. Don’t try to change values. If you think you might need to change
the value of an element, use a list instead.

sage: a_tuple[0] = 1

TypeError: ’tuple’ object does not support item assignment

• While lists and tuples accept negative indices, they don’t “wrap around” any more than
that. If the collection has length n, don’t try to access elements n or −n− 1.

sage: len(a_list)

3

sage: a_list[3]

IndexError: list index out of range

• As mentioned already, don’t try to add a list to a tuple, or vice-versa.

sage: a_list + a_tuple

TypeError: can only concatenate list (not "tuple") to list

• Set aren’t indexed, so you can’t access a particular element of a set.

REPEATING OVER A COLLECTION 118

sage: len(a_set)

3

sage: a_set[1]

TypeError: ’set’ object does not support indexing

• Sage raises an error whenever you try to access a non-existent entry of a dictionary.

sage: a_dict[12]

KeyError: 12

Repeating over a collection

We can now return to the main purpose of this chapter, Sage’s for keyword. We remind you
that its general form is

for variablein collection:
followed by an indented list of tasks; this corresponds to the pseudocode

for variable∈collection
followed by an indented list of tasks. On the first pass through the loop, variable takes on the
value of the “first” element of collection; on each subsequent pass, variable takes on the value of
the element in collection that “follows” the current value of variable. We call variable the loop
variable and collection the loop domain, or just “domain”.

The effect is that if element is in the domain C, the for loop will at some point assign its value
to variable, then perform all the indented tasks. This property of a complete treatment of C does
not change even if you modify variable during the loop; Sage remembers which element it selected
from C, and selects the element that “follows” it, rather than the value of variable. So you can
modify the loop variable if needed, without worrying about the behavior of the loop.55

On the other hand! if you modify the domain, nasty, nasty things can happen. The for loop
wants to iterate over every element of its domain, but it doesn’t make a copy of the domain at the
outset, so if the body of the loop modifies the domain, strange things can happen, including an
infinite loop.56 One of the Programming exercises will illustrate this — you should not actually
try it in Sage unless you’re ready to press the Stop button (cloud), select the Action menu, then
Interrupt (other server), or hold Ctrl and press C (command line).

There are many cases where you will want to use the value.

First example: computing a Riemann integral. Recall that we cannot always simplify an
indefinite integral to “elementary form,” so when we need a definite integral we can approximate
its value using one of several methods. The integral is defined as
∫ b

a
f (x)d x = lim

n→∞

n
∑

i=1

f (x∗i)∆x, where ∆x =
b − a

n
and x∗i lies in the i th subinterval.

55This is very different from many computer languages, such as C, C++, and Java. In those languages, modifying
the loop variable during a for loop can have catastrophic results.

56If you need a definition of “infinite loop,” see the index, where we stole a joke from the glossary of the Ami-
gaDOS 3.1 manual.

REPEATING OVER A COLLECTION 119

In “plain English,” the integral’s value is the limit of the “Riemann sums.” These sums approxi-
mate the integral using n rectangles of width ∆x and height f

�

x∗i
�

. There are three customary
ways to select x∗i :

• by left endpoint, where x∗i = a+(i − 1)∆x;
• by right endpoint, where x∗i = a+ i∆x; and
• by midpoint, where x∗i = a+(i − 1/2)∆x.

As n increases, the error decreases, so it is possible to approximate the integral by evaluating

n
∑

i=1

f (x∗i)∆x

for a large value of n. The summation symbol Σ instructs us to let the summation variable i
grow from 1 to n, and for each value to evaluate the expression on its right, and add that to the
growing sum.

Notice the language we are using here: “each” and “every.” When a problem’s solution in-
volves these sorts of words, that’s a telltale sign that you need a definite loop over the collection
whose elements are in question.

Pseudocode. In this case, we will create a loop for left-endpoint approximation. It is relatively
easy to turn this into pseudocode:

algorithm Left_Riemmann_approximation
inputs

• a, b ∈R
• f , an integrable function on [a, b]
• n, the number of rectangles to use in approximating

∫ b
a

f (x)d x
outputs

• S, the left-endpoint Riemann sum of
∫ b

a
f (x)d x, using n rectangles

to approximate the area
do

let∆x = (b − a)/n
let S = 0
for i ∈ (1, . . . , n)

let x∗i = a+(i − 1)∆x
add f

�

x∗i
�

∆x to S
return S

Let’s look at what this code does. Initially it assigns∆x, which we very much need to know,
as it is not part of the input. It then initializes the result, S, to 0, a good idea whenever you want
to create a sum. With this complete, it passes into the loop, assigning to i each value from 1 to n.
With that value, it performs the two indented tasks underneath: choose a value of x∗i according
to the formula for left endpoints, and add the area of a rectangle to S. Once the loop has passed
through every value 1, . . . , n, it returns S.

Notice how this code uses the value of the loop variable i to construct x∗i .

REPEATING OVER A COLLECTION 120

Sage implementation. Implementing this pseudocode in Sage requires a few minor changes.
The main problems is that we can’t use Greek symbols, subscripts, or decorators, so the names
of variables have to change somewhat.

However, we have to make another change that can be easy to miss. The formula we are using
expects i to assume the values 1, . . . , n. The natural way to have Sage pass over such numbers is
with the xrange() command, but by default xrange(n) starts with 0 and ends with n− 1! There
are several intelligent ways you can make sure that you have the right numbers; we opt for letting
j stand for the loop variable and setting i = j + 1. That lets us keep the formula the same.57

sage: def Left_Riemann_approximation(f, a, b, n, x=x):

f(x) = f

Delta_x = (b - a) / n

S = 0

for j in xrange(n):

i = j + 1

interval’s left endpoint

xi = a + (i - 1) * Delta_x

add area of rectangle over interval

S = S + f(xi) * Delta_x

return S

This works quite well:

sage: Left_Riemann_approximation(t^2 + 1, 0, 1, 100, t)

Second example: checking whether Zn is a field. For another example, recall the exercise
on p. 1, where we have to check whether Zn is a field. We already know it is a ring, so we needed
merely check that every nonzero element has a multiplicative inverse. Checking all the elements
by hand is rather burdensome, especially as n grows large. A loop would thus be a desirable tool
here. All we have to do is check whether each element has an inverse, and we can do that by
checking the product of each element with every other element.

Notice again that we are using the words “each” and “every,” which tells us we need to use a
definite loop.

Pseudocode. We describe a fairly straightforward implementation of our solution in pseu-
docode:58

57Another way is to use the construction xrange(1,n+1), which is really equivalent to our approach, and makes
for a somewhat simpler program, but we pass over that for the sake of a simpler discussion.

58This is not a great solution. We will improve on it when we discuss decision-making.

REPEATING OVER A COLLECTION 121

algorithm produce_all_products
inputs

• n ∈N with n ≥ 2
outputs

• a list L such that Li is the set of products of i ∈ Zn with all other
elements of Zn

do
Let L= []
for i ∈Zn

Let M = ;
for j ∈Zn

add i j to M
append M to L

return L

Let’s look at what this code does. It creates a list L, initially empty. (Our pseudocode uses
brackets to denote a list, and brackets with nothing between them to denote an empty list. Some
authors use parentheses instead, but this is not a hard-and-fast rule, and we don’t want to risk
confusion with tuples.) The code then loops through all the elements of Zn, calling the element
in each pass i . For each of these elements, it creates a new set M , initially empty. It now loops
through Zn again, calling the element in each pass j . It’s important to notice that i remains fixed
while this inner loop changes j on each pass; because of this, we can say with confidence that M
contains the product of this fixed i with every other element ofZn once the inner loop concludes.
The code then appends this set to L, concluding the tasks in the outer loop. Once the outer loop
has passed through every element of Zn, the code can return L.

Notice that the code uses the values of the loop variables i and j , which are themselves entries
of Zn.

By keeping L as a list, we guarantee that its elements correspond to the order in which i passes
through the elements of Zn. This is not so important for M ; all we want is the products of i and
every other element, not necessarily their order, though that could be useful in some contexts.

This pseudocode features an important property of loops: nesting. This occurs whenever
we include one control structure inside another. This is often useful, but it can also be quite
confusing, so you should avoid doing it too much. If your nesting grows to more than 3 or 4,
it’s a good idea to separate the inner loops into another function. This helps make code easier
to understand, and since tasks are often usable in more than one place, it can also save you time
down the road, as well.

Sage implementation. It is relatively easy to turn this into Sage code. The main difference
with the pseudocode is that we have to create a ring for Zn and make sure Sage views i and j as
elements of that ring. We first show the “obvious” way to do this, then a smarter way.

REPEATING OVER A COLLECTION 122

sage: def produce_all_products(n):

R = ZZ.quo(n)

eventual result: L[i] is products of i

L = list()

for i in xrange(n):

M = set() # set of multiples of i

for j in xrange(n):

M.add(R(i)*R(j))

L.append(M)

return L

To see how this works, try it with a few values of n:

sage: produce_all_products(4)

[{0}, {0, 1, 2, 3}, {0, 2}, {0, 1, 2, 3}]

sage: produce_all_products(5)

[{0}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2, 3, 4}, {0, 1, 2,

3, 4}]

We see that:

• For Z4, 1 does not appear in the products of 0 and 2. We don’t mind 0, since we care
only about nonzero elements, but 2 is fatal: Z4 is not a field.
• For Z5, 1 appears in all the products except 0, so it is in fact a field.

Unfortunately, this code is not a great solution, because as n grows larger, the lists of products get
long, and fast, making it difficult to check whether 1 is an element of some set. This may prompt
us to ask: Why are we checking this? It’s easy to have Sage check whether an element appears in a
collection. Let’s change our pseudocode from this:

append M to L

to this:59

append True to L if 1 ∈M ; False otherwise

For the Sage code, we use the fact that the expression 1 in M simplifies automatically (the only
change appears in red):

59This is still not a great solution. We will improve on it when we discuss decision-making.

COMPREHENSIONS: REPEATING IN A COLLECTION 123

sage: def produce_all_products(n):

R = ZZ.quo(n)

eventual result: L[i] is products of i

L = list()

for i in xrange(n):

M = set() # set of multiples of i

for j in xrange(n):

M.add(R(i)*R(j))

L.append(1 in M)

return L

Look at how this behaves much more conveniently than before:

sage: produce_all_products(4)

[False, True, False, True]

sage: produce_all_products(5)

[False, True, True, True, True]

sage: produce_all_products(10)

[False, True, False, True, False, False, False, True, False, True]

In this case it’s extremely easy to determine whether Zn is a field: see if False appears anywhere
besides the first position (which corresponds to 0, for which no inverse is needed).

You might wonder if we can’t simplify this even further. Indeed we can. One way would
require quite a bit of Boolean algebra, so we postpone it for later. But another way is to observe
that Sage considers ZZ.quo(n) to be a collection and we can run over its elements, too: (changes
appear in red)

sage: def produce_all_products(n):

R = ZZ.quo(n)

eventual result: L[i] is products of i

L = list()

for i in R:

M = set() # set of multiples of i

for j in R:

M.add(i*j)

L.append(1 in M)

return L

If you test this, you will see how it works just as before, though the code is simpler. Keep in mind
how easy Sage often makes it to work with mathematical objects in a natural way.

Comprehensions: repeating in a collection

Sage offers a special way to create collections that abbreviates the for loop structure and makes
it a bit easier to use and read. These are called comprehensions, and imitates the set-builder

COMPREHENSIONS: REPEATING IN A COLLECTION 124

notation of mathematics. In set-builder notation, we define a set by specifying first a domain,
then a criterion for selecting elements from that domain. For instance, the expression

S =
�

n ∈N : 2≤ n ≤ 210	

uses set-builder notation to define S as the set of all natural numbers that lie between 2 and 210,
inclusive. Comprehensions give Sage a natural way to mimic this in places where it would be
useful and feasible.

To define a comprehension, use the following template:
collection(expression for variable in collection_or_range) .

This is effectively equivalent to one of the the following sequence of commands (D is a collection;
a, b , and n are integers):

sage: C = collection()
sage: for d in D:

C = C.append/insert/update(expression)

Or:

sage: C = collection()
sage: for d in xrange(a, b, n):

C = C.append/insert/update(expression)

In each case, the result is that C contains the values taken on by expression for each value of either
D (first case) or the specified range of integers (second case).

To see this in practice, we return to our example of the Riemann sums. One way we could
use a comprehension is in generating the x-values. The midpoints all have the form

a+(i − 1)∆x where i = 1, . . . , n ,

and we can assign this to a list X of x-values using a list comprehension as
X = [a + (i - 1)*Delta_x for i in xrange(1, n+1)] .

(Remember that we need n+1 because the range() and xrange() commands proceed up to, but
not including, the second number mentioned.) We could then loop over X, like so:

sage: def Left_Riemann_approximation(f, a, b, n, x=x):

f(x) = f

Delta_x = (b - a) / n

create all left endpoints in one pass

X = [a + (i - 1)*Delta_x for i in xrange(1, n+1)]

S = 0

for xi in X:

add area w/height at f(xi)

S = S + f(xi) * Delta_x

return S

ANIMATION AGAIN 125

This is somewhat simpler than before, and it has the advantage of defining the x-values in a way
that looks mathematical.

We can also describe a simpler way that gets around the penalty of creating the list X. Sage has
a sum() command that is comprehension-friendly. Rather that initialize a sum variable S to zero,
and add partial sums to it on each pass through the loop, we could use the sum() command with
a list comprehension to simplify the program and make it look more like the mathematical idea.
Since we are using left-hand sums, we can rewrite

n
∑

i=1

f (x∗i)∆x

as
n
∑

i=1

f (a+ i∆x)∆x

which becomes

sum(f(a + (i*Delta_x))*Delta_x for i in xrange(1, n+1)) .

All we’ve done here is “translate” the mathematical idea into a corresponding Sage command.
This can seem harder to read at first, but once you get used to it it’s quite natural. The resulting
Sage code is

sage: def Left_Riemann_approximation(f, a, b, n, x=x):

f(x) = f

Delta_x = (b - a) / n

return sum(f(a + (i*Delta_x))*Delta_x \

for i in xrange(1, n+1))

That’s a lot shorter than what we had before.

Animation again

Recall from p. 1 that we created a short animation of a modified fleur-de-lis by creating sev-
eral frames, then joining them with the animate() command. Most interesting or instructive
animations require quite a number of frames; creating them by hand can be a tiresome task, if
not an unfeasible one. On the other hand, most animations also depend crucially on patterns;
for instance, the pattern in our animation on p. 1 can be boiled down to

cos (nx) sin ((n+ 1) x) ,

where n ranges from 2 to 7, inclusive. Of course, we might want more images than that. List
comprehensions allow us to create a list of frames, such as the following:

EXERCISES 126

sage: frames = [polar_plot(cos(n*x)*sin((n+1)*x), (x, 0, pi),

fill=True, \

thickness=2, fillcolor=’yellow’, \

color=’goldenrod’, axes=False) \

for n in xrange(2,20)]

sage: fdl_anim = animate(frames, xmin=-1, xmax=1, \

ymin=-0.5, ymax=1.5, aspect_ratio=1)

sage: show(fdl_anim, gif=True, delay=8)

The result should be an animation of reasonable speed and smoothness. If you view this text in
Acrobat Reader, you should see the same animation below, though the speed might differ slightly:

Exercises

True/False. If the statement is false, replace it with a true statement.

1. A for statement implements a definite loop.
2. The concept we express in pseudocode as “repeat n times” has no corresponding keyword in

most computer languages.
3. You shouldn’t change the value of a loop variable in a for loop, as that can affect the next pass

through the loop.
4. You shouldn’t change the entries of a for loop’s domain, as that can affect the next pass through

the loop.
5. Definite loops are not a useful model for iteration.
6. The only immutable structure Sage offers you is a tuple, so if you want immutability, you’re

stuck with indexing.
7. You can only construct a set using braces; for example, {3, x^2, -pi}.
8. You can only create an empty set on a computer whose keyboard has a ; symbol on it.
9. The key for sorting returns True if and only if the first argument is smaller than the second.
10. List comprehensions model the mathematical concept of set-builder notation.

EXERCISES 127

Multiple Choice.

1. Indexing corresponds to which mathematical notation?
A. functions
B. expressions
C. subscripts
D. apostrophes

2. We cannot access an element of a set at numerical location i because:
A. Sage’s programmers were lazy.
B. Sets aren’t ordered, and thus aren’t indexable.
C. That might break the for loop.
D. The premise is incorrect; brackets allow us to access an element of a set at numerical

location i .
3. We cannot access an element of a dictionary at numerical location i because:

A. Sage’s programmers were lazy.
B. Dictionaries aren’t ordered, and thus aren’t indexable.
C. Dictionaries are ordered by key rather than numerical location.
D. The premise is incorrect; brackets allow us to access an element of a dictionary at numer-

ical location i .
4. We cannot access an element of a tuple at numerical location i because:

A. Sage’s programmers were lazy.
B. Tuples aren’t ordered, and thus aren’t indexable.
C. Tuples are supposedly immutable, and accessing a particular element would violate that

rule.
D. The premise is incorrect; brackets allow us to access an element of a tuple at numerical

location i .
5. Which of the following mathematical techniques might motivate the use of a for loop?

A. iteration
B. checking all elements of a set
C. repeating a set of tasks n times
D. all of the above

6. Which of the following collections is immutable?
A. a tuple
B. a list
C. a set
D. an xrange()

7. Which of the following collections is not indexable?
A. a tuple
B. a list
C. a frozen set
D. an xrange()

8. Which of the following symbols or identifiers do we use in our pseudocode standard to test
for membership in a sequence or set?
A. ∈
B. ε
C. in

D. in

EXERCISES 128

9. Comprehensions model which mathematical notation?
A. function
B. set
C. set-builder
D. subscripts

10. Nesting occurs when:
A. one or more for loops are placed inside another
B. we create a collection using set-builder notation
C. we create a set to contain a number of elements of the same type
D. two birds engage in the Rite of Spring60

Short answer.
1. Summarize how the range() and xrange() commands behave when supplied 1, 2, or 3 inputs.
2. The associative property of multiplication holds for a set S whenever any triplet of element

s , t , u ∈ S satisfies s (t u) = (s t) u. Suppose a particular set S has 9 elements. How many
products would an examination of all possible products require? Hint: The answer is large
enough that you don’t want to do it by hand.

3. Consider the following Sage code.

sage: for i in xrange(10):

for j in xrange(i,10):

for j in xrange(j,10):

print i, j, k

(a) What does it print? Don’t give all of it, just enough to demonstrate the pattern. Use
words to explain the order the lines are printed.

(b) Find a quadruple inequality61 involving i, j, and k that holds for every single line.
4. This problem considers the following Sage code.

sage: def ec(k):

var(’y’)

p = Graphics()

for i in xrange(2, k+1):

p = p + implicit_plot(x**2 + y**2/(1-1/sqrt(i))==1,

(x,-2,2), (y,-2,2), color=(0,i/k,.8-i/k))

return p

(a) Describe what the call ec(10) returns.
(b) Explain what happens if we use larger and larger values of k in the call ec(k).

5. This exercise considers the question of adding consecutive integers.
(a) What is the formula for adding the first n positive integers? (You should have seen this

before, perhaps in Calculus II in the section on Riemann sums.)
(b) Suzy writes the following function to add the first n positive integers.

60We’d appreciate it if Stravinksy’s heirs would not sue.
61A quadruple inequality has the form a ≤ b ≤ c ≤ d ≤ e . Aside from i, j, and k, you’ll need to use two

constants.

https://en.wikipedia.org/wiki/The_Rite_of_Spring

EXERCISES 129

sage: def sum_through(N):

total = 0

for i in xrange(N):

total = total + i

return total

What is the result of her invocation, sum_through(5)? Show the value of total after pass
through the loop.

(c) Use summation notation to describe the value Suzy’s program actually calculates. What
would the corresponding formula be?

(c) How should Suzy correct her formula?
6. Suppose you have an infant that demands62 to be fed every 3 hours.

(a) If you start feeding her at 7 am, at what times will feeding occur?
(b) Write a comprehension that generates a list with each of those times for the next 24 hours.
(c) Repeat part (b), only with the assumption that the infant is a little older and only demands

to be fed every 5 hours.

Programming.
1. Write a function to compute the mean value of the elements of a collection. (You should

remember that “mean value” is a fancy name for “average.”) It will be easier with a compre-
hension inside a sum(), but you can also use a for loop.

2. Write a function to compute the median value of the elements of a collection. (You should
remember that “median value” is a fancy name for “middle value;” that is, half the values are
larger, and half are lower.) Probably the best way to do this is to convert the collection to a
list, sort it, then return the number in the middle.

3. Write a function that takes a list of points (xi , yi) and returns two lists: the list of x-coordinates
and the list of y-coordinates.

4. Create an animation that illustrates how a secant line approaches a tangent. Use the function
f (x) = x2, with the tangent line through the point x = 2, with secant lines that join x = 2
with 30 points between x = −1 and x = 2. Make the plot of f black, with a thickness
of 2; color the tangent line blue, and color the secant lines red. Include a blue point at (2,4)
to highlight where the curve and its tangent and secant lines all meet. The result should be
comparable to, or better than, the animation you will see below if you view this text in Acrobat
Reader:

5. On p. 104 we talked about a truncated Taylor series with 4 terms. We didn’t have for loops
available, so that approach was both tiresome and inflexible.

62Why, yes, some of us do have intimate experience with this. What makes you ask?

EXERCISES 130

(a) Adapt the pseudocode so that the user can input an arbitrary number of terms.
(b) Implement the pseudocode as a Sage program.

6. (This problem is for students who have taken multivariable calculus.) The double integral
∫∫

D
f (x, y) dx dy

pops up often in three-dimensional calculus. Here, D is a subset of the x-y plane R2, called
the domain of the integral. When D is a rectangular region defined by the x-interval (a, b)
and the y-interval (c , d), we can approximate this integral by dividing the domain into m×n
sub-rectangles and evaluating the z-value of f on each sub-rectangle:

∫∫

D
f (x, y) dx dy ≈

m
∑

i=1

n
∑

j=1

f
�

x∗i , y∗j
�

∆x∆y

where
• m is the number of subintervals we want along (a, b);
• n is the number of subintervals we want along (c , d);
• ∆x = (b−a)

m is the width of each subinterval of (a, b);
• ∆y = (d−c)

n is the width of each subinterval of (c , d); and
•
�

x∗i , y∗j
�

is a point in the sub-rectangle defined by the i th subinterval of (a, b) and the j th
subinterval of (c , d).

We can select
�

x∗i , y∗j
�

using a midpoint rule as

x∗i = a+
�

i +
1
2

�

∆x and y∗j = b +
�

j +
1
2

�

∆y.

Write a function double_integral_midpoint() that takes as arguments f , a, b , c , d , m, and
n, and returns an approximation of the double integral of f over (a, b) × (c , d) using m
subintervals along (a, b) and n intervals along (c , d).
Hint: This will be very similar to the code we used to approximate a single integral, but
you will want to nest a for loop for y inside a for loop for x. You can also do this with a
comprehension, but it’s a bit more complicated.

7. Let n be a positive integer. The factorial of n, written n!, is the product

n!= n× (n− 1)× (n− 2)× · · ·× 3× 2× 1.

Sage already offers a .factorial() function, but in this exercise you’ll use loops to do it, two
different ways.
(a) Sage’s product() command works similarly to the sum() command: it computes the

product of whatever lies between the parentheses, and you can use a comprehension to
specify a range, rather than build one explicitly. This corresponds to the mathematical
expression

n
∏

i=1

f (i)

which computes the product of all the f (i) where i = 1,2, . . . , n. In this notation,

n!=
n
∏

i=1

i = n× (n− 1)× (n− 2)× · · ·× 3× 2× 1.

EXERCISES 131

Write a function called factorial_comprehension()s that accepts one argument, n, then
builds the product using a comprehension.

(b) A more traditional way to compute the factorial is to initialize a product variable P
to 1 (the “empty product”), then perform a definite loop from 1 to n, multiplying P by
each number along the way. Write a function called factorial_loop() that accepts one
argument, n, then builds the product using a definite loop.

8. Write a program to compute the rising factorial of a number n over k steps. The rising
factorial rf (n, k) is

rf (n, k) = n× (n+ 1)× · · ·× (n+ k − 1) .

While k is always a nonnegative integer, your program should work even if n is not. For
instance, rf (1/2, 5) = (1/2) (3/2) (5/2) (7/2) (9/2) = 945/32.

9. Write a program to compute the falling factorial of a number n over k steps. The falling
factorial ff (n, k) is

ff (n, k) = n× (n− 1)× · · ·× (n− (k − 1)) .

While k is always a nonnegative integer, your program should work even if n is not. For
instance, ff (9/2, 5) = (9/2) (7/2) (5/2) (3/2) (1/2) = 945/32.

10. A permutation is a way of ordering distinct objects. For example, in the list (1,2,3) there
are six permutations: (1,2,3) itself, then (2,1,3), (3,2,1), (3,1,2), (2,3,1), and (3,2,1). Some-
times you want to permute only c of the objects in a set of n. The formula for this is

nPc =
n!
c !

.

(See the previous exercise for factorials.) There are two ways to do this.
(a) The obvious, “brute force” way to do this is to compute n! and c !, then divide. Write a

Sage function named n_P_c_brute(), that accepts the two arguments n and c , then calls
either factorial_loop() or factorial_comprehension() to determine n! and c !.

(b) A smarter way to do this comes from usin’ yer noggin. Expand by hand the factorials
in n Pc to see the pattern. Turn the resulting mathematical formula into a Sage function
named n_P_c_smarter(), that accepts the two arguments n and c , then determines n Pc
without computing n! or c !.

11. Suppose b > 1 is an integer. To write a positive number n in base b , we can repeat the
following steps:
• Let d = logb n+ 1; this tells us how many digits the result will have.
• Let L be an empty list.
• Repeat d times:

– Let r be the remainder of n when divided by b .
– Subtract r from n.
– Replace n with the value of n when divided by b .
– Append r to L.

• Reverse L, and return the result.
Convert this casual list of instructions into formal pseudocode, and translate the pseudocode
to Sage code.

12. Write a Sage function named by_degree_then_lc() that, when given a polynomial f as input,
returns a 2-tuple consisting of the polynomial’s degree, followed by its leading coefficient. We

EXERCISES 132

haven’t told you the Sage commands for that, but they work as methods to a polynomial; you
can find it in the following way:

sage: f = x^2 + x + 1

sage: f.<Tab>

. . .where <Tab> indicates that you should press the Tab key on the keyboard. Both meth-
ods expect the indeterminate as an argument, so make sure you can use the methods success-
fully before writing the program.

Test this function thoroughly. Once you have it working, make sure that it sorts the
following list of polynomials in t into the correct order. Notice that, since we use t in this list,
your function cannot assume what the indeterminate is, so that should also be an argument
to the function, though it can default to x.

[t^2 + t + 1, 2*t - 1, 3*t^2 + 4, -3*t^10 + 1]

Solving equations

Up to this point, we’ve had you solve equations by hand, though it makes sense we’d want
Sage to solve them for us. This chapter looks at the solve() command and some of its relatives,
both on single equations and on systems of equations. That leads us into matrices, so we look at
some of them, as well.

It is not generally possible to find describe the exact solution to every equation in “purely al-
gebraic” terms, by which we mean the use of arithmetic and radicals with rational numbers. This
is generally even when the equation consists merely of polynomials! So even though we focus
primarily on methods that find exact solutions, Sage also offers methods to compute approximate
solutions to equations, and we take a brief look at them.

The basics

To find the exact solution to an equation or a system of equations, the main tool you want is
the solve() command.

solve(eq_or_ineq, indet) solves the single equation or in-
equality eq_or_ineq for indet

solve(eq_or_ineq_list, indet_list)

solves the collection of equations
eq_or_ineq_list for the indetermi-
nates listed in the collection in-
det_list

While eq_or_ineq should imply an equation or inequality, from Sage’s point of view we can use
an expression, a function, an equation, or an inequality.

One equation or inequality, for one indeterminate

The solve() command will of course solve basic high-school algebra problems.

Equations.

sage: solve(x**2 - 1 == 0, x)

[x == -1, x == 1]

It is very common to encounter equations with 0 on one side; the solution to this kind of equation
is called a root. We don’t actually have to specify that an expression equals 0 when we want to
solve for a root; we can simply supply the expression, and the solve() command infers that we
want its roots.

133

ONE EQUATION OR INEQUALITY, FOR ONE INDETERMINATE 134

sage: solve(x**2 - 1, x)

[x == -1, x == 1]

Sage can also solve equations where all the coefficients are symbolic.

sage: var(’a b c’)

(a, b, c)

sage: solve(a*x**2 + b*x + c == 0, x)

[x == -1/2*(b + sqrt(b^2 - 4*a*c))/a, x == -1/2*(b - sqrt(b^2 -

4*a*c))/a]

The polynomial ax2+ b c + x is called quadratic because its degree is 2.63 You can make out the
quadratic formula in the two answers:

x =−1
2
× b +

p
b 2− 4ac
a

=
−b −

p
b 2− 4ac

2a
and

x =−1
2
× b −

p
b 2− 4ac
a

=
b +
p

b 2− 4ac
2a

.

This answer matches the one you learned in school,

x =
−b ±

p
b 2− 4ac

2a
.

In both cases, the result was a list of equations. Each equation indicates a value of the indeter-
minate that will solve the equation. Because the result is in list form, you can access the solutions
using brackets, []. If you want to manipulate the solutions somehow, it’s probably best to assign
the list to a variable, which we’ll usually call by a name like sols, then use sols[i] to access the
ith solution.

sage: sols = solve(x**5 + x**3 + x, x)

sage: len(sols)

5

sage: sols[0]

x == -sqrt(1/2*I*sqrt(3) - 1/2)

So x =−
p

i
p

3/2− 1/2 is one of the solutions.
You will sometimes want just the value of the solution. Sage equations offer two useful meth-

ods that extract the left- and right-hand sides:

eq_or_ineq.rhs() right-hand side of eq_or_ineq
eq_or_ineq.lhs() left-hand side of eq_or_ineq

Continuing our previous example,
63The degree of a polynomial in a single indeterminate is the largest exponent that appears on that indeterminate.

The .degree() method will report this to you.

ONE EQUATION OR INEQUALITY, FOR ONE INDETERMINATE 135

sage: sols[0].rhs()

-sqrt(1/2*I*sqrt(3) - 1/2)

Again because the result of solve() is in list form, you can also iterate over the list of solutions
using a for loop. Here’s just one way you might find this useful. Let’s plot both a polynomial
and its roots.

sage: f(x) = x^3 - 2*x^2 - 5*x + 6

sage: sols = solve(f, x)

sage: X = [sol.rhs() for sol in sols]

sage: p = plot(f, min(X) - 1, max(X) - 1, color=’black’, \

thickness=2)

sage: for xi in X:

p = p + point((xi,0), pointsize=60, color=’red’, \

zorder=5)

sage: p

While you should have been able to do this on your own, it involves pulling a lot of different
ideas together, so let’s break down each step.

• First we defined the function f, a polynomial of degree 3.
• We used solve() to find its roots, and stored them in the variable sols. Were you to

peek at sols, you would see the following:

sage: sols

[x == 3, x == -2, x == 1]

• Sage returns solutions in the form of a list of equations, and we want just the value of the
root. To do this, we assigned to a new variable, X, a list formed using a comprehension.
The expression for sol in sols loops over the list stored in sols and stores each value
in the variable sol. The expression sol.rhs() gives us the right-hand side of that value.
The upshot is that X is a list that contains the right-hand side of each solution in sols.
Were you to peek at X, you would see the following:

sage: X

[3, -2, 1]

ONE EQUATION OR INEQUALITY, FOR ONE INDETERMINATE 136

• We defined a graphics object p as the plot of f over the interval min(X) - 1 and max(X) - 1.
This gives the graph a little room to breathe beyond the roots.
• We performed a definite loop over the solutions stored in X. The loop stores entry of X

in the loop variable xi, which Sage uses to add a point to p. For example, on the first
pass through the loop, it assigns xi=3, so it adds the point at (3,0).

Multiplicities. Sage expressions also offer a method that sometimes provides us with both
roots and multiplicities.

f .roots() returns the roots of f, along with their
multiplicities

Multiplicities, you should recall, tell us how many times a root shows up in the factorization of a
polynomial. For instance, the polynomial (x − 1) (x + 2)2 (x − 4)3 has three roots, 1, −2, and 4,
with respective multiplicities 1, 2, and 3.

sage: f = (x - 1)*(x + 2)**2*(x - 4)**3

sage: f.roots()

[(-2, 2), (1, 1), (4, 3)]

You see that the result is a list of tuples; each tuple lists the root first, and its multiplicity second.
Multiplicities are important for many reasons; in one of the exercises for this chapter, you can
examine the area around a polynomial’s roots and see how multiplicity affects the geometry.

The complex plane. Many polynomials have roots that include imaginary parts. We obvi-
ously cannot graph such roots with their functions on the real plane, as there is no place on the
real plane to include, for instance, the number i .

Nevertheless, it can be quite instructive to visualize the roots without their functions. Any
complex number has the form a + b i , where a is the real part and b is the imaginary part. We
plot this as the point (a, b) on the real plane. This mapping assigns a unique point on the real
planeR2 to every complex number z ∈C, which motivates the name of this model, the complex
plane.

The following function maps a complex number to a point on the real plane.

sage: def complex_point(z, *args, **kwds):

return point((real_part(z), imag_part(z)), *args, **kwds)

sage: sum(complex_point(sol.rhs(), pointsize=90) \

for sol in solve(x**4 + 4*x + 5, x))

What does this code do?

ONE EQUATION OR INEQUALITY, FOR ONE INDETERMINATE 137

• The first two lines define a function, complex_point(), whose only required argument
is z, a complex number.

– It creates a point whose x-value is the real part of z and whose y-value is the imagi-
nary part of z.

– To avoid restating the required and optional arguments of a point, complex_point()
uses a special trick to accept the required and optional arguments for a regular point(),
then ignores them except to pass them on to point().

• The last lines create a graphic using the sum() command with a comprehension.
– The comprehension loops over the solutions over x4+4x+5 , which it finds with the

command solve(x**4 +4*x + 5, x). Each solution is stored in the loop variable
sol.

– The loop sends each value of sol the method .rhs(), obtaining in return the right-
hand side of the equation Sage uses to describe the solution. The loop passes that
complex number to complex_point(), along with the optional point() argument
pointsize=90. The result is a point in the complex plane, which the sum() command
finally combines into the image you see.

Solving inequalities. You may recall that inequalities bring complications. To start with,
there are usually infinitely many solutions which typically lie on one or more intervals of the
real line. These intervals are sometimes bounded, sometimes unbounded. For instance,

• the solution to x2− 1≥ 0 is (−∞,−1]∪ [1,∞), while
• the solution to x2− 1< 0 is (−1,1).

This complication is reflected in how Sage describes the solutions of an inequality. The solutions
to an inequality are described in a list of lists. Each inner list describes an interval that contains
solutions. This interval itself contains either one linear inequality, which represents an interval
unbounded in one direction, or two linear inequalities, which represent an interval bounded in
both directions.

For instance, it is not hard to verify by hand that the inequality (x − 3) (x − 1) (x + 1) (x + 3)≥
0 has the following solution:

(−∞,−3]∪ [−1,1]∪ [3,∞) ,
so that x =−5, x = 0, and x = 12 are solutions. This is easy to diagram on a number line:64

−3 −1 1 3

Based on the description we gave in the previous paragraph, how should you expect the solution
to look? You know it’s a list of lists, so there should be several pairs of brackets within one pair
of brackets. There are three intervals, should there should be three inner lists. The outermost
intervals are unbounded, so Sage will describe it using by only one linear inequality; the middle
interval is unbounded, so Sage will use need two linear inequalities to describe it.

sage: solve((x-3)*(x-1)*(x+1)*(x+3) >= 0, x)

[[x <= -3], [x >= -1, x <= 1], [x >= 3]]

64It should not hurt to think about how you might diagram this in Sage. If it does hurt, that probably means
your brain is growing, so keep at it all the same.

APPROXIMATE SOLUTIONS TO AN EQUATION 138

Sure enough, Sage describes the leftmost interval using x ≤ −3; the rightmost using x ≥ 3, and
the innermost using two intervals, x ≥ −1 and x ≤ 1. That is also how you should read it,
incidentally: “x ≥−1 and x ≤ 1.” This is equivalent to the inequality −1≤ x ≤ 1.

As the results are lists, you can consider each interval by bracket access or iteration. The
.rhs() and .lhs() methods will separate the left- and right-hand sides of an inequality just as
they will for an equation.

Mistakes or surprises that arise when solving

Some equations will give a strange result. Consider this generic 5th-degree equation:

sage: solve(a*x**5 + b*x**4 + c*x**3 + d*x**2 + e*x + f, x)

[0 == a*x^5 + b*x^4 + c*x^3 + d*x^2 + e*x + f]

Sage seems to be returning the same equation you asked it to solve. If this reminds you of the
example on p. where Sage “refused” to compute an indefinite integral, congratulations! It is more
or less the same phenomenon: Sage cannot find a way to express the solution by an algebraic
expression on the coefficients, except by returning the equation itself to you. It is well-known
that we cannot solve generic polynomial equations of degree 5 or higher in a manner as “simple”
as the quadratic formula. This touches on an topic called solvability by radicals.

Remember that, in Sage, an equation uses two equals signs. If you forget to use two equals
signs when using the solve() command, unpleasant things will occur. You Have Been Warned.TM

sage: solve(2*x + 1 = 3*x - 2, x)

SyntaxError: keyword can’t be an expression

Approximate solutions to an equation

We saw a moment ago that Sage cannot describe roots for the generic fifth-degree polynomial
in exact terms. This remains true for many specific fifth-degree polynomials, as well.

sage: solve(x**5 - 6*x + 4, x)

[0 == x^5 - 6*x + 4]

So sometimes we have to settle for approximate solutions. Another time to opt for an approxi-
mate solution is when the exact solution is simply too unwieldy to bother dealing with.

sage: solve(x**3 + x + 1, x)[0].rhs()

-1/2*(1/18*sqrt(31)*sqrt(3) - 1/2)^(1/3)*(I*sqrt(3) + 1) +

1/6*(-I*sqrt(3) + 1)/(1/18*sqrt(31)*sqrt(3) - 1/2)^(1/3)

Ouch.
To find an approximate solution to an equation, we use something different from the solve()

command.
find_root() find a solution of eq on the interval (a, b)

APPROXIMATE SOLUTIONS TO AN EQUATION 139

To use this, we need some idea where the root is located, so that you can specify a and b . Although
the term “root” implies that the equation should have 0 on one side, this isn’t strictly necessary;
we can provide an equation with non-zero expressions on both sides, and Sage will solve it, all
the same.

sage: find_root(x**5 - 6*x == -4, -5, 5)

-1.7000399860584985

Notice that it returns only one root, even when multiple roots exist on the same interval. When
we know multiple roots exist, we can modify the interval accordingly.

sage: find_root(x**5 - 6*x == -4, 0, 5)

1.3102349335013999

sage: find_root(x**5 - 6*x == -4, 0, 1.3)

0.693378264514721

Should we specify an interval where the equation has no roots, Sage raises an error.

sage: find_root(x**5 - 6*x == -4, 1.3, 5)

RuntimeError: f appears to have no zero on the interval

Another approach to try when we’re not sure what interval to use is a second form of the
.roots() method, which allows us to specify a ring in which to look for solutions. In particular,
we can specify which ring to look for.

f .roots(ring=R) finds the roots of f in the ring R, along with
their multiplicities

The default ring is Q, the ring of rationals, but we can ask Sage to solve for approximations to
roots outside the rationals by specifying the real or complex rings; in particular, RR and CC.

sage: f = x**5 - 6*x + 4

sage: f.roots()

RuntimeError: no explicit roots found

sage: f.roots(ring=RR)

[(-1.70003998605850, 1), (0.693378264514721, 1), (1.31023493350140,

1)]

sage: f.roots(ring=CC)

[(-1.70003998605850, 1),

(0.693378264514721, 1),

(1.31023493350140, 1),

(-0.151786605978811 - 1.60213970994664*I, 1),

(-0.151786605978811 + 1.60213970994664*I, 1)]

The .roots() approach is not always successful, even when find_root() is. Unless we’re
particularly attached to finding multiplicities, find_root() is the method of choice.

SYSTEMS OF EQUATIONS 140

sage: f = sin(x) + x - 1

sage: f.roots()

RuntimeError: no explicit roots found

sage: f.roots(ring=RR)

TypeError: Cannot evaluate symbolic expression to a numeric value.

sage: find_root(f, 0, 1)

0.510973429388569

Systems of equations

Many real-world problems involve more than one variable, and more than one relationship
between these variables. These give rise to equations in several variables; when we attempt to
solve several at a time, we refer to it as a system of equations. We can use solve() to solve a
system of equations in Sage; just supply the system in a list or tuple, followed by a list or tuple
of the polynomials’ indeterminates. The solution to a system of equations is similar to that of an
inequality: Sage returns a list of lists. Each inner list corresponds to one distinct solution to the
equation; it contains equations that indicate the solution to each variable in the system.

sage: solve((x**2 + y == 1, x - y == 1), (x,y))

[[y == -3, x == -2], [y == 0, x == 1]]

This equation has two solutions, corresponding to the points (−2,−3) and (1,0). We can illustrate
the geometric relationship between the curves and these points with a graph:

sage: p = implicit_plot(x**2 + y == 1, (x, -3, 3), (y, -4, 2), \

color=’black’)

sage: p = p + implicit_plot(x - y == 1, (x, -3, 3), (y, -4, 2), \

color=’blue’)

sage: p = p + point((1,0), color=’red’, pointsize=60, zorder=5)

sage: p = p + point((-2,-3), color=’red’, pointsize=60, zorder=5)

sage: p

-3 -2 -1 0 1 2 3

-4

-3

-2

-1

0

1

2

MATRICES 141

Matrices

If the degree of each equation is at most 1, we call them linear equations. So a system of linear
equations consists of a set of equations that we try to solve simultaneously. These are just a special
case of systems of equations.

Intimately related to systems of linear equations are matrices. Every system of linear equa-
tions

a11x1+ a12x2+ · · ·+ a1n xn = b1

a21x1+ a12x2+ · · ·+ a2n xn = b2

...

am1x1+ am2x2+ · · ·+ amn xn = bm

corresponds to a “matrix equation”
Ax= b

where

A=

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

, x=

x1

x2
...

xn

, and b=

b1

b2
...

bm

.

The matrices x and b are special matrices in that they have only one column; we call such matrices
vectors.

We assume you are familiar with the rules of matrix arithmetic, so we do not review them
here, but if you are still acquiring your “sea legs” when it comes to matrix arithmetic, we suggest
you to think about how the rules of matrix multiplication turn Ax= b into the system of equa-
tions above. Matrix analysis is essential to understanding systems of linear equations, and since
many approaches to non-linear equations involve first transforming them to a system of linear
equations, matrices hold a fundamental position in mathematics.

Creating matrices, accessing elements, and modifying fundamental properties. You can
create a matrix in Sage using the matrix() command. There are several ways to do this; we focus
on three.

matrix(row_list) creates a matrix from list_of_rows

matrix(ring, row_list) creates a matrix with entries from ring using
list_of_rows

The reason for the two forms is that Sage considers a matrix’s ring when deciding how to perform
most matrix computations, so it has to know this. You use the first form if you’re content to let
Sage make an educated guess at the ring. You may find that Sage’s choice doesn’t work very well
for you; in this case, you can correct it gently using the convenient .change_ring() method:

M.change_ring(ring) converts the entries of M to reside in ring and
returns the result

M.base_ring() reports the ring Sage thinks M’s elements reside
in

MATRICES 142

Keep in mind that Sage will not change the matrix itself; it produces a new matrix and returns it.
The original matrix remains in the old ring. We make use of this function a bit further down.

First we illustrate creation of a matrix. To specify the matrix

M =
�

1 1
0 1

�

we will list each of its rows as a list inside another list:

sage: M = matrix([\

[1, 1], \

[0, 1] \

])

sage: M

[1 1]

[0 1]

You do not have to put each row on its line, but we think that makes it easier to read. You can
put the entire matrix on one line if you wish.

It is of course possible to use comprehensions in the definition of a matrix:

sage: matrix([[i, i+1, i+2] for i in xrange(3)])

[0 1 2]

[1 2 3]

[2 3 4]

Three special matrices you can create are an identity matrix and a diagonal matrix.

identity_matrix(n) returns the identity matrix of dimension n

diagonal_matrix(entries)
returns a matrix with 0 everywhere except the
main diagonal, and the values of entries on the
main diagonal

zero_matrix(m, n) returns an m× n matrix of zeroes

Again, you can use a list comprehension to create lists of entries for matrices. We demonstrate
this for a diagonal matrix:

sage: diagonal_matrix([i**2 for i in xrange(3)])

[0 0 0]

[0 1 0]

[0 0 4]

You access elements of a matrix using the bracket operator; to access element Mi , j use M[i,j].
Here, “access” does not mean merely “read;” it also means “write,” so you can modify the entries
of a matrix in convenient fashion. Keep in mind that, as with lists, the first row starts at position 0,
not position 1, so you’ll have to take that into account.

MATRICES 143

sage: M[0,1] = 3

sage: M

[1 3]

[0 1]

This ability to modify a matrix’s elements means that Sage considers a matrix mutable, just
like a list. There are occasions where you will want to work with an immutable matrix. For
instance, you can only store immutable objects in a set, so if you want a set of matrices, you have
to indicate to Sage that you have no intention of changing the matrices in question. You can do
this using the .set_immutable() method.

M.set_immutable() makes an object immutable
M.is_mutable() True if and only if the object is mutable
M.is_immutable() True if and only if the object is immutable

The command works one way only; to make a matrix mutable again, make a copy of it with the
copy() command.

copy(obj) returns a copy of the object obj

sage: { M }

TypeError: mutable matrices are unhashable

sage: M.set_immutable(True)

sage: M.is_mutable()

False

sage: { M }

{[1 3]

[0 1]}

sage: M = copy(M)

sage: M.is_mutable()

True

Matrices are not the only objects Sage can copy or make immutable, so these commands have
a wider applicability.

Matrix arithmetic and manipulation. You can perform matrix arithmetic in Sage using the
customary mathematical symbols.

sage: N = matrix([\

[1, x], \

[0, 1]])

sage: M * N

[1 x + 3]

[0 1]

Sage also offers an enormous number of methods you can send a matrix. We list only a few of
them in Table 12. To see them all, remember that you can always discover the methods an object

MATRICES 144

M.add_multiple_of_row(j, i, c) adds c times each entry of row i to the cor-
responding entry of row j

M.characteristic_polynomial() returns M’s characteristic polynomial
M.determinant() returns M’s determinant

M.dimensions() returns a tuple (m, n) where m is the num-
ber of rows and n the number of columns

M.echelon_form()
returns the echelon form of M while leaving
the matrix itself in its original form

M.echelonize() transforms M into echelon form; returns
None

M.eigenvalues() returns M’s eigenvalues
M.eigenvectors_right() returns M’s eigenvectors
M.inverse() returns M’s inverse

M.kernel()
returns the kernel of M (to access the basis
vectors of a kernel K use K.basis())

M.ncols() returns the number of columns in M
M.nrows() returns the number of rows in M
M.nullity() returns the kernel’s dimension
M.rank() returns M’s rank

M.set_row_to_multiple_of_row(j, i, c) sets each element of row j to the product of
c and the corresponding entry of row i

M.swap_rows(i, j) swaps rows i and j of M

M.submatrix(i, j, k, `) sets each element of row j to the product of
c and the corresponding entry of row i

M.transpose() returns the transpose of M
TABLE 12. methods understood by a Sage matrix

will understand by typing its identifier, followed by the period, then pressing the Tab key. As for
the methods we list here, don’t worry if you don’t understand the purpose of each one, but each
of them should at some point prove useful in undergraduate study.

Let’s look at how some of these commands might work, as well as highlight some of the
errors that may occur. For an example, let’s suppose we’re interested in transforming a matrix to
upper-triangular form, and also in seeing some of the computations that occur along the way. So
we’ll perform this computation step-by-step rather than looking for a particular Sage command

MATRICES 145

that does it all at once. Our example matrix will be

A=

1 2 3 4
0 2 2 3
8 3 1 2
0 1 2 3

.

We leave it to you to set up a matrix for A in Sage. To transform it to upper-triangular form, we
observe that A0,0 is already 1, while both A1,0 and A3,0 are 0, so we need do nothing to them. As
A2,0 = 8 6= 0, we want to add a multiple of row 1 that eliminates the 8; this is fairly straightforward:

sage: A.add_multiple_of_row(2, 0, -8)

[1 2 3 4]

[0 2 2 3]

[0 -13 -23 -30]

[0 1 2 3]

We proceed to the second column. We observe that A1,1 = 2 6= 1, so we must divide the row by 2.

sage: A.set_row_to_multiple_of_row(1, 1, 1/2)

TypeError: Multiplying row by Rational Field element

cannot be done over Integer Ring, use change_ring or

with_row_set_to_multiple_of_row instead.

PANIC!
. . .well, no, don’t. Sure, we received an error, but this one is quite helpful. It makes it perfectly
clear that the problem is that Sage sees A as lying over the ring Z. Integers can’t be fractions, and
if we multiply the second row by 1/2, we get 3/2 in the last spot. We need A to lie over the rational
field Q, not over the integer ring Z. Very well; we’ve already discussed how to change the ring of
a matrix, so let’s do that. There’s no need to keep the old matrix A, so we’ll assign the result of
.change_ring() to A. Recall that Sage’s symbol for the ring of rational numbers is QQ.

sage: A = A.change_ring(QQ)

sage: A.set_row_to_multiple_of_row(1, 1, 1/2)

sage: A

[1 2 3 4]

[0 1 1 3/2]

[0 -13 -23 -30]

[0 1 2 3]

Excellent! We can now clear out A2,1 and A3,1.

MATRICES 146

sage: A.add_multiple_of_row(2, 1, 13)

sage: A.add_multiple_of_row(3, 1, -1)

[1 2 3 4]

[0 1 1 3/2]

[0 0 -10 -21/2]

[0 0 1 3/2]

From here you should be able to complete the process on your own, ending up with the matrix

1 2 3 4
1 1 1

2

1 21
20
9
20

.

(Empty entries represent 0.)

We transform ourselves. One application of matrices involves the use of transformation
matrices in computer graphics. We discuss three kinds of transformation matrices:

• A scaling matrix has the form

σ =
�

s 0
0 s

�

.

It has the effect of rescaling a point (x, y) to the point (s x, s y).
• A rotation matrix has the form

ρ=
�

cosα sinα
− sinα cosα

�

.

It has the effect of rotating a point (x, y) about the origin through an angle α.
• A reflection matrix has the form

ϕ =
�

cosβ sinβ
sinβ −cosβ

�

.

It has the effect of reflecting a point (x, y) across the line through the origin whose slope
is 1−cosβ/sinβ.

We’ll illustrate each of these, introducing as well the vector object in Sage.
We already mentioned vectors earlier; it is basically a matrix with only one column. A vector

is similar to a Sage tuple or list in that it contains an ordered sequence of numbers. It differs from
a Sage tuple in that we associate it with certain mathematical operations. What we care about
most here is that you can multiply an m × n matrix to an n × 1 vector; the result is an m × 1
vector. Typically we use square matrices, and the result of multiplying an n×n matrix to an n×1
vector is another n× 1 vector, which is convenient for repeated application.

Sage conveniently allows us to use vectors as points in plotting commands, such as point(),
line(), and polygon(). This makes it easy to illustrate how the transformation matrices work.

MATRICES 147

To do this, we’ll work on a polygon defined by the following points, in this order:

(1,0) ,
�

cos
4π
5

, sin
4π
5

�

,
�

cos
8π
5

, sin
8π
5

�

,
�

cos
2π
5

, sin
2π
5

�

,
�

cos
6π
5

, sin
6π
5

�

.

Define a list V whose elements are the vectors with these values. Plot the polygon defined by these
points and you will see an almost-nice, five-pointed star:

(If you’re getting a pentagon instead of a star, make sure the points are in the order above. If
not, .pop() and .insert() until they are.) We say “almost-nice” because it’s a little off-kilter.
Wouldn’t it be nice65 to have it point upwards?

We can fix this. We have the technology. How shall we go about it? We could rotate it by
1/20 of a full rotation, or by 2π/20, or by π/10. Up above, we claimed that the rotation matrix
would accomplish this, if only we set α = π/10. Let’s try that. We’ll create a corresponding
rotation matrix M, then use that to create a new list, U, whose points are the rotations of the points
of V by π/10. Creating U is easy with a list comprehension:

sage: M = matrix([[cos(pi/10), sin(pi/10)], \

[-sin(pi/10), cos(pi/10)]])

sage: U = [M*v for v in V]

Now plot the polygon formed by U to verify that we have, in fact, righted our star:66

sage: polygon(U)

65If you’re one of those wackos who this this star is just fine the way it is, and it would better to rotate the axes
instead, well! You have a future in mathematics. If you’re not one of those wackos, and think it’s better to rotate the
star. . . yeah, you might have a future in mathematics, too. But we’re keeping an extra eye on you, just to make sure
you don’t get out of line. Sort of like this star here.

66Or rather, if you believe the previous footnote, we have wronged our polygon.

MATRICES 148

Oops, wrong way.67 Sorry ’bout that! Looks like the rotation matrix turns things clockwise; we
want it to go the other way ’round. Strike that, reverse it, carry on. Thank you.

sage: M = matrix([[cos(-pi/10), sin(-pi/10)], \

[-sin(-pi/10), cos(-pi/10)]])

sage: U = [M*v for v in V]

sage: polygon(U)

So that was interesting. How about reflection? If we look at the original star, we could reflect it
about the y-axis, which has slope. . .

Hmm. Well, now, that’s annoying. The y-axis has undefined slope. We generally get unde-
fined slope by dividing by 0. The denominator of the slope for the reflection matrix is sinβ, so
if we have sinβ = 0, we should end up reflecting about the y-axis. That works for β = 0 and
β=π; we’ll try the first and hope for the best.

sage: N = matrix([[cos(0), sin(0)], \

[sin(0), -cos(0)]])

sage: W = [N*v for v in V]

sage: polygon(W)

Well, that’s annoying. It didn’t flip at all!
Actually, it did flip; we just can’t see it. First off, the slope actually become 1−cos0/sin0= 1−1/0=

0/0; for a vertical slope, we need non-zero divided by zero. A glance at N reinforces this:

sage: N

[1 0]

[0 -1]

67There’s a novel way to “wrong” a star.

MATRICES 149

If you think about how matrix multiplication works, the effect of N on any vector will be to
preserve the x value and reverse the y value. So we ended up with a vertical flip, rather than a
horizontal flip. Looks as if we want to use β=π.

sage: N = matrix([[cos(pi), sin(pi)], \

[sin(pi), -cos(pi)]])

sage: W = [N*v for v in V]

sage: polygon(W)

Great!
For a reflection matrix, points along the axis of reflection remain fixed: if we were to ap-

ply the corrected N to the vector (0,2), it would return the vector (0,2). This is a special case
of what we call an eigenvector, a vector that remains on the same line after multiplication by a
matrix. Every matrix has its own eigenvectors, and we can “discover” them using the method
.eigenvectors_right(). In this case:

sage: N.eigenvectors_right()

[(-1, [(1, 0)], 1), (1, [(0, 1)], 1)]

That’s a lot of information, so let’s see what it’s telling us.
The list contains one tuple per eigenvector. Each tuple contains three items:
• First, it gives us what’s called an eigenvalue. Eigenvalues tell you how the size of the

vector changes; it will still lie on the same line through the origin, but the size will
change. The basic relationship between a matrix M , an eigenvector e, and the corre-
sponding eigenvalue λ is that Me= λe. You can also extract a matrix’s eigenvalues using
the .eigenvalues() method.
• Second, it gives a list of eigenvectors that correspond to that eigenvalue. In most cases,

you would expect to see only one eigenvector per eigenvalue, but it can happen that you
get more than one.
• Finally, it gives the multiplicity of the eigenvalue. This relates to the following idea:

eigenvalues are the roots λ1, λ2, . . . , λm of a polynomial called the matrix’s minimal
polynomial. This polynomial factors linearly as (x −λ1)

a1 (x −λ2)
a2 · · · (x −λm)

am . Each
power of a distinct linear factor is the corresponding eigenvalue’s multiplicity. We are
not interested in this for the current application.

You typically hope for the eigenvectors e1, . . . , em to be linearly independent; that is, the only
way to write

a1e1+ · · ·+ amem = 0

MATRICES 150

is if a1 = · · ·= am = 0. We can see this in N’s eigenvectors, since

a1

�

1
0

�

+ a2

�

0
1

�

= 0 ⇒
�

a1

a2

�

= 0 ⇒ a1 = 0, a2 = 0.

Unfortunately, not every matrix has linearly independent eigenvectors; if you look at the scaling
matrix

S =
�

3 0
0 3

�

,

you will find that it has only one eigenvector of multiplicity 2, because it treats every point exactly
the same way.

As we mentioned, each eigenvector remains on the same line through the origin when we
apply the matrix to it. In terms of points, this means the eigenvectors define a line of points that
may move around on that line, either by reversing direction or by changing in size, but the points
remain on the same line through the origin. In the case of the reflection matrix N, the eigenvectors
are (1,0)T , which lies on the x-axis, and (0,1)T , which lies on the y-axis. The eigenvalue for (1,0)T

is −1; this means that (1,0) moves to (−1,0), which still lies on the x-axis. The eigenvalue for
(0,1)T is 1; this means that (0,1) moves to (0,1), which still lies on the y-axis. This isn’t true for
points on other lines through the origin; the point (3,5), for instance, moves to the point (−3,5),
which lies on a completely different line through the origin. Of course, we expect that because N

is a reflection matrix.
To conclude this investigation, let’s consider a different matrix,

M =
�

3 1
2 2

�

.

Use Sage to verify that its eigenvectors are
�

1
1

�

and

�

1
−2

�

,

with corresponding eigenvalues 4 and 1. This means that we expect points on the same line as
(1,1)T to remain on that line, but to be rescaled by a factor of 4, while points on the same line as
(1,−2)T will remain in the same place:

stays put

stays put (1,1)→(4,4)

(
−3

4
,−3

4

)
→(−3,−3)

As you might imagine, things get a little strange with a rotation matrix, because it moves
every point in the plane except the origin to a different line through the origin. In this case, you
would find its eigenvectors to have complex values. Try it!

EXERCISES 151

Exercises

True/False. If the statement is false, replace it with a true statement.
1. Sage has features to find both exact and approximate solutions to equations.
2. Sage can find the exact solution to any equation, so the main reason to approximate solutions

is that they’re easier to look at.
3. The solve() command finds both exact and approximate solutions to an equation.
4. The .roots()method is not as successful as the find_root() command, even when we specify

a ring of approximations to numbers, like RR or CC.
5. A root’s multiplicity is unrelated to the geometry of the curve.
6. The results of the solve() command are in a similar format for inequalities and systems of

equations.
7. Sage sometimes decides how to solve a problem based on the ring in which its values lie.
8. You must always specify the ring of a matrix when creating it.
9. You can extract eigenvalues from the results of the eigenvectors() command.
10. Eigenvalues are of merely theoretical importance.

Multiple choice.
1. Which of the following commands and methods does not produce exact solutions by default?

A. solve()

B. .roots()

C. .eigenvalues()

D. find_root()

2. The result of solve() when given one equation in one variable is:
A. the value of an approximate solution
B. a list of lists of solutions and multiplicities
C. a list of linear equations that describe the solutions
D. a list of lists of linear equations, each of which describes a solution

3. The result of solve() when given several equations in more than one variable is:
A. the value of an approximate solution
B. a list of lists of solutions and multiplicities
C. a list of linear equations that describe the solutions
D. a list of lists of linear equations, each of which describes a solution

4. The result of find_root() when given an equation in one variable is:
A. the value of the approximate solution
B. a list of lists of solutions and multiplicities
C. a list of linear equations that describe the solutions
D. a list of lists of linear equations, each of which describes a solution

5. The result of find_root() when given an equation in one variable is:
A. the value of the approximate solution
B. a list of lists of solutions and multiplicities
C. a list of linear equations that describe the solutions
D. a list of lists of linear equations, each of which describes a solution

6. Which of the following commands and methods requires you to specify the endpoints of an
interval that contains a solution?
A. solve()

B. find_root()

EXERCISES 152

C. .roots()

D. none of the above
7. Which of the following methods to a matrix returns its eigenvalues?

A. eigenvalues()

B. eigenvectors_right()

C. all of the above
D. none of the above

8. The vectors v1, v2, . . . , vn are linearly independent when:
A. We can find a matrix M whose eigenvectors are v1,v2, . . . ,vn.
B. The set {v1,v2, . . . ,vn} defines a vector space.
C. The only way a1v1+ a2v2+ · · ·+ anvn = 0 is if a1 = a2 = · · ·= an = 0.
D. Vectors declare their independence from a vector space and create their own subspace.

9. Why should we expect a reflection matrix to have two linearly independent eigenvectors?
A. Every two-dimensional matrix has two linearly independent eigenvectors.
B. A reflection always moves one point to a second point, and that’s how we count the num-

ber of linearly independent eigenvectors.
C. A reflection is like a mirror, so we ought to expect the second eigenvector to mirror the

first.
D. The points of two lines through the origin remain on those lines: the axis of symmetry,

and the line perpendicular to it.
10. Why do we expect the eigenvalues of a rotation matrix to have complex values?

A. A rotation matrix moves points on the real plane to points on the complex plane, and
vice-versa.

B. The only point on the real plane that remains on the same line through the origin is the
origin itself.

C. Eigenvalues are always complex; we just don’t notice that when their values are real.
D. Complex problems require complex solutions.

Programming.
1. Use solve() to find the solutions to generic degree-three and degree-four polynomial equa-

tions. How many are there? (Don’t count by hand! Use Sage to count the solutions!)
2. The solve() command does not return the solutions to a single equation in one variable by

order of the complex norm. Write a function that accepts an equation as an argument, calls
solve() to solve it, then sorts the solutions using the norm. Hint: You may want to use or
adapt the key function by_norm() that we defined on p. 112.

4. Write a function that accepts an inequality as its argument, solves it, then produces a graph of
its solutions on the number line, similar to the one on p. 137.

5. (a) Write pseudocode for a function that accepts two functions f and g , solves for their inter-
sections, then computes the total area between f and g . (We find the total area by adding
the absolute value of the integrals for each interval defined by intersections of f and g .)

(b) Implement your pseudocode as a Sage function that uses the roots() command to find
exact solutions in R.

(c) Write an interactive function that allows the user to specify the functions f and g , as well
as a color. It then calls the Sage code you wrote in part (b) to determine the total area
between f and g , graphs f and g in black with thickness 2, fills the area between them
using the user-specified color, and finally writes the area above the curves.

EXERCISES 153

6. We used the .roots() method to find the roots and multiplicities of

f (x) = (x − 1) (x + 2)2 (x − 4)3 .

Create a graph of f on an interval that includes all three roots, but is not so large as to lose the
details of how f meanders around them. Make this plot black, of thickness 1. Add to it three
other plots of f , each of whose minimum and maximum x values are in the neighborhood of
a different root. Make these plots red, of thickness 3. Now that you have this plot, describe a
geometric similarity between a root of multiplicity m and the graph of x m.

7. While Sage has an implicit_plot() command, it lacks an implicit_diff() command to per-
form implicit differentiation. (You may want to review the definition of implicit differentia-
tion in your calculus book.) Write a function to do this, implementing the following steps:
(a) Move everything in f to one side of the equation. Make sure f is a function in terms of x

and y.
(b) Define yf as an implicit function of x using the command, yf=function(’yf’)(x).
(c) Replace y in f by yf. Hint: If you defined f as a function in x and y, then it’s a matter of

redefining f as a function of x and yf.
(d) Let df be the derivative of f.
(e) Solve df for diff(yf).
(f) Return the solution — not the list of equations, mind, but the right-hand side. For in-

stance, the result of implicit_diff(y==cos(x*y)) should be -sin(x*yf(x))*yf(x)/(x*sin(x*yf(x))
+ 1).

Decision-making

As mentioned earlier, one of the fundamental questions of mathematics is,
How can we find a root68 of a polynomial?

As that is more or less impractical in many cases, we turn to the related question,
How can we approximate a root of a polynomial?

There are a number of ways to do this, but we will describe a way to “approximate” the root
“exactly.” That is not really the contradiction it may seem, as our approximation consists of a
precise interval (a, b) of rational numbers in which the polynomial has at least one root. So the
value will be an approximation, insofar as we’re not sure which c ∈ (a, b) is the root, but it’s an
exact approximation, in that the solution is free from all error.69 As a bonus, the technique we’ll
look at will:

• work for any continuous function, not just polynomials; and
• on rare occasions,70 give us the exact value!

This technique is the method of bisection, and it’s based on a big-time fact from Calculus:

THE INTERMEDIATE VALUE THEOREM. If a function f is continuous on the interval [a, b],
then for any y-value between f (a) and f (b), we can find a c ∈ (a, b) such that f (c) is that y-value.

For instance, f (x) = cos x is continuous everywhere, so it’s certainly continuous on the
interval [π/6,π/3]. Now, f (π/6) =

p
3/2, while f (π/3) = 1/2, and

p
2/2 lies between 1/2 and

p
3/2, so

there must be some c ∈ [π/6,π/3] such that f (c) =
p

2/2.

The method of bisection

Our example with cos x won’t seem impressive; after all, you already knew that f (π/4) =
p

2/2.
Fair enough, but consider this scenario:

if
– f (a) is positive and
– f (b) is negative

then
– 0 lies between f (a) and f (b), so
– a root c must lie between a and b .

For example, suppose we want to identify the root of

f (x) = cos x − x.
68In case you’ve forgotten, a “root” is a value of an expression that, when substituted into the expression, yields

0.
69By contrast, floating point answers are an accurate approximation, rather than an exact approximation, in that

floating point gives us one number which is slightly wrong.
70Very rare, but they do exist.

154

THE METHOD OF BISECTION 155

FIGURE 21. The Method of Bisection employs the Intermediate Value Theorem
to narrow the interval containing a root from (0,1) down to (1/2, 3/4). . . and fur-
ther!

If you plot it in Sage, the graph suggests a root lies between x = 0 and x = 1. But can we trust
the graph? Indeed we can; as you learned in Calculus,

• cos x is continuous;
• x is a polynomial, and all polynomials are continuous; and
• sums, differences, and products of continuous functions are continuous.

So f is continuous, and the Intermediate Value Theorem confirms the visual inspection.
Of course, knowing there’s a root between 0 and 1 doesn’t exactly build much confidence.

We’d like to locate this root more accurately than that. How?
In the Method of Bisection, we cut the interval [a, b] into two parts. In this case, we cut it

into [0, 1/2] and [1/2, 1].We then test the new endpoint in the function: f (1/2) > 0. We already
knew f (0) > 0, so the Intermediate Value Theorem cannot guarantee that a root lies between
0 and 1/2. On the other hand, f (1) < 0; since 0 lies between f (1/2) and f (1) , the Intermediate
Value Theorem does guarantee that a root lies between 1/2 and 1. So we replace [0,1] by [1/2, 1].

An interval of size 1/2 is still not terribly impressive, but there’s no reason we can’t keep going.
Cut the interval into two parts again, [1/2, 3/4] and [3/4, 1]. The new endpoint satisfies f (3/4)< 0,
so the root must lie between 1/2 and 3/4. Figure 21 illustrates each of these first three steps in the
process.

We can persist in this as long as we like. Each time, the uncertainty decreases by 1/2, so
repeating this 20 times gives us an interval of width 1/220 ≈ 1.0× 10−6, or 0.000001. That’s a little
rough to do by hand, but it’s straightforward for a computer to repeat; we’ve already seen how
to do that.

But how should we tell the computer to decide which endpoint to replace by the midpoint?
Enter the if/else if/else control structure:

if condition1
what to do if condition1 is true

else if condition2
what to do if condition2 is true

. . .
else

what to do if neither condition is true

THE METHOD OF BISECTION 156

This directs the execution based on the listed conditions, allowing the computation to proceed
in a manner appropriate to the situation.

Not all parts of the structure are necessary. Only an if must appear; after all, else makes no
sense without an if. But you can make sense of an if that lacks an else; this is often useful if a
particular value needs some extra “massaging” before the algorithm can proceed.

In our case, we want the algorithm to replace the endpoint with the same sign as the midpoint.
That implies the following pseudocode:

algorithm Method_of_Bisection
inputs

• a, b ∈R
• f , a function such that:

– f is continuous on [a, b]
– f (a) and f (b) have opposite signs

• n, the number of bisections to perform
outputs

• [c , d]⊆ [a, b] such that
– d − c = 1/2n (b − a), and
– a root of f lies in [c , d]

do
let c = a and d = b
repeat n times

let e = 1/2 (c + d)
if f (c) and f (e) have the same sign

replace c by e
else

replace d by e
return [c , d]

Unfortunately, this is not yet enough to implement in Sage, as one question remains:
How do we decide whether f (c) and f (e) have the same sign?

We consider two ways.
A clever way that you may have thought of is based on the pre-algebra observation that two

real numbers have the same sign if and only if their product is positive:

(−2)× (−2)> 0 and 2× 2> 0 but (−2)× 2< 0 and 2× (−2)< 0.

So we can replace the test

if f (c) and f (e) have the same sign

with

if f (c) f (e)> 0

BOOLEAN LOGIC 157

and be done with it. This is fairly easy to implement as Sage code, as Sage offers keywords that
match our pseudocode almost identically: if, elif, and else. As you might expect, the com-
mands you want Sage to execute in each case should appear beneath them, indented. So our
pseudocode translates as follows.

sage: def method_of_bisection(a, b, n, f, x=x):

c, d = a, b

f(x) = f

for i in xrange(n):

compute midpoint, then compare

e = (c + d)/2

if f(c)*f(e) > 0:

c = e

else:

d = e

return (c, d)

Notice the colons! If you accidentally forget one of the colons, Python will raise an error.

sage: ...

if f(c)*f(e) > 0

c = e

...

SyntaxError: invalid syntax

Once you’ve typed it in correctly, let’s check that this works.

sage: method_of_bisection(0, 1, 20, cos(x) - x)

(0, 1/1048576)

But there is still a more excellent way.

Boolean logic

Until now we’ve used the Sage identifiers True and False without much comment; after all,
their meanings are fairly obvious unless you have reassigned them. Yet these two ideas lie at the
foundation of most practical computation. A field called Boolean logic considers the logical ways
we can perform from the two basic concepts of True and False.71

71Notice the distinction between Sage identifiers of terms with fixed meaning (True and False) and the funda-
mental constants of Boolean logic (True and False).

BOOLEAN LOGIC 158

Four “fundamental” operations. The four fundamental operations of Boolean logic are the
operators or, and, xor,72 and not.73 They are governed by the following “truth” tables, which
indicate how variables with the values True or False behave under the given operations.

x not x

True False
False True

x y x or y

True True True
True False True
False True True
False False False

x y x and y

True True True
True False False
False True False
False False False

x y x xor y

True True False
True False True
False True True
False False False

Having made the meanings of these terms precise, we hasten to point out that they really ought
to be intuitive to you; the only real difference between the precise meanings and your intuitive
understandings appears in or and xor. We generally will not find xor necessary in this text, but
it does have its uses.

Boolean operators in Sage. These concepts all translate immediately into Sage: True, False,
not, or, and, and xor.

With their help, we can now rewrite our Sage code with Boolean logic instead of a mathe-
matical trick. Checking that two real numbers c and e have the same sign is a matter of testing
that

(f (c)> 0 and f (e)> 0) or (f (c)< 0 and f (e)< 0)

and this translates directly into the Sage code

(f(c) > 0 and f(e) > 0) or (f(c) < 0 and f(e) < 0)

72Shorthand for exclusive or, which name derives from the fact that, in general, you can either cut the cake or
have it, but not both. Phrased slightly different, you can have exclusively one option or the other.

How does this differ from regular old or? The rule does not apply on birthdays, as you can cut your cake or
have it or both. (Complaining that your parents didn’t buy enough gifts is also an option, but let’s not get carried
away.) Since you can have both, regular old or is considered an “inclusive” or.

You might wonder why we shorten exclusive or to xor. This is because computer scientists, especially computer
engineers, are violently allergic to writing any word that is more than three or four letters long. (Really. You think
I’m making this up? — Well, okay, we’re exaggerating a little, but only a little.)

73This is an example of the outright mendacity we promised in the preface. As promised, it sounds a lot better
than the truth. The lie consists in calling the operations “fundamental,” for the list contains at least one redundant
operation, making at least one of them not “fundamental.” In particular, we can rewrite a xor b as [a and (not b)]
or [(not a) and b]. So we can already reduce the list to or, and, and not.

But that’s not all! We can also rewrite a and b as not [(not a) or (not b)]. (This latter fact is known as DeMorgan’s
Laws.) So we can actually reduce the list of logical operations to or and not. While it is fitting that the number of
fundamental operations on two objects (True and False) should number two (not and or), no one in his right mind
does this. It is much better just to lie to you and tell you all four operations are “fundamental.”

https://en.wikipedia.org/wiki/Motorola_6800#Example_code
https://en.wikipedia.org/wiki/Intel_8086#Example_code
https://en.wikipedia.org/wiki/MOS_Technology_6502#Example_code
https://en.wikipedia.org/wiki/Zilog_Z80#Example_code

BOOLEAN LOGIC 159

You may be wondering if the parentheses are actually needed here. In this case, no, because Sage
always tests and before it tests or. In general, however, it is a good practice to indicate explicitly
the order of operations, as it matters a great deal whether you mean

sage: False and False or True

True

sage: False and (False or True)

False

sage: (False and False) or True

True

Be sure you understand why we get those results.
We can now state a different Sage code for the Method of Bisection.

sage: def method_of_bisection(a, b, n, f, x=x):

c, d = a, b

f(x) = f

for i in xrange(n):

compute midpoint, then compare

e = (c + d)/2

if (f(c) > 0 and f(e) > 0) or (f(c) < 0 and f(e) < 0)

c = e

else

d = e

return (c, d)

Another Boolean relation, and a caution on using it. Until now, we’ve relied on the
Boolean relations ==, <, >, <=, and >=. You may have noticed that we did not list an operator
for inequality. Technically, we can translate the pseudocode

a 6= b

as

sage: not (a == b)

but that isn’t very elegant. Sage offers us a different symbol in these circumstances, !=, which
sort of looks like a sloppy way of slashing through an equals sign, then dropping some ink.

Both equality and inequality can be dangerous when performing comparisons. Exact num-
bers are no problem, but if your value has floating point, then the computer might mistakenly
think two numbers are different when they are not. For example:

sage: 14035706228479900. - 14035706228479899.99 != 0

False

BREAKING A LOOP 160

That’s a very odd conclusion to make, for which we can thank the rounding of floating point
numbers. On the other hand, recall from p. 108 the result of Euler’s Method, which we concluded
was 8.

sage: 8 - 7.99999999999999 != 0

True

Imagine an algorithm that terminates only if it has actually computed 0. We probably do have
equality here, but the computer doesn’t detect it yet (if at all).

The solution in cases like this is to test that the difference between the values is sufficiently
small, rather than whether they are equal. For instance, if lying within ten decimal digits suffices,
the following test would fix the previous one.

sage: 8 - 7.99999999999999 > 10**(-10)

False

Breaking a loop

There will be occasions when there’s no point to continuing a loop. One example would
occur if we applied the Method of Bisection to a function whose root is a rational number with
a power of 2 in the denominator. For example, f (x) = 4x + 3 has a root at x = −3/4. Even if
you ask the Method of Bisection to repeat 20 times, in all likelihood it will finish far, far ear-
lier. Suppose, for instance, that we start on the interval (−1,1). The first bisection gives us the
interval (−1,−1/2), while the second gives us the interval (−1,−3/4). At this point we’ve already
found a root f (−3/4) = 0, so we really ought to quit, but the algorithm doesn’t include a way to
test this. Instead, it continues on for 18 more iterations, concluding with the unwieldy-looking
(−393217/524288,−3/4).

A better approach would be to re-formulate the loop so that it stops the moment it finds a
root. Testing for this is straightforward in Sage, but how do we tell it to stop the loop? One way
would be to place a return statement in the loop, but that’s not a good idea if an algorithm is
looking for a value so that it can then perform some computation with it before returning.

This is where the break keyword comes in. A break statement tells Sage to stop the current
loop, and proceed from the first statement outside the loop’s indented block. A break applies
only once, so if the loop is nested inside another loop, Sage will not break out of it.

We can now reformulate our method_of_bisection() function as follows.

EXCEPTIONS 161

sage: def method_of_bisection(a, b, n, f, x=x):

c, d = a, b

f(x) = f

for i in xrange(n):

compute midpoint, then compare

e = (c + d)/2

if (f(c) > 0 and f(e) > 0) or (f(c) < 0 and f(e) < 0)

c = e

elif f(e) == 0:

c = d = e

break

else:

d = e

return (c, d)

This time, when the code computes e == -3/4, it determines that
• the condition for the first if statement is false, as neither f(e) > 0 nor f(e) < 0; but
• the condition for the second if statement is true, as f(e) == 0.

So the code should assign −3/4 to both c and d, then execute the break statement. The first
statement outside the loop’s indented block is return (c, d), so the code will return the tuple
(−3/4,−3/4).

sage: method_of_bisection(-1, 1, 20, 4*x + 3)

(-3/4, -3/4)

Exceptions

Exceptions are one of the newer concepts in computer programming, and they are related
to decision-making, if only because they can replace if/else statements in many situations. We
discuss this here briefly.

Suppose you have an algorithm that needs to divide:

let c = n/d

For instance, you have a division algorithm for some mathematical objects. This innocuous
statement masks a mathematical danger: what if d = 0?

We could of course guard the statement with an if/else sentinel:

if d 6= 0
let c = n/d

else
do something smart about the case d = 0 — scold the user, say

EXCEPTIONS 162

Of course, the code may contain other variables with their own potentials for dangerous values,
leading to the following ugly-looking code:

if condition1
if condition2

if condition3
if condition4

. . .
else if condition5

. . .
else

. . .
else if condition6

. . .
else

. . .

This is not merely ugly, it is hard to read. Computer scientists have a technical name for it: the
Pyramid of Doom.74

In pseudocode, we try to list the problems before they occur, by specifying in the inputs
section that, for instance, d 6= 0. For instance, pseudocode that expects to take a derivative at an
arbitrary point would probably state something like this:

inputs
• f , a function that is differentiable everywhere on the real line

. . .but we don’t do it all the time, especially when it should be obvious from the algorithm’s pur-
pose. After all, it’s pseudocode, which is supposed to be readable. If we specified every constraint,
the inputs section would become a tedious recitation of pedantries. Mathematicians often rely
on a reader’s intuition.

We don’t have this outlet in actual program code, so we adopt a different approach, called
exception handling.try-except. Exception handling relies on what we call a try/except block.
As the name suggests, it tries a block of code which is indented beneath the try statement, and
if an error occurs, it applies a different block of code that appears beneath an except statement.
Both try and except are keywords, so you cannot use them as identifiers.

The precise usage is as follows:

74Honest, I am not making this up.

https://en.wikipedia.org/wiki/Pyramid_of_doom_(programming)

EXCEPTIONS 163

sage: try:

first_try_statement

second_try_statement

...

except ExceptionList:

first_exception_statement

second_exception_statement

When Sage encounters such a block of code, it tries first_try_statement, second_try_statement,
. . . . If it can perform all the tasks listed under the try statement, it skips over the except block
entirely, and continues on.

However, if Sage encounters some error, it compares it to the exceptions listed in the ExceptionList.
If one of them matches, it performs first_exception_statement, second_exception_statement,
and so forth, to completion — unless it encounters another error. In that case, Sage gives up and
passes the error back to the client.75

Here’s an example you can test without even writing a function:

sage: try:

1/0

except ZeroDivisionError:

Infinity

If you type this in a cell or on the command line, then execute it, Sage first tries to divide 1 by 0.
That obviously won’t work, and Sage raises a ZeroDivisionError. Our except clause catches this
error, so Sage passes into that block, finding the statement Infinity. You should not be surprised,
then, that the result is:76

75If you don’t know the type of an error, or you want to process all possible errors with the same code, or if
you’re feeling particularly lazy, it is actually possible to catch all errors by omitting the ExceptionType. The authors
of this text feel particularly lazy most of the time, but for pedagogical reasons we think it better to avoid this.

You may sometimes wish to process information that comes back from the exception. In this case, you can use
the construct

except ExceptionType as e:

and then look at the details of e. We do not go into these possibilities.
76It is also possible to “nest” try. . .except clauses; that is, place a try. . .except clause inside another. You can

do this in either a try or an except clause. For instance:

sage: try:

1/0

except ZeroDivisionError:

try:

0**Infinity

except NotImplementedError:

print ’No dice’

EXCEPTIONS 164

+Infinity

Rather than process all exceptions in one except block, it is possible to process exceptions
to one try block in several except blocks that follow. Line up each except clauses with the try

clause, list the precise error for each except, and supply indented code accordingly. This helps
keep try/except structures from turning into a modern Pyramid of Doom.

In addition to catching errors, a function can invoke another keyword, raise, to “raise” errors
of its own. The usage is as follows:

sage: raise ErrorType, message

For message, you can use any string. For ErrorType, one can raise any exception of the appropri-
ate type; the two usual suspects are:

• TypeError, where the input is of the wrong type: for instance, the algorithm expects a
matrix, but received a number; and
• ValueError, where the input has the right type, but the wrong value: for instance, the

algorithm expects a nonzero number, but received zero.
We will not use the raise keyword in general, but you should be aware that this mechanism is
how Sage’s authors communicate errors to you.

Let’s try this approach on something more substantial.

A “normal” example. An exercise on p. 103 asked you to write a Sage function to compute
the normal line to a mathematical function f at x = a. The function you wrote should work in
most situations.

sage: var(’t’)

t

sage: normal_line(t**2, 1, t)

1/2*t + 1/2

In all likelihood, however, your code would encounter the following error:

sage: normal_line((t - 1)**2 + 2, 1, t)

ZeroDivisionError: Symbolic division by zero

Well, of course this would happen:
• the normal line is perpendicular to the tangent line;
• a perpendicular line is a negative reciprocal; and
• the slope of the line tangent to (t − 1)2+ 2 at t = 1 is 0.

“Reciprocal” means “division,” and division by zero means ZeroDivisionError.
This problem is unavoidable. What we need is a way to deal with it, and as it happens, we have

at least two at our disposal. But first we need to think about the underlying problem; namely,
the derivative is 0. In this case, the normal line is actually the vertical line x = a. We illustrate
this with the function f (t) = (t − 1)2+ 2 at t = 1:

EXCEPTIONS 165

-1 1 2 3

1

2

3

4

5

6

A vertical line is not a function, so one option is to raise an exception of our own. Something
like this, perhaps?

raise ValueError, ’The normal line is vertical.’

This works, and ValueError seems the appropriate exception, since the type is just find (a func-
tion, and a differentiable function, to boot) but its value is inappropriate.

The trouble with this approach is that it reports an error when the situation really is salvage-
able! After all, a normal line exists; it just isn’t a function. A more appropriate approach might
be to return an equation for the normal line.

return x==a

Now, this might make your original algorithm inconsistent if you returned a function (which,
most likely, you did). We can still make the algorithm consistent by modifying the well-behaved
case to return the equation y == m(x - a) + f(a) instead of the right-hand side alone.

So, how to implement this in Sage? Again, we have two options. The first is to use an if/else
structure as a “guard” around the computation of m. This way, no exception occurs at all.

sage: def normal_line_with_guard(f, a, x=x):

f(x) = f

df(x) = diff(f, x)

if df(a) == 0:

horizontal perpendicular to vertical

result = x == a

else:

m = 1/df(a)

result = y == m*(x - a) + f(a)

return result

The other approach is to use a try/except structure to catch a ZeroDivisionError.

EXCEPTIONS 166

sage: def normal_line_with_catch(f, a, x=x):

f(x) = f

df(x) = diff(f, x)

try:

m = 1/df(a)

result = y == m*(x - a) + f(a)

except ZeroDivisionError:

horizontal perpendicular to vertical

result = x == a

return result

Try them both to see that both functions work with both vertical and skew normal lines:

sage: normal_line_with_guard((t - 1)**2 + 2, 0, t)

y == -1/2*t + 3

sage: normal_line_with_guard((t - 1)**2 + 2, 1, t)

t == 1

sage: normal_line_with_catch((t - 1)**2 + 2, 0, t)

y == -1/2*t + 3

sage: normal_line_with_catch((t - 1)**2 + 2, 1, t)

t == 1

Which approach is “better?” The second version is generally recommended for two reasons:

• The logic flows better, so it is more readable. The if/else construct does not make it ob-
vious why we test df(a)==0, just that we test it. It requires the reader to think more about
what we’re doing. By contrast, the try/except construct makes it clear that an error
might occur (the only reason to use a try); if so, what that error is (ZeroDivisionError);
and moreover, what to do in case it does occur (the except block).
• Recall that Sage’s interface uses Python. As computer languages go, Python’s exceptions

are efficient. There is a small penalty to using exceptions; in our tests, the if/else guard
is about 20% faster than the try/except catch when division by zero actually occurs.

Don’t jump to that conclusion yet! Division by zero happens rarely, so we should
ask ourselves how the approaches compare in the usual circumstances. It turns out that
the try/except catch is more than 30% faster than the if/else guard!

A more involved example. On p. 276 we described Dodgson’s method to compute a de-
terminant. It has problems. Those problems are hard to fix. Another algorithm to compute
determinants is based on Gaussian elimination. It also has problems, but these are easy to fix.
We start with the pseudocode below, which starts counting rows and matrices from 1.

EXCEPTIONS 167

algorithm Gaussian_determinant
inputs

• M , an n× n matrix
outputs

• det M
do

let N be a copy of M
let d = 1
for i ∈ {1, . . . , n− 1}

for j ∈ {i + 1, . . . , n}
if N j ,i 6= 0

let a =N j ,i

multiply row j by Ni ,i
subtract a times row i from row j
divide d by Ni ,i

return d ×
�

N1,1×N2,2× · · ·×Nn,n

�

Before implementing it, let’s see it in action on

M =

3 2 1
5 4 3
6 3 4

.

The algorithm begins by copying M to N and setting d = 1. It then loops through all but the last
row of N , storing the row value in i .

With i = 1, the outer loops finds an inner loop with j = 2. As N2,1 = 5 6= 0, the algorithm
stores 5 in a, multiplies row 2 by Ni ,i = 3, subtracts a = 5 times row 1 from row 2, then divides
d by Ni ,i = 3, obtaining d = 1÷ 3= 1/3. The resulting matrix is

N =

3 2 1
0 2 4
6 3 4

.

The inner loop next sets j = 3. As N3,1 = 6 6= 0, the algorithm performs the innermost block
again on row 3, obtaining

N =

3 2 1
0 2 4
0 −3 6

.

It also modified d , so that d = 1/9. So far, so good. The algorithm has completed the inner loop
on j when i = 1.

The outer loop proceeds to i = 2, and finds an inner loop with j = 3. As N3,2 =−3 6= 0, the
algorithm stores−3 in a, multiplies row 3 by Ni ,i = 2, subtracts a =−3 times row 2 from row 3,

EXCEPTIONS 168

then divides d by Ni ,i = 2, obtaining d = (1/9)÷ 2= 1/18. The resulting matrix is

N =

3 2 1
0 2 4
0 0 24

.

The algorithm has completed the inner loop on j when i = 2. That was the last value of i , so the
loops are complete; the algorithm returns

d ×
�

N1,1×N2,2×N3,3

�

= 1/18× (3× 2× 24) = 8.

Either Sage or a more traditional method will confirm that det M = 8.
We can implement this in Sage in the following code:

sage: def gaussian_determinant(M):

N = copy(M)

d = 1

n = N.nrows()

for i in xrange(n-1):

for j in xrange(i+1,n):

if not (N[j,i] == 0):

clear column beneath this row

d = d/N[i,i]

a = N[j,i]

N.set_row_to_multiple_of_row(j,j,N[i,i])

N.add_multiple_of_row(j,i,-a)

return d*prod(N[i,i] for i in xrange(n))

If we try it on the remaining matrices given in the exercise on p. 276, we see that it works for
the third matrix, but not the second. What goes wrong?

ZeroDivisionError: Rational division by zero

Division occurs in only one place in the algorithm: d by N[i,i]. We must have encountered a 0
on the main diagonal.

How did this happen? We started with

M =

1 −4 1 2
−1 4 4 1

3 3 3 4
2 5 2 −1

,

EXCEPTIONS 169

and the first pass through the outer loop leaves us with

N =

1 −4 1 2
0 0 5 3
0 15 0 −2
0 13 0 −5

.

There we go! During the second pass through the loop, the algorithm divides d by 0, a disaster.
Unlike Dodgson’s Method, an easy fix is available. Remember that Gaussian elimination

allows us to swap rows, as that merely re-orders the equations that correspond to each row. If
we can find another row below i = 2 with a nonzero element in column 2, we can swap that
row with row 2 and proceed as before. In the example above, row 3 has a non-zero element in
column 2, so we swap it and row 2, obtaining

N =

1 −4 1 2
0 15 0 −2
0 0 5 3
0 13 0 −5

.

With a non-zero element in row 1, column 1, we can now resume the algorithm. When j = 3
there is nothing to do, so the only inner loop that does anything is when j = 4, obtaining

N =

1 −4 1 2
0 15 0 −2
0 0 5 3
0 0 0 −49

and d = 1/15. Nothing happens on the next value of i , either, so the algorithm returns
1
15
× [1× 15× 5× (−49)] =−245.

Again, we can verify using Sage or a traditional algorithm for computing determinants that det M
is. . . . uhm, 245.

What? We got −245!

PANIC!
Once we’re done panicking, let’s think about what might have changed, in particular, what might
have made the sign go wrong.

The only thing that changed is that we swapped rows. You should remember from past expe-
rience with matrices that swapping rows changes the sign of the determinant. There! Our method
of “saving” the algorithm involved swapping rows, so somehow we have to ensure we multiply
the determinant by 0. This isn’t too hard; simply multiply d by -1.

Before we implement this improved algorithm, we should ask ourselves: what if we hadn’t
been able to find a non-zero element in column 2 among the rows below row 2? In that case, the
structure of the matrix tells us the determinant is 0. This covers all our bases.

We could use an if/else control structure to implement the modified algorithm, and this
would work just fine (see the exercises). We use a try/except this time, partly to illustrate how

EXCEPTIONS 170

it works. However, rather than stuff all this material into the same function, let’s split separate
tasks into their separate functions, each of which handles a “bite-sized” subproblem.

A function titled clear_column() could handle the ordinary task of row reduction. Every-
thing involving saving a zero division could go into a function titled, unzero().

sage: def unzero(M, d, i, j):

n = M.nrows()

look for row k w/nonzero in col j

for k in xrange(j,n):

if not (M[k,i] == 0):

M.swap_rows(k,i)

d = -d

M[i,i] == 0? column clear ("failure")

if M[i,i] == 0:

success = False

else:

d = d/M[i,i]

success = True

return success, M, d

The clear_column() function could then handle the simplified task of clearing the remaining
elements of the column.

sage: def clear_column(M, d, i):

n = M.nrows()

clear column beneath this row

for j in xrange(i+1, n):

if not (M[j,i] == 0):

try:

d = d/M[i,i]

except ZeroDivisionError:

look for pivot in lower row

success, M, d = unzero(M, d, i, j)

if not success:

raise ZeroDivisionError, ’Result is 0’

a = M[j,i]

M.set_row_to_multiple_of_row(j, j, M[i,i])

M.add_multiple_of_row(j, i, -a)

return M, d

That allows us to simplify the gaussian_determinant() function significantly, making it far more
understandable.

EXERCISES 171

sage: def gaussian_determinant(M):

N = copy(M)

d = 1

n = N.nrows()

clear columns left to right

for i in xrange(n-1):

try:

N, d = clear_column(N, d, i)

except ZeroDivisionError:

return 0

return d*prod(N[i,i] for i in xrange(n))

The function now returns the correct determinant for any matrix you throw at it.

sage: M = matrix([[1,-4,1,2],[-1,4,4,1],[3,3,3,4],[2,5,2,-1]])

sage: gaussian_determinant(M)

Exercises

True/False. If the statement is false, replace it with a true statement.
1. Sage offers the if/else if/else control structure to make decisions.
2. Sage raises a SyntaxError if you forget to include the colon at the end of an if or else state-

ment.
3. Boolean logic is based on the three values True, False, and Sometimes.
4. True and (not (False or True))
5. True or (not (False and True))
6. True and (not (False xor True))
7. True or (not (False xor True))
8. You should always use the inclusive or because discrimination is always and everywhere bad.
9. If an algorithm can take three possible courses of action, the only way to implement it is with

the following structure:

if condition1:

block1

else:

if condition2:

block2

else:

block3

10. A try/except catch is less efficient than an if/else guard, but this penalty is worth it for the
sake of readability.

Multiple choice.
1. The best control structure for a general decision uses which keyword(s)?

http://www.merriam-webster.com/dictionary/discrimination

EXERCISES 172

A. try/except
B. def

C. if/elif/else
D. for/break

2. A Boolean statement in Sage can have which values?
A. On, Off
B. true, false
C. True, False
D. 1, -1

3. What does it mean to “nest” control structures?
A. To place one control structure (like an if statement) inside a different control structure

(like a for statement).
B. To place one control structure (like an if statement) inside the same control structure

(another if statement).
C. To program in such a way that control structures aren’t necessary.
D. To build two control structures a nice, comfortable home where they can raise a family

of control structures.
4. What indicates the commands to be executed when the condition of an if statement is true?

A. a colon at the end of the line
B. indentation of the commands
C. braces { and }

D. both a colon and indentation
5. Which keyword indicates that a loop should terminate early because it is effectively finished?

A. abort

B. break

C. exit

D. return

6. Which symbol indicates to Sage that two expressions are not equal?
A. =/=

B. !=

C. #

D. None; you have to use not (a == b)

7. Taking the square root of a negative number produces what kind of exceptions?
A. ZeroDivisionError

B. TypeError

C. ValueError

D. Why should it produce an exception?
8. The best control structure to watch for a specific error uses which keyword(s)?

A. try/except
B. def

C. if/elif/else
D. for/break

9. Traditionally, what is meant by the “pyramid of doom?”
A. a situation where we have to nest try statements very deeply
B. a situation where an if has many, many else if’s
C. a situation where we have to nest if statements very deeply

EXERCISES 173

D. yet another sequel in the Indiana Jones series
10. A good reason to use parentheses when a condition has more than one Boolean operator is

that:
A. . . . it clarifies the condition’s logic to anyone who reads it.
B. . . . it avoids subtle bugs due to the order Sage evaluates and, or, and not.
C. all of the above
D. none of the above

Short answer.
1. Compare and contrast the appropriate times to use if/elif/else as opposed to the appropri-

ate times to use try/except/raise.
2. How would you modify the Method_of_Bisection pseudocode to test that f (a) and f (b) have

different signs before starting the loop, and returning (a, b) if they do not?
3. If someone were to modify the implementation of method_of_bisection() to raise an excep-

tion in case f (a) and f (b) were the same sign:
(a) What kind of exception should they use, TypeError, ValueError, or something else alto-

gether?
(b) What kind of structure should they use, if/else or try/except?

4. Write a function abmatrix() that accepts as input a positive integer n and two objects a and
b , then returns the n× n matrix C where C is the matrix below.

n columns

n rows

︷ ︸︸ ︷

a b a b
b a b a · · ·
a b a b
b a b a

...
. . .

Since a and b might be symbolic, you should create this matrix over the symbolic ring.
(a) Compute detC .
(b) Why does that result make sense? Hint: Think about linear independence, or rather, the

lack thereof.

Programming.
1. Write a function that computes the largest element in a list. Sage has a built-in max function,

but use a loop here.
2. Write Sage functions that:

(a) returns the largest element of a matrix;
(b) returns the smallest element of a matrix;
(c) returns the sum of all the elements of a matrix.

3. Write pseudocode for a Sage function that accepts as input a mathematical function f and a
real number a, then returns a tuple with two values: whether f is increasing at x = a (True if
so) and whether f is concave up at x = a (True if so).

4. Write a function lp() which accepts as arguments two lists L and M, verifies that they are the
same length, and if so, returns a list N with the same number of elements, where N[i] is the
product of L[i] and M[i]. If the two lists are not the same length, the function shoud raise an

EXERCISES 174

AttributeError. For instance, the result of LP([1,3,5],[2,4,6]) would be [2,12,30], while
the invocation LP([1,3],[2,4,6]) would raise the error.

5. When you ask Sage to solve a trigonometric function, it returns only one solution. For in-
stance, the solution to sin2x = 1/2 is actually {π/12+πk} ∪ {5π/12+πk}. Write a function to
add periodic solutions to a trigonometric equation of the form sin (ax + b) = 0.
Hint: Part of your program will need to solve ax + b = 0. You can obtain this information
using the .operands() method. To see how it works, assign f(x) = sin(2*x + 3) and then
type f.operands().

6. In this problem, you’ll write an interactive function that approximates definite integrals in one
of three ways.
(a) Adapt the Left_Riemann_approximation pseudocode to write pseudocode for Riemann

approximation using right endpoints. Translate that into Sage code without using com-
prehensions. Verify that your code produces accurate approximations.

(b) Adapt the Left_Riemann_approximation pseudocode to write pseudocode for Riemann
approximation using midpoints. Translate that into Sage code without using comprehen-
sions. Verify that your code produces accurate approximations.

(c) Write an interactive function with the following interface objects:
• an input box for a function f (x);
• an input box for a left endpoint a;
• an input box for a right endpoint b ;
• a slider for a number n of approximations, with minimum value 10, maximum value

200, and step size 10; and finally,
• a selector with options “left approximation,” “right approximation,” and “midpoint

approximation.”
The body of the function will call the Sage function you wrote for the requested approx-
imation and return its value.

7. Typically, a user of the Method of Bisection would not know in advance how many steps she
wants the algorithm’s main loop to perform. What she has in mind is the decimal precision
needed between the endpoints: for example, they should be the same up to the thousandths
place. One way to implement this is by replacing the input n with a positive integer d which
specifies the number of digits. We can then compute n from d in the algorithm’s body.
(a) Modify the Method_of_Bisection pseudocode so that it accepts d instead of n and computes

n as its very first step.
Hint: In general, we round log10 n to the next-highest integer find the number of digits
in n. (log10 2 ≈ 0 7→ 1, log10 9 ≈ 1 7→ 1, log10 10 = 1← [1, . . .) So if the algorithm divided
by 10, you could repeat it d times to obtain a precision of d digits. Alas! the algorithm
divides by 2, so you have to use a log2. How precisely you have to use it, we leave as a task
to you, but you will also have to consider b − a, not just d .

(b) Implement the pseudocode in Sage code.
8. Write Sage functions that accept as input a matrix M and return True if M satisfies one of these

conditions, and False otherwise:
• is_square(): M is square
• is_zero_one_negative(): every entry of M is 0, 1, or −1
• sums_to_one(): every row and every column of M sums to 1

EXERCISES 175

Then write a Sage function that accepts as input a matrix M and returns True if all three con-
ditions are satisfied, and False otherwise. Make this function modular, so that it invokes the
previous three functions rather than repeating their code!

Repeating yourself indefinitely

Earlier we spoke of repeating oneself “definitely,” which occurs when we know exactly how
many times we have to repeat a task. Our examples for this involved Euler’s Method to ap-
proximate the solution to a differential equation, Riemann sums to approximate an integral, and
checking whether the elements of a finite ring actually form a field. Later we used the same ideas
to find the roots of a continuous function via the Method of Bisection and to modify matrices.

Not all loops are definite; sometimes you can’t practically know at the outset how many times
you have to repeat a task. One such example is Newton’s Method. This can be faster than the
Method of Bisection, but it uses tangent lines, so it requires the function to be differentiable, not
just continuous.

(What is the difference between a continuous function and a differentiable function, you ask?
We can think of the difference in an geometric way: a continuous function’s graph is “unbro-
ken,” while a differentiable function’s graph is “smooth.” A smooth function is necessarily un-
broken, while an unbroken function might not be smooth. In fact, differentiable functions are
always continuous, while continuous functions are not always smooth. So the Method of Bisec-
tion works everywhere that Newton’s Method works, though not, perhaps, as quickly; while
Newton’s Method does not work everywhere the Method of Bisection works. For that matter,
Newton’s Method might not work everywhere it works,77 depending on how careless you are
with the setup.)

The idea of Newton’s Method is based on two facts.

• The line tangent to a curve travels in the same direction as a curve.
• It is easy to find the root of a line: mx + b = 0 implies x = −b/m.

Put them together, and the main insight is that if you start close to the root of a function, then
follow the tangent line down to its root, you shouldn’t end up too far from the root you started
from — and, hopefully, you’ll be closer than when you started. You can repeat this process as
long as necessary until you achieve the desired accuracy in digits. See Figure 22.

How does we decide that we have arrived at the desired accuracy? The usual trick is round
each approximation to the desired number of digits, and stop only when we twice have the same
value. As you can imagine, it is not obvious how we might determine in advance the number of
steps necessary to do this. It is easier simply to test, after each iteration, whether the previous
approximation and the current approximation agree to the specified number of digits. Up to this
point, however, we have no way of doing this.

77That may seem like a curious combination of words, but it’s the unvarnished truth, as we will show shortly. If
you think it doesn’t make sense, give it a few paragraphs and you’ll see. (Modulo some artistic license in the meanings
of the words, of course.)

176

IMPLEMENTING AN INDEFINITE LOOP 177

FIGURE 22. The basic idea behind Newton’s Method: start near a root, follow
the tangent line, and end up at a point (hopefully) closer to the root. Repeat as
long as desired.

Implementing an indefinite loop

When you don’t know how many times to repeat, but can apply a condition like the one
above that simplifies to True or False, we opt for what is called a while loop. Pseudocode for a
while loop has this form:

while condition
and is followed by an indented list of commands. The idea is that the algorithm executes each
command whenever condition is true at the beginning of the loop; the algorithm does not test
condition after each command, then quit in the middle of the loop if condition suddenly becomes
true. This translates directly into Sage code: use the while keyword, followed by a Boolean
condition and a colon,

while condition:
followed by an indented list of commands. If you choose, you can use a break command in a
while loop, just as with a for loop, though we don’t recommend it.

To implement Newton’s Method, we need to do is track two values: the current approxima-
tion of the root, say a, and the next approximation to the root, say b . The user specifies a, and
we compute b . As long as a and b disagree in at least one of the specified number d of digits, we
continue the loop.

A small complication arises here. A while loop tests for equality at the beginning of the loop,
rather than at the end. However, we compute b inside the loop, so we can’t know its value at the
beginning unless we perform an extra computation before the loop! That would waste space in
the program, and make it a little harder to read.

Pseudocode. To make sure the algorithm approximates at least once, we take advantage of
the problem’s nature and create an obviously wrong value for b . In this case, it would be ex-
tremely odd indeed if someone were to ask us to round to the ones digit, so we use b = a + 2
instead.78 In this case, it would be extremely odd indeed if a and b agree up to d decimal digits.

To describe the idea in pseudocode, we make use of a third variable, c , as a temporary place-
holder for the most recent approximation to the root. The use of a placeholder allows us to

78Another, surer way to do this is to set b = a+ 10−(d−1), but we don’t feel like explaining this beyond saying
that if someone is odd enough to specify d = 0, then this would give us b = a + 101, and if someone were to say
something more reasonable like d = 3, then b = a+ 10−2, so that b − a = 10−2 > 10−3 = d . And so forth. Beyond
that, we leave it to the reader to figure out why 10−(d−1) is such a good idea — unless the instructor should assign the
corresponding exercise. . .

IMPLEMENTING AN INDEFINITE LOOP 178

organize the computation in such a way that we can “slide” from older to newer values on each
pass through the loop.

algorithm Newtons_method
inputs

• f , a function that is differentiable around a
• a, an approximation to a root of f
• d , the number of digits to approximate a root of f near a

outputs
• a root of f , correct to d decimal digits

do
let b = a+ 2, c = a
while the first d decimal digits of a and b differ

let a = c
let b be the root of the line tangent to f at x = a
let c = b

return a

Let’s see how this works on the same example we used with the Method of Bisection, f (x) =
cos x − x. Both x and cos x are differentiable, so their difference is, too; we can proceed. Inspec-
tion of the graph shows us that a root should occur somewhere between x = 0 and x = 1; since
x = 1 looks closer, we’ll start the algorithm with a = 1 and d = 3.

The algorithm initializes b to 3 and c to 1 before entering the loop.
• At the beginning of the first pass through the loop, the algorithm verifies that the first

three a and b differ. It assigns a = 1, then b the root of the line tangent to cos x − x. To
find this, we need the equation of the tangent line; that requires a point, which we have
at79 (1, cos1− 1)≈ (1,−0.459698), and a slope, which we don’t. The slope of the tangent
line is the value of the derivative, so we compute

f ′ (x) =− sin x − 1

and evaluate f ′ (1)≈−1.84147. Our tangent line is thus y+0.459698=−1.84147 (x − 1).
To find the root, set y = 0 and solve for x, obtaining the new approximation b = c =
0.7503638678.
• At the beginning of the second pass through the loop, the algorithm verifies that the

first three a = 1 and b = 0.75038678 differ. It assigns a = 0.75038678, then b the
79Well, approximately at. We have to resort to floating-point values because in this case the exact values get ugly

fast, and slow down computation immensely.

IMPLEMENTING AN INDEFINITE LOOP 179

root of the line tangent to cos x − x. We already know the derivative f ′ (x), and eval-
uate f ′ (0.75038678) ≈ −1.6736325442. Our tangent line is thus y + 0.0000464559 =
−1.6736325442 (x − 0.75038678). (Notice that the y-value 4.6×10−5 is already very, very
close to 0.) To find the root, set y = 0 and solve for x, obtaining the new approximation
b = c = 0.7391128909.
• At the beginning of the third pass, the algorithm verifies that a = 0.75038678 and b =

0.7391128909 differ in their first 3 decimal digits. It assigns a = 0.7391128909, then
b the root of the line tangent to cos x − x. Passing over the details, we have the new
approximation b = c = 0.7390851334.
• At the beginning of the fourth pass, the algorithm notices that the first three decimal

digits of a = 0.7391128909 and b = 0.7390851334. The while loop terminates, and there
is nothing for the algorithm to do but return a ≈ 0.7391128909.

Notice how quickly Newton’s Method reached its goal! How does it compare with the Method
of Bisection? Recall that the Method of Bisection halves the interval on each step, so depending
on the choice of a and b , we would have needed to run n steps such that 2−n (b − a) < 10−3, or
n > − log2

10−3/b−a = 3 log2 10+ log2 (b − a) ≈ 10+ log2 (b − a). The best guess we can make at
(a, b) by eyeballing the graph is probably (1/2, 3/4), so log2 (b − a) = log2

1/2 = −1. Hence the
Method of Bisection needs n > 9 to approximate the root out to the thousandths place. Using
Newton’s Method required less than one-third as much time.

Sage code. Sage doesn’t have a command that tests immediately whether two numbers differ
in their first d decimal digits, so we have to figure out how to do this on our own. This isn’t too
hard, however; recall that the round() command will round a number to the specified number of
digits. So, all we need to do is round a and b to three digits, then check whether they are equal.

We also have to tell Sage to solve the equation of the line tangent to the curve. Back on p. 1
we discussed how to construct the equation of a tangent line, so we don’t repeat that here. The
solve() command will give us the root, but remember that solve() returns a list of solutions in
the form of equations, so we have to extract the solution using [0] to obtain the first element of
the list, and the .rhs() method to obtain the right-hand side of the equation.

These considerations suggest the following Sage code:

sage: def newtons_method(f, a, d, x=x):

f(x) = f

df(x) = diff(f, x)

b, c = a + 2, a

loop until desired precision found

while round(a, d) != round(b, d):

a = c

m = df(a)

find root of tangent line

sol = solve(m*(x - a) + f(a), x)

b = sol[0].rhs()

c = b

return a

How does this work on the example we specified earlier?

IMPLEMENTING AN INDEFINITE LOOP 180

sage: newtons_method(cos(x) - x, 1, 3)

((cos(cos(1)/(sin(1) + 1) + sin(1)/(sin(1) + 1)) +

sin(cos(1)/(sin(1) + 1) + sin(1)/(sin(1) + 1)))*sin(1)

+ cos(1)*sin(cos(1)/(sin(1) + 1) + sin(1)/(sin(1)

+ 1)) + cos(cos(1)/(sin(1) + 1) + sin(1)/(sin(1) +

1)))/((sin(cos(1)/(sin(1) + 1) + sin(1)/(sin(1) + 1)) + 1)*sin(1) +

sin(cos(1)/(sin(1) + 1) + sin(1)/(sin(1) + 1)) + 1)

Oops! That illustrates what we meant by needing to approximate our answers. let’s modify the
code so that the assignment of b inside the loop changes to

sage: b = round(sol[0].rhs(), d+2)

Rounding to d+2 places should guarantee that we don’t lose any accuracy in the first d places, and
it also ensures that we have an approximation, instead of the complicated symbolic expression
we came up with earlier. We’ll also using a floating-point first approximation, 1..

sage: newtons_method(cos(x) - x, 1., 3)

0.73911

The relationship between definite and indefinite loops. It turns out that definite loops are
really just a special kind of indefinite loop, and any for loop can be implemented as a while loop.
In Sage, for instance, we can pass through a list L using a while loop as follows:

sage: i = 0

sage: while i < len(L):

do something with L[i]

i = i + 1

Unindexed collections like sets are only a little harder. Suppose S is a set; we can copy() it, pop()
elements out of it, and work with them. When we’re done, S is still there.

sage: T = copy(S)

sage: while not len(T) == 0:

t = T.pop()

do something with t

Nevertheless, it is useful from the perspective of someone reading a program to distinguish when
a loop is definite from when it is indefinite. In the second case, for instance, it is quite possible
that the lines indented beneath while not len(T) == 0: modify T. In this case, the loop is not
definite; even a while loop of this sort can be definite only if the collection is not modified.80

80Technically, one could modify T even in a for loop, but the meaning of the word makes it less likely a person
would do that. It is routine, however, to perform a while loop over a collection that is modified during the loop.

WHAT COULD POSSIBLY GO WRONG? 181

What could possibly go wrong?

We said that for loops were “definite” because they iterate over a well-specified finite collec-
tion. This guarantees their termination. We have seen that while loops work differently: they
continue as long as a condition is true, so in fact they might never end. For a very easy example
(don’t try this at home, kids!):

sage: while True:

a = 1

In this loop, the condition is specified to be True. It will never change to anything else. Nothing in
the loop changes the fact that True is True, and the while loop will never end. This is a good way
to “hang” the computer, and if you were naughty enough to ignore our caution (really, don’t try
this at home, kids!) then you will need to stop Sage by either clicking the Stop button (cloud),
selecting the Action menu, then clicking Interrupt (other server), or holding Ctrl and press C

(command line).
This is not the only place it can show up; carefully prepared conditions can also go awry.

Newton’s Method can lead to an infinite loop when we do the following (one last time: don’t try
this at home, kids!):

sage: f(x) = x**3 - 2*x + 2

sage: newtons_method(f(x), 0, 3)

In this case, the derivative is f ′ (x) = 3x2− 2. The line tangent to f at x = 0 is y = −2x + 2; its
root is x = 1. The line tangent to f at x = 1 is y = − (x − 1) + 1; its root is x = 0. We are back
where we began. . . oops!

The reader who looks at this example more carefully may object that it is unrealistic, in that
the choice of x = 0 seems obviously unwise, being somewhat distant from a root at

−

3p81
�

2 · 3p81+ 3
3
p

9−
p

57
�

27
3
p

9−
p

57
≈−1.7693.

It is even more obvious from the graph, which illustrate the oscillation of approximations be-
tween x = 0 and x = 1:

While this is true, it is also the case that starting at x = 0.5 will also lead you into this very
oscillation; it just takes more steps before the algorithm starts whiplashing between 0 and 1.

Going astray. An example of a theoretical infinite loop occurs with f (x) = 1/1+x2.

DIVISION OF GAUSSIAN INTEGERS 182

Suppose we start Newton’s method at x = 3, which is not too far from the root at x = 1. In this
case, Sage suddenly quits with the error,

sage: newtons_method(f(x), 3., 3)

IndexError: list index out of range

If you look at the additional information provided by Sage, you will see it complaining about the
line b = round(sol[0].rhs(), d+2). Basically, IndexError means that an entry doesn’t exist in
the list at the specified index. The index appears between brackets: [0] in this case, so Sage can’t
find an entry in sol. This suggests there was no solution.

What happened? If you trace the computations by hand, or else place a print(a) at the be-
ginning of the while loop, you will see the approximations thrash wildly between negative and
positive values of increasingly large size:

3, −3.66667, 8.58926, −149.80063, 840240.29866, −1.48303× 1017, 8.15439× 1050.

This error is due to the fact that we’re working with approximations, and the numbers get so
large that the computer decides there is no solution and solve() gives up, returning an empty
list. Try tracing the tangent lines on the plot to see how this happens.

Again, the reader might object that x = 3 does not seem like an especially compelling point
to start Newton’s Method. True, but x = 0.09 is less worrisome, and that will do something
similar.

A similar phenomenon can occur in Newton’s Method when you aim for one root, but end
up at another. This isn’t a text on Numerical Analysis, so we won’t go into those details, or some
other difficulties with Newton’s Method; we encourage the interested reader to pursue a text on
that.

Division of Gaussian integers

We turn to an interesting ring called the Gaussian integers, writtenZ [i] for short. Gaussian
integers have the form a+b i , where a and b are integers. This differs from the complex numbers,
which have the superficially similar form a+ b i , with the difference that for complex numbers
a and b are real numbers. In short,

• 2+ 3i is both complex and a Gaussian integer, while
• 2+ i/3 and 2+ i

p
3 are complex, but not Gaussian integers.

DIVISION OF GAUSSIAN INTEGERS 183

Addition, subtraction, and multiplication of Gaussian integers is identical to complex numbers:

(a+ b i)+ (c + d i) = (a+ c)+ (b + d) i
(a+ b i)− (c + d i) = (a− c)+ (b − d) i
(a+ b i) (c + d i) = (ac − b d)+ (ad + b c) i .

For division, however, we do not want to go from Gaussian integers to complex numbers, as Sage
might give us by default:

sage: (2 + 3*I) / (1 - I)

5/2*I - 1/2

Rather, we would like a way to compute a quotient and remainder, much as Sage offers the // and
% operators for integers. In particular, we’d like an algorithm that behaves much like division of
integers:

THE DIVISION THEOREM FOR INTEGERS. Given an integer n, called the dividend, and a
nonzero integer d , called the divisor, we can find an integer q, called the quotient, and a nonnegative
integer r , called the remainder, such that

n = qd + r and r < |d | .

Remember that the absolute value of a real number gives us an idea of its size; the analogue for
complex numbers is the norm ‖z‖. Translated to Gaussian integers, the theorem would become

THE DIVISION THEOREM FOR GAUSSIAN INTEGERS. Given a Gaussian integer z, called
the dividend, and a nonzero Gaussian integer d , called the divisor, we can find a Gaussian integer
q, called the quotient, and another Gaussian integer r , called the remainder, such that

z = qd + r and ‖r‖< ‖d‖.

This theorem says nothing about the remainder being nonnegative because “negative” doesn’t
really make sense for Gaussian integers.

The Division Theorem for Gaussian Integers is in fact true, and we will prove it by construct-
ing an algorithm that does what it claims. But how should we construct such an algorithm? Di-
vision of integers is repeated subtraction, and you can create a perfectly good division algorithm
in the following way:

DIVISION OF GAUSSIAN INTEGERS 184

algorithm divide_integers
inputs

• n, d ∈Z such that d 6= 0
outputs

• q ∈Z and r ∈N such that n = qd + r and r < |d |
do

let r = |n|, q = 0
if n and d have the same sign

let s = 1
else

let s =−1
while r < 0 or r ≥ |d |

add s to q
replace r by r − s d

return q , r

This algorithm uses s to “step” the quotient in the correct direction towards n. For instance,
if we divide −17 by 5, then r and q have the following values at the beginning of each loop (q
decreases because we have s =−1):

r −17 −12 −7 −2 3
q 0 −1 −2 −3 −4

Once r = 3 and q =−4, the algorithm notices that r < |d |, so the while loop ends, giving us the
correct expression

17= qd + r = (−4)× 5+ 3.

It makes sense that division of Gaussian integers should work the same way. Our general
strategy, then, will take this approach:

let r = z, q = 0
while ‖r‖ ≥ ‖d‖

“step q up” using an appropriate value s
replace r by r − s d

return q , r

Now we have to figure out what it means to “step q up.” The difficulty lies in the fact that we
can “increase” q in two different directions: the real direction and the imaginary direction. As
you saw in the introduction to the complex plane on p. 77, multiplying a complex number by i
rotates it 90◦ counterclockwise:

DIVISION OF GAUSSIAN INTEGERS 185

4 +i

i(4 +i)

× i

It is, therefore, possible to “step q up” two different ways.
We’ll solve this using a two-stage approach: first we minimize the distance when multiplying

by integers; then we minimize the distance when multiplying by integer multiples of i . For
instance, suppose we divide 8+7i by 2+i . The divisor lies along the line of slope 1/2, so we “step”
along that line in the appropriate direction until any further step would increase the distance.
From geometry, we know this means getting as close to the altitude dropped from (8,7) to the
line y = x/2:

(8,7)

y=x/2

Unfortunately, the closest point is (91/5, 43/5) (in red), which corresponds to a complex number,
but not a Gaussian integer. The closest Gaussian integer is the blue point that lies beyond the
red point; the only way to check this is to compare the norm of each point as we move along the
line.

The next stage is to step from our minimal Gaussian integer along a line perpendicular to the
blue one, corresponding to repeated multiplication of d by i . Again, we step along the line until
any further step would increase the norm.

(10,5)

(8,7)

y=−2x+23

The closest point on the line with integer values is (9,7), which corresponds to 9+7i . We obtained
this value after multiplying first by 5, then by i :

(2+ i) (5+ i) = 10+ 2i + 5i − 1= 9+ 7i .

The remainder is −1, whose norm is smaller than the divisor’s.

DIVISION OF GAUSSIAN INTEGERS 186

Writing this as pseudocode gives us the following.

algorithm divide_gaussian_integers
inputs

• z, d ∈Z [i] such that d 6= 0
outputs

• q , r ∈Z [i] such that z = qd + r and ‖r‖< ‖d‖
do

let r = z, q = 0
if ‖r − d‖< ‖r‖

let s = 1
else

let s =−1
while ‖r − s d‖< ‖r‖

add s to q
replace r by r − s d

if ‖r − i d‖< ‖r‖
let s = i

else
let s =−i

while ‖r − s d‖< ‖r‖
add s to q
replace r by r − s d

return q , r

As we planned, this algorithm uses an if statement to check first whether it is better to step
forward or backward by a real-valued factor. It then selects s to be 1 or−1 depending on which is
more appropriate. The while loop then steps in the appropriate direction, decreasing the norm
until further steps would increase it. We cannot rely on the test ‖r‖ ≥ ‖d‖ as with integers,
because we may need further minimization after the first stage because we still have ‖r‖> ‖d‖.
This is why the loop checks ‖r− s d‖< ‖r‖ instead; roughly speaking, this translates as “stepping
further reduces the norm of r .”

The algorithm then uses a second if statement to check whether it is better to step forward
or backward by an imaginary-valued factor. It selects s to be i or −i depending on which is
more appropriate. The while loop then steps in the appropriate direction, decreasing the norm
until further steps would increase it. We could in fact test ‖r‖ ≥ ‖d‖ here, but for the sake of
consistency we used the same basic structure.

This translates to the Sage code in Figure 23. How does it perform on some examples?

sage: divide_gaussian_integers(4 + I, 1 - I)

(2*I + 1, 1)

sage: divide_gaussian_integers(8 + 7*I, 2 + I)

(5 + I, -1)

DIVISION OF GAUSSIAN INTEGERS 187

sage: def divide_gaussian_integers(z, d):

r, q = z, 0

which real way to step?

if norm(r - d) < norm(r):

s = 1

else:

s = -1

loop to step

while norm(r - s*d) < norm(r):

q = q + s

r = r - s*d

which imaginary way to step?

if norm(r - I*d) < norm(r):

s = I

else:

s = -I

loop to step

while norm(r - s*d) < norm(r):

q = q + s

r = r - s*d

return q, r

FIGURE 23. Sage code for division of Gaussian integers

We already verified the second computation by stepped through it earlier; the first is not hard to
do yourself.

An well-orderly retreat. With Newton’s method, we encountered an infinite loop with un-
fortunate combinations of a function f and initial guess a. Is it possible to find two Gaussian
integers such that the while loops of divide_gaussian_integers() to become infinite?

Not in this case, no. The difference is that the loops are built in such a way that we can describe
the condition using a nonnegative integer that decreases after every successful pass through the
loop. In both loops, that value is ‖z − qd‖. Why? The algorithm initializes r = z, then “steps”
q closer to z if and only if that would decrease the distance between z and qd ; in other words,
‖z − qd‖. The norm is always an integer, and positive integers enjoy a property called the well-
ordering property:

Every nonempty subset of N has a least element.
If the loop were infinite, we could consider all the values of ‖z − qd‖, having a subset of N. The
algorithm performs the loop if this distance decreases, and the well-ordering property guarantees
that this can happen only finitely many times, contradicting the supposition that the loop is
infinite.

If possible, it is a very good idea when working with while loops to formulate them in such a
way that you exploit the well-ordering property somehow, thus guaranteeing termination. You
can do this in pretty much every circumstance, though the consequence may be undesirable.
One way to do this with Newton’s Method, for instance, is to set a variable max_iterations to

EXERCISES 188

some large number, decrease it by one on every pass through the loop, then rephrase the while

loop’s condition so that it quits the moment max_iterations hits 0. You might even choose to
raise an exception. We conclude this section with a modified terminating_newtons_method()

that illustrates this technique.

sage: def terminating_newtons_method(f, a, d, x=x):

f(x) = f

df(x) = diff(f, x)

a + 2 should be too far for premature termination

b, c = a + 2, a

max_iterations = 100

loop for desired precision, up to threshhold

while max_iterations > 0 and round(a, d) != round(b, d):

a = c

m = df(a)

sol = solve(m*(x - a) + f(a), x)

b = sol[0].rhs()

c = b

max_iterations = max_iterations - 1

error? report if so

if max_iterations == 0:

raise ValueError, ’Too many iterations: ’

+ ’try a different initial value’

return a

Try it with the nonterminating example from before (f = x3− 2x + 2, a = 0) and see how this
behaves much better.

Exercises

True/False. If the statement is false, replace it with a true statement.
1. In Sage, the while keyword implements an indefinite loop.
2. A while loop stops as soon as the condition becomes false, even if it hasn’t completed all the

statements indented beneath it.
3. The smartest way to loop through a collection is using a while loop.
4. An indefinite loop is a special kind of definite loop.
5. It is impossible to create an infinite loop when using an indefinite loop.
6. It is impossible to prevent every indefinite loop from becoming an infinite loop.
7. Newton’s Method finds every root the Method of Bisection will find.
8. Newton’s Method finds some roots the Method of Bisection will not find.
9. Gaussian division is more complicated than complex division because it requires a quotient

and a remainder.
10. The well-ordering property states that every subset of the natural numbers N has a least

element.

Multiple choice.
1. A loop that iterates over a specific collection is a:

EXERCISES 189

A. definite loop
B. indefinite loop
C. infinite loop
D. specific loop

2. A loop that repeats a specific number of times is a:
A. definite loop
B. indefinite loop
C. infinite loop
D. specific loop

3. A loop that repeats based on whether a condition remains true or false is a:
A. definite loop
B. indefinite loop
C. infinite loop
D. specific loop

4. The main reason to use an indefinite loop instead of a definite loop is:
A. An indefinite loop is easier to guarantee termination.
B. An indefinite loop is harder to guarantee termination.
C. To decide whether to terminate, the loop must test a Boolean condition.
D. Definite loops are just a special kind of indefinite loop, so it’s more consistent to use in-

definite loops exclusively.
5. Which of the following best characterizes the idea behind Newton’s Method?

A. Use the tangent line to find a new approximation, hopefully closer to the correct root.
B. Use the tangent line to find a new approximation, definitely closer to the correct root.
C. Bisect the interval repeatedly until the endpoints agree on the first d decimal digits.
D. Trace along the curve with extreme precision, zooming and moving back and forth until

you have the correct result.
6. For which of the following functions would you be better advised to use the Method of Bisec-

tion to find a root, rather than Newton’s Method?
A. |x + 3|
B. sin (x +π)
C. (x − 3)2

D. ln (x − 3)
7. Under what conditions can Newton’s Method fail to find a root?

A. the function is discontinuous
B. the function is non-differentiable
C. the starting point leads away from the root
D. all of the above

8. Which of the following is a correct geometric interpretation of what happens when you mul-
tiply a complex number by −i? (Note that it is negative!)
A. The new number corresponds to a 90◦ clockwise rotation in the complex plane.
B. The new number corresponds to a 90◦ counter-clockwise rotation in the complex plane.
C. The new number corresponds to a 180◦ rotation in the complex plane.
D. The new number is in the same direction as the original number, only longer.

9. For which of the following pairs of numbers should Gaussian division fail? (dividend comes
first, divisor second)
A. 4+ i , 1+ i

EXERCISES 190

B. 0, 1+ i
C. 1+ i , 0
D. none of the above

10. The reason we raised a ValueError in the last version of Newton’s Method is that:
A. We consider the function was a bad value, because it is not continuous at a.
B. We consider the starting point a a bad value, because the function is not differentiable

there.
C. The values have grown too large, and Sage was unable to find a solution.
D. We consider the starting point a bad value, because it seems caught in an infinite loop.

Short answer.
1. Consider the following Sage function:

sage: def aw(n):

t = 0

i = 1

while i <= n:

t = t + i**2

i = i + 1

return t

(a) Compute aw(4) by hand, showing your work.
(b) Rewrite aw(n) as a one-line mathematical expression, using summation notation.
(c) Translate aw(n) into a new function af(n), which does the same thing, but uses a for loop

instead.
(d) Both the while loop and the for loop are inefficient. How would it be smarter to imple-

ment this function?
2. The Syracuse sequence is defined in the following manner. Let S1 ∈N, and

Si+1 =
¨

Si/2, Si is even;
3Si + 1, Si is odd.

The sequence terminates once Si = 1. It is believed that the sequence terminates with Si = 1
for every value of S1, but no one actually knows this. Compute by hand the sequence for
several different values of S1, and notice how it always seems to reach Si = 1.

3. Division of univariate polynomials f by g works in the following way (here, deg (r) means
“degree of r ” and lc (r)means “leading coefficient of r ”):
• let r = f , q = 0
• while deg (r)> deg (g)

– let t = xdeg(r)−deg(g), c = lc(r)/lc(g)

– replace r by r − c t g
– add c t to q

(a) Choose 5 pairs of polynomials, and perform the division algorithm on them. You can use
Sage to help speed the subtractions, but if you use Sage’s Division command you won’t
be able to answer at least one of the next few problems.

(b) Do you think this algorithm exploits the well-ordering property? Why or why not?
(c) Is there a pattern to how many times the algorithm passes through the loop?

EXERCISES 191

(d) Could the loop be written as a for loop? If so, how? If not, why not?
4. Show how these for loops can be rewritten using a while loop in each case:

(a)
for k in range(num):

<body> # possibly depending on k

(b)
for elem in L: # L is a collection (list/tuple/set)

<body> # depending on elem

5. Can every while loop be rewritten into a for loop? Explain!

Programming.

1. In Short Answer #1, you worked with the Syracuse sequence. Write pseudocode for how you
might implement this as a program. It should accept an argument for S1, sets s = S1, apply the
formula to s to find its next value, and terminate when s = 1. Implement your pseudocode.
(You can test whether s is even using Sage’s % operator, as a number is even when the remainder
after division by 2 is 0.)

2. When we implemented the Method of Bisection, we used a logarithm to determine the re-
quired number of steps. This was the only way we were able to use a definite loop. It is possi-
ble to rephrase the algorithm with an indefinite loop, similar to Newton’s Method: terminate
once a and b agree to the specified number of digits.
(a) Do this. Rewrite both the pseudocode and then the Sage code to see this in action.
(b) Which method do you prefer, and why?
(c) Which method do you think is easier for someone else to read, understand, and/or mod-

ify? Again, why?
3. In Short Answer #2, you worked on division of univariate polynomials. Write full pseudocode

for it — that is, give the algorithm a name, specify the inputs precisely, and the outputs pre-
cisely. Then implement it as a Sage program, and test it on the same examples you did in that
problem.

4. A positive integer n is prime if no integer from 2 to
p

n divides n.
(a) Write a Sage function that accepts a value of n as input and finds the smallest nontrivial

positive divisor of n.81 If the number is prime, the function should raise a ValueError.
(b) Write another Sage function that accepts a positive integer k as input and returns a list of

every prime number less than or equal to k. Have the function invoke the answer to part
(a).

(c) The Goldbach conjecture asserts that every even number is the sum of two prime num-
bers. Despite having been verified up to unimaginably ginormous values, no one has yet
proved the Goldbach conjectire is true for all positive integers. Write a function that ac-
cepts a positive integer m as input, raises a ValueError if m is not even; otherwise, it finds
two prime numbers that sum to m. Have the function invoke the answer to part (b).

5. The greatest common divisor of two integers is the largest integer that divides both of them.
An algorithm to compute the greatest common divisor was already known to Euclid of Alexan-
dria more than 2000 years ago:

81A positive divisor is nontrivial if it is not 1.

EXERCISES 192

algorithm gcd
inputs

• a, b ∈Z
outputs

• the greatest common divisor of a and b
do

let m = |a|, n = |b |
while n 6= 0

let d = n
replace n by the remainder of division of m by n
replace m by d

return m

(a) Implement this as Sage code, and check that it gives correct greatest common divisors for
several large numbers.

(b) Choose a small pair of nonzero integers and trace through the algorithm, step-by-step,
showing how it arrives at the gcd.

6. The Extended Euclidean Algorithm not only finds the gcd of two nonzero integers a and b ,
it finds numbers c and d such that

gcd (a, b) = ac + b d .

For instance, gcd (4,6) =−1× 4+ 1× 6. We can describe it as follows:

algorithm extended_euclidean_algorithm
inputs

• a, b ∈Z
outputs

• c , d ∈Z such that gcd (a, b) = ac + b d
do

let m = |a|, n = |b |
let s = 0, c = 1, t = 1, d = 0
while n 6= 0

let q be the quotient of dividing m by n
let r be the remainder of dividing m by n
let m = n and n = r
let w = c , then c = s and s = w − q s
let w = d , then d = t and t = w − q t

return c , d

Implement this as Sage code, and verify that it gives the correct values of c and d for several
large values of a and b ; that is, verify that the values c and d it returns satisfy ac + b d =
gcd (a, b).

Repeating yourself inductively

Another form of repetition is called recursion. The term literally means, “running again,”
because the idea is that an algorithm solves a problem by breaking it into simpler cases, invoking
itself on those smaller cases, then putting the results back together. Those smaller cases typically
break their cases into even smaller cases. This may sound a bit dodgy: What’s to stop us from
hitting an infinite chain?

When organizing a recursion, we try to set it up in such a way that this strategy creates a chain
of problems that lead to a smallest possible element. If we can relate them to the natural numbers,
then even better, as the natural numbers enjoy a property called the well-ordering property:

Every nonempty subset of N has a least element.
(If this sounds familiar, it’s because we referred to it in a previous chapter.)

Recursion

A classical example. A number of problems translate naturally to recursion. One example
is Pascal’s triangle, which looks like so:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

...
...

. . .

The rows of this triangle appear in many places, such as the expansion of binomials:

(x + 1)0 = 1
(x + 1)1 = 1x + 1
(x + 1)2 = 1x2 + 2x + 1
(x + 1)3 = 1x3 + 3x2 + 3x + 1
(x + 1)4 = 1x4 + 4x3 + 6x2 + 4x + 1

...

Take a moment to try and deduce the triangle’s pattern.
Do you see it? if not, take another moment to try and work it out.
Hopefully you saw that each row is defined in the following way. Let the top row be row 1,

the next row down row 2, and so forth.
• The first and last elements on each row are both 1.

193

RECURSION 194

• The remaining elements satisfy q j = p j−1+ p j , where
– q j is the element in entry j on row i , and
– p j−1 and p j are the elements in entries j − 1 and j on row i − 1.

To know the entries in row i , then, we first need to know the entries on row i − 1. We can loop
through those entries to give us the subsequent entries. We know how many entries there are in
that row: i−1, though we can also inquire from the row itself.82 so we can apply a definite loop.
This gives us the following, recursive pseudocode to compute row i :

algorithm pascals_row
inputs

• i ∈N, the desired row of Pascal’s triangle
outputs

• the sequence of numbers in row i of Pascal’s triangle
do

if i = 1
result = [1]

else if i = 2
result = [1,1]

else
prev = pascals_row(i − 1)
result = [1]
for j ∈ (2,3, . . . , i − 1)

append prev j−1+ prev j to result
append 1 to result

return result

This translates to the following Sage code:

82In the pseudocode, we could have written “|prev|” to indicate this. In the Sage code, we could simply write
prev.len().

RECURSION 195

sage: def pascals_row(i):

if i == 1:

result = [1]

elif i == 2:

result = [1, 1]

else:

compute previous row first

prev = pascals_row(i - 1)

this row starts with 1...

result = [1]

...adds two above next in this row...

for j in xrange(1, i - 1):

result.append(prev[j-1] + prev[j])

... and ends with 1

result.append(1)

return result

We can verify it on the lines we saw above, and generate more that you can verify by hand:

sage: pascals_row(1)

[1]

sage: pascals_row(5)

[1, 4, 6, 4, 1]

sage: pascals_row(10)

[1, 9, 36, 84, 126, 126, 84, 36, 9, 1]

An example so classical it’s medieval. The next example is one of the fundamental problems
of mathematics,

How quickly will a population of bunnies grow?

You have to ask?!?

https://en.wikipedia.org/wiki/Okunoshima

RECURSION 196

You think we’re joking, but we’re not.83 As you might guess, these bunnies are no ordinary
bunnies; they obey some special laws of reproduction:

• In the beginning, there was one pair — but they were immature.
• Every pair of bunnies takes one season to mature.
• Once mature, every pair of bunnies produces a new pair of bunnies every season.
• The bunnies are immortal. They have no predators, and they obtain their energy from

the sun, so they never run out of food. Amazingly, they never tire of the new children
waking them up at night, crawling all over them, and generally getting in the way of
nobler pursuits, such as the contemplation of the form of the ideal bunny.84

The formula for the number of pairs of bunnies in one season is defined by the number in the
previous two seasons:

bn = bn−1+ bn−2.

This is a perfect example of recursion. It is natural to try and implement this recursively with
a function that accepts an integer for the number of seasons that have passed. If it is 1 or 2, the
answer is easy: 1. Otherwise, we compute the number of bunnies in the previous two seasons.

algorithm funny_bunnies
inputs

• n ∈N, the number of seasons
outputs

• the number of bunny couples after n seasons
do

if n = 1 or n = 2
let result = 1

else
let result = funny_bunnies(n− 1) + funny_bunnies(n− 2)

return result

To translate this to Sage code, keep in mind that xrange() does not iterate on the last value, so we
need its limit to be n-1:

sage: def funny_bunnies(n):

if n == 1 or n == 2:

result = 1

else:

result = funny_bunnies(n-1) + funny_bunnies(n-2)

return result

sage: [funny_bunnies(i) for i in xrange(2,10)]

[2, 3, 5, 8, 13, 21, 34]

83At least one journal is dedicated to these bunnies.
84Gratuitous (and irrelevant) reference to Platonic philosophy included at no extra charge.

http://www.fq.math.ca

RECURSION 197

That’s a very interesting list of numbers. It is so interesting that it’s named after a mathematician
who described it during the Middle Ages, Leonardo da Pisa, better known as Fibonacci,85 so
people call it the Fibonacci sequence. We can describe it as follows:86

Fnext = Ftotal+ Fmature.

That means, “the number of bunnies next season is the sum of the total number of bunnies and the
number of mature bunnies.” We could also say that the number of total bunnies is the “current”
number of bunnies, while the number of mature bunnies is the number of bunnies we had last
season. That means “the number of bunnies next season is the sum of the number of bunnies this
season and the number of bunnies last season.” So we could write:

Fnext = Fcurr+ Fprev.

An example you can’t actually program. Another example is the proof technique called
induction. The principle of induction is that:

• if you can prove:
– a property applies to 1, and
– whenever it applies to n, it also applies to n+ 1,

• then the property applies to all the positive integers.
The idea is that if we can show the first bullet is true, then the second bullet is true for any positive
integer m because

• if it’s true for m− 1, then it’s true for m; and
• if it’s true for m− 2, then it’s true for m− 1, and

. . .
• if it’s true for 1, then it’s true for 2.

85Fibonacci lived in a period known as the High Middle Ages, and didn’t care about bunnies so much as the fact
that people were still using I, V, X, L, C, D, and M to write numbers and do arithmetic — Roman numerals, that is.
He realized this was very inefficient, and it would be better to use the Hindu-Arabic way of writing numbers: 0, 1,
2, . . . , 9 and all that. Trouble was, most people were accustomed to working with a old-timey calculator called an
abacus, and had been trained how to use an abacus with Roman numerals. Then, as now, people were reluctant to
give up a computational crutch.

To get around this, he wrote a book called Liber Abaci (“Book of the Abacus”). The book’s main point was to
show how you could solve all the same problems with Hindu-Arabic numbers without using an abacus, and work
far more efficiently, to boot. Getting work done faster allowed one to do more business. The Platonic bunnies were
one of the examples he used in the book. It was quite possibly the first time someone used a funny bunny to make
money.

Oh, we’re not done making you groan yet, not by a long shot. You may think Liber Abaci kind of a dull title
— certainly not as catchy as the slogan, “Think Different,” though Fibonacci would have had stronger grounds to
use that slogan than anyone who popularized it today — but people back then were interested more in substance
than in style, so Fibonacci succeeded both in weaning people off Roman numerals and in getting his name attached
to a sequence of numbers that, ironically, had been studied by Indian (Hindu) mathematicians long before Leo was
himself a Fibonacci number.

All this goes to show that the High Middle Ages suffered a critical shortage of 21st century “brights” who could
inform them that they were, in fact, supposed to be ignorant poo-flingers disinterested in science and mathematics.

(And, yes, we do recognize the irony in referring to an abacus as a “computational crutch” in a text dedicated to
doing math problems with the Sage computer algebra system, but this footnote is designed to be rich in irony.)

86F stands for “funny,” not “Fibonacci.” Why do you ask?

ALTERNATIVES TO RECURSION 198

We know it’s true for 1 (that’s in the first bullet), so the chain of implications tells us it’s true for
m, which was an arbitrary positive integer.

Alternatives to recursion

Recursion is fairly common, and reasonably easy to implement, but it may not always the
best approach. It’s not hard at all to compute Pascal’s triangle even to the 900th row, and you
might be able to take it further if Sage did not place a limit on the number of times you can apply
recursion:

sage: P = pascals_row(900)

sage: len(P)

900

sage: P[-3]

403651

sage: P = pascals_row(1000)

RuntimeError: maximum recursion depth exceeded while calling a

Python object

This limit is there for good reason, by the way; recursion can use up quite a bit of a special sort of
memory,87 and too deep a recursion can also indicate an infinite loop, or at least that something
has gone terribly awry.

With the Fibonacci sequence, things go awry rather quickly, but in a different way. Try
computing the nth Fibonacci number for really-not-very-large-at-all values of n, and you’ll see the
length the problems take a sharp turn upwards quickly. On the authors’ machines, for instance,
there is already a noticeable lag at n = 30; n = 35 takes several seconds; and for n = 40 you might
just be able to make yourself a cup of coffee88 before it finished. You might think you could get
around this delay with a faster computer, and you’d be wrong, very wrong. The problem is that
there are too many branches at each step. To see this clearly, let’s expand a computation of the
7th Fibonacci number down to one of the two base cases:

F7 = F6+ F5

= (F5+ F4)+ (F4+ F3)
= [(F4+ F3)+ (F3+ F2)]+ [(F3+ F2)+ (F2+ F1)]
= [[(F3+ F2)+ (F2+ F1)]+ (F2+ F1)+ F2]+ [[(F2+ F1)+ F2]+ (F2+ F1)]
= [[[(F2+ F1)+ F2]+ (F2+ F1)]+ (F2+ F1)+ F2]

+ [[(F2+ F1)+ F2]+ (F2+ F1)]

Twelve F ’s are not the base cases F1 and F2; each of those requires a recursion. That’s an awful
lot, but it doesn’t sound that bad. On the other hand, consider the next number,

F8 = F7+ F6.

We’ve already counted 12 recursions for F7, and you can look up to see that F6 requires 7. So F8
will want 12+7+1= 20 recursions. (We need 1 extra for the expansion of F7 itself.) You can see

87For those who know some computer science, we’re talking about the stack.
88Whether you’d want to drink it is another story, but before the authors get into another argument on caf-

feinated drinks, we’ll stop there.

ALTERNATIVES TO RECURSION 199

immediately that the number of recursions of the Fibonacci sequence grows in a Fibonacci-like
fashion:

0,0,1,2,4,7,12,20,33,54, . . .
Already F10 requires 54 ≈ 5× 10 recursions; notice the jump in size from F7, which required
“only” 12≈ 2× 7. With the Fibonacci sequence, the number of recursions is growing too fast!

Computing the 100th Fibonacci number might, therefore, seem out of reach, but there are
several ways around this conundrum. The first two approaches to solving this problem rely on
the fact that when computing F7, we computed F5 twice:

F7 = F6+ F5 = (F5+ F4)+F5.

We then computed F4 three times:

F7 = [(F4+ F3)+F4]+ (F4+ F3) .

. . . and so forth. So the problem isn’t that the Fibonacci inherently requires an unreasonable
amount of recursion; it’s that we’re wasting a lot of computations that we could reuse.

Caching. One way to avoid wasting computations is to “remember” them in what’s called
a cache. You can think of it this way: we stash previous results in the cache. To implement the
cache, we use a global variable; that is, a variable that exists outside a function, which we can
access from inside it. The reason for this is that if the cache were merely local to the function,
then the same values wouldn’t be available when we tackle the subproblem.

We describe two ways to cache results. One of them is to do so explicitly, with a list whose
i th value is the i th Fibonacci number. We initialize the list as F = [1,1]. Whenever we compute
a Fibonacci number, we first check whether F already has the value. If it does, we return that
value rather than recurse. If it does not, we compute it, then add it to F at the end. For instance,
when computing F5:

• We need to compute F4 and F3. We have neither, so we recurse.
– For F4, we need to compute F3 and F2. We don’t have F3, so we recurse.

∗ For F3, we need to compute F2 and F1. We have both, so we compute F3 =
F2+F1 = 1+1= 2 and store that at the end of the list F , which is now [1,1,2].
We then return it
∗ For F2, we already have it, so we return F2 = 1.
∗ We now have F3 and F2 , so we compute F4 = F3+ F2 = 2+ 1 = 3, store that

value at the end of the list, and return it.
– For F3, we now have it in the list (it was computed above) so we simply return it.

• We now have F4 and F3, so we compute F5 = F4+ F3 = 3+ 2= 5, store that value at the
end of the list, and return it.

This saved us the trouble of computing F4 more than once, and of computing F3 more than once.
What’s more, the definition of the Fibonacci numbers is convenient to this method: when it
comes time to store Fn, we already have F1, F2, . . . , Fn−1 in the list, so we can store it in the
right place.89 To write pseudocode for this, we introduce a new “bold word” for our pseudocode:
global. This heads a list of global variables used by the algorithm; for clarity, we list it after
inputs and outputs.

89Not all recursive sequences are this lucky. If the sequence were defined by Sn = Sn−2 + Sn−3, for instance,
you’d have to make sure the cache had the right length before storing it. So we’re a little lucky with the Fibonacci
sequence.

ALTERNATIVES TO RECURSION 200

algorithm cached_fibonacci
inputs

• n ∈N with n ≥ 1
outputs

• Fn, the nth Fibonacci number
globals

• F , a list of Fibonacci numbers (in order)
do

if n ≤ |F |
let result = Fn

else
let result = cached_fibonacci(n− 1) + cached_fibonacci(n− 2)
append result to F

return result

To turn this into pseudocode, we use the Sage keyword global, which indicates that F is a variable
that lives outside the function. This isn’t strictly necessary for Sage, but it helps alert readers that
a global variable is expected.

sage: F = [1,1]

sage: def cached_fibonacci(n):

global F # cache of previous values

if already computed, return it

if n <= len(F):

result = F[n-1]

else:

need to recurse: bummer

result = cached_fibonacci(n-1) \

+ cached_fibonacci(n-2)

F.append(result)

return result

Notice that we had to adjust one item from the pseudocode: instead of returning F[n], we re-
turned F[n-1]. We did this because the pseudocode assumes that lists start with index 1, but Sage
starts its indices at index 0.

You can test and compare the results between the two. It will become evident very quickly
that cached_fibonacci() is much, much faster than funny_bunnies() once n grows to anything
larger than the dinkiest of numbers:

ALTERNATIVES TO RECURSION 201

sage: cached_fibonacci(10)

55

sage: cached_fibonacci(25)

75025

sage: cached_fibonacci(35)

9227465

To really drive the point home, we’ll compute one that would take far too long with the recursive
implementation:

sage: cached_fibonacci(100)

354224848179261915075

Don’t overlook the first line of the code above, where we set F = [1,1]. If you forget that,
you’ll encounter an error. If you were a good reader and did not make that mistake, we will
simulate the error by resetting F, then running cached_fibonacci:

sage: reset(’F’)

sage: cached_fibonacci(10)

NameError: global name ’F’ is not defined

If you were still a good reader and reset F to see what would happen, and now you want to run it
again, just assign it anew:

sage: F = [1,1]

sage: cached_fibonacci(10)

55

Two last words to the wise. While this algorithm is cached, it is still recursive; we haven’t
changed the fact that, when we encounter a “cache miss” (n is larger than the size of F), the
algorithm has to call itself. Since Sage has a built-in limit for recursion, we still encounter the
same problem as we did with pascals_row:

sage: cached_fibonacci(1000)

RuntimeError: maximum recursion depth exceeded while calling a

Python object

You can actually change this, but it’s dangerous, so we won’t tell you how. There are usually
better options, anyway — to find one, see the next section.

Finally, you don’t usually have to implement caching on your own. In the cloud, Sage will
give you a cache for free; just type @cached_function and then start the function definition on
the line below.

ALTERNATIVES TO RECURSION 202

sage: @cached_function

def decorated_fibonacci(n):

if n == 1 or n == 2:

result = 1

else:

result = decorated_fibonacci(n-1) \

+ decorated_fibonacci(n-2)

return result

sage: decorated_fibonacci(100)

354224848179261915075

Notice that we obtained the same result as with our home-grown cache.

Turning recursion into a loop. Another way to avoid wasting computations is to reformu-
late the recursion as a loop. Let bmat count the pairs of mature bunnies, let btot count the total
pairs of bunnies, and let bnext count the pairs of bunnies we can expect next season. Since the
bunnies are immortal, bnext will count all btot of the bunnies we have now, but since each mature
pair produces a new pair, bnext must also count all bmat mature pairs twice to account for next
season’s new pairs. So

bnext = btot+ bmat.

Once the next season comes, btot will be the number of mature bunnies that are now producing
pairs, while bnext will be the new bunny total, so we could replace bmat by btot and btot by fnext to
compute the following season’s total. And so forth. Since we know the first two season’s values
already, we never need to count those. Keeping in mind that n = 1 is the first season and n = 2
the second, we need the loop to calculate btot for n = 3, n = 4, . . . That suggests the following
pseudocode.

algorithm immortal_bunnies
inputs

• n ∈N, the number of seasons
outputs

• the number of “immortal” bunnies after n seasons
do

let bmat = btot = 1
repeat n− 2 times

let bnext = btot+ bmat
let bmat = btot
let btot = bnext

return btot

To translate this to Sage code, keep in mind that xrange() does not iterate on the last value, so we
need its limit to be n-1. It is also more “natural” in Sage to start counting at n = 0, so the loop
will differ slightly from the pseudocode:

ALTERNATIVES TO RECURSION 203

sage: def immortal_bunnies(n):

b_mat = b_tot = 1

bottom-up loop

for each in xrange(n-1):

b_next = b_tot + b_mat

b_mat, b_tot = b_tot, b_next

return b_tot

sage: [immortal_bunnies(i) for i in xrange(2,10)]

[2, 3, 5, 8, 13, 21, 34, 55]

Unlike caching, Sage does not provide an automatic method that turns a recursive function
into a looped function. Doing this is something we have to work out on our own, reasoning
from the logic of the problem. As is considered an advanced topic in computer science, we do
not dwell on it further. The interested reader can find further information in computer science
texts that discuss “dynamic programming.” 90

Eigenvalues and eigenvectors resolve a bunny dilemma. You may not be familiar with
eigenvalues and eigenvectors, even if you’ve seen them in a class. We conclude this chapter with
an illustration of how immensely useful they can be.

As you have probably noticed, even the non-recursive implementations of the Fibonacci se-
quence rely on its recursive description, whose recursive nature requires us to know some previ-
ous values. It would be nice to have a formula that didn’t depend on previous values, at least not
explicitly. Such a formula is called a closed form of a sequence.

Another way to describe this is as a matrix equation. The matrices
�

Fcurr

Fprev

�

and

�

Fnext

Fcurr

�

represent the information we need both this season and next season to compute the following
season’s bunnies. Now, the sum of the numbers in the first matrix gives us the top element of
the second matrix, while the top number of the first matrix gives us the bottom number of the
second. We can describe this relationship using a matrix equation:

�

1 1
1 0

��

Fcurr

Fprev

�

=
�

Fnext

Fcurr

�

.

What’s more, multiplying by powers of the matrix

M =
�

1 1
1 0

�

90The inventor of dynamic programming once said that he invented the term because his company
answered to a man who harbored “a pathological fear and hatred of the word research. ...You can imagine
how he felt, then, about the term mathematical.” Using a term like “dynamic programming” helped him
steer clear of his supervisor’s wrath. He added, “I thought dynamic programming was a good name. . . not
even a Congressman could object to.”

https://en.wikipedia.org/wiki/Dynamic_programming#History
https://en.wikipedia.org/wiki/Dynamic_programming#History

ALTERNATIVES TO RECURSION 204

ratchets the numbers higher up the list. To wit,
�

1 1
1 0

�5�
1
1

�

=
�

13
8

�

,

which you will recognize as the 4th and 5th numbers in the list our program produced, which
are F6 and F7, by which we mean the number of bunnies in the 6th and 7th seasons. In general,

�

1 1
1 0

�n−2�
1
1

�

=
�

Fn

Fn−1

�

,

since after all
�

1 1
1 0

�1�
1
1

�

=
�

2
1

�

,

�

1 1
1 0

�2�
1
1

�

=
�

1 1
1 0

�1�
2
1

�

=
�

3
2

�

,

and so forth.
If we can find a simple formula for powers of the matrix, we should be able to use it to find

our desired closed form. As it happens, a very convenient result from linear algebra comes in
handy here. An eigenvector e of a matrix M over a ring R is a vector related to an eigenvalue
λ ∈ R such that

Me= λe;

that is, M changes the “length” of the vector. Eigenvectors and their eigenvalues have a number
of uses, one of which now comes to our aid.

EIGENDECOMPOSITION THEOREM.. Let M be an n × n matrix with linearly independent
eigenvectors e1, . . . , en and corresponding eigenvalues λ1, . . . , λn . We can rewrite M as QΛQ−1 where

Q = (e1|e2| · · · |en) and Λ=

λ1

λ2
. . .

λn

.

(The notation for Q means that the i th column of Q is the i th eigenvector of M .)

It’s easy to verify this in Sage for M . Let’s compute the eigenvectors first.

sage: evecs = M.eigenvectors_right()

sage: evecs

[(-0.618033988749895?, [(1, -1.618033988749895?)], 1),

(1.618033988749895?, [(1, 0.618033988749895?)], 1)]

What does all this mean? If you study the help text. . .

sage: M.eigenvectors_right?

ALTERNATIVES TO RECURSION 205

. . . you will see that the list holds one tuple per eigenvector, and the tuple itself contains the
eigenvalue, the eigenvector, and the eigenvector’s multiplicity.

For our purposes, the eigenvalues and eigenvectors suffice. It is relatively easy to extract them,
but

• we want exact values, not approximate ones, and
• what do those question marks mean, anyway?

It may surprise you to learn that the question marks do not indicate uncertainty. They indicate
that the numbers lie in a special field called the field of algebraic numbers. Sage denotes this field
with the symbol AA.

sage: a, b = evecs[0][0], evecs[1][0]

sage: type(a)

<class ’sage.rings.qqbar.AlgebraicNumber’>

The algebraic numbers are the smallest field containing all the roots of polynomials with integer
coefficients, so we can always find a “nice-looking” polynomial that has them as a root. In ad-
dition, can often rewrite them as an expression in radicals. The following methods to algebraic
numbers perform these tasks:

a.minpoly() returns the polynomial of smallest degree that
has a as a root

a.radical_expression() returns a radical expression equivalent to a

You can find many more methods in the usual manner, by typing the name of a variable whose
value is an algebraic number, following it with a period, then pressing the Tab key.

For now, let’s try these on our present eigenvector.

sage: a.minpoly()

x^2 - x - 1

sage: a.radical_expression()

-1/2*sqrt(5) + 1/2

sage: b.minpoly()

x^2 - x - 1

sage: b.radical_expression()

1/2*sqrt(5) + 1/2

Both numbers have the same minimal polynomial,91 but their radical expressions are different.
They aren’t that different, though; we’ll call them92

ψ=
1−
p

5
2

and ϕ =
1+
p

5
2

.

91This makes sense if you have studied this. If you haven’t, watch for a linear algebra class coming soon to a
semester near you!

92Some trivia. Since ϕ is a root of x2− x−1, we know that ϕ2−ϕ−1= 0, so ϕ2 = ϕ+1, or ϕ = ϕ+1/ϕ = 1+1/ϕ,
or 1/ϕ= ϕ− 1. Notice that ψ= 1−ϕ, so −ψ and ϕ are actually reciprocals.

ALTERNATIVES TO RECURSION 206

The second one in particular is wildly famous, as it is the golden ratio. It appears in many
different places in mathematics, and arguably in many “real world” situations. Our Fibonacci
bunnies may not seem an especially compelling “real world” situation, but this number suggests
that the numbers may show up in “real world” situations, and indeed they do.

We return to our main problem, that of finding a closed form for the Fibonacci sequence.
We first wanted to verify the Eigendecomposition Theorem. To build the matrices Q and Λ, we
extract the data from evecs using the bracket operator [], then build the matrices using compre-
hensions. Make sure you understand how we build these matrices.

sage: Q = matrix([e[1][0] for e in evecs]).transpose()

sage: L = diagonal_matrix([e[0] for e in E])

sage: M == Q*L*Q.inverse()

True

So the theorem works. How is it useful to our aim? Remember that

M n−2

�

1
1

�

=
�

Fn

Fn−1

�

.

By substitution, this becomes

M n−2 =
�

QΛQ−1�n−2 =
�

QΛQ−1� �QΛQ−1� · · ·
�

QΛQ−1�

︸ ︷︷ ︸

n−2 times

.

The associative properties allows us to rewrite this as

M n−2 = (QΛ)
�

Q−1Q
�

Λ
�

Q−1Q
�

· · ·
�

Q−1Q
� �

ΛQ−1� .

This simplifies to

M n−2 =QΛn−1Q−1.

What’s more, it is “easy” to show that for a diagonal matrix like Λ

Λk =

λ1

λ2
. . .

λn

k

=

λk
1

λk
2

. . .

λk
n

,

so we can write Λk in a simpler form.

sage: Lk = diagonal_matrix([L[i,i]^n for i in xrange(L.nrows())])

TypeError: no canonical coercion from Symbolic Ring to Rational

Field

Well, that’s odd. What about handing it a radical expression first?

http://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Fibonacci_number#In_nature

EXERCISES 207

sage: Lk = diagonal_matrix([L[i,i].radical_expression()^(n-2) \

for i in xrange(L.nrows())])

sage: Lk

[(-1/2*sqrt(5) + 1/2)^(n-2) 0]

[0 (1/2*sqrt(5) + 1/2)^(n-2)]

That worked. Sage seems to want a radical expression to proceed; we can adapt to that with Q,
as well.

sage: Q = matrix([[Q[0,0].radical_expression(), \

Q[0,1].radical_expression()], \

[Q[1,0].radical_expression(), \

Q[1,1].radical_expression()] \

])

sage: Q

[1 1]

[-1/2*sqrt(5) - 1/2 1/2*sqrt(5) - 1/2]

We can now compute QΛkQ−1 directly.

sage: Q*Lk*Q.inverse()*matrix([[1],[1]])

[1/20*sqrt(5)*(1/2*sqrt(5) + ...

. . .well, it’s a bit of a mess. In fact, all we care about is the top element, and we’d prefer to have it
fully simplified.

sage: (Q*Lk*Q.inverse()*matrix([[1],[1]]))[0,0].full_simplify()

1/5*sqrt(5)*((1/2*sqrt(5) + 1/2)^n - (-1/2*sqrt(5) + 1/2)^n)

Well, that’s convenient! This is
1
5

p
5
��

1
2

p
5+

1
2

�n

−
�

−1
2

p
5+

1
2

�n�

,

so with a slight rewrite we find that

Fn =
1
p

5
(ϕn −ψn) ,

an awfully elegant closed form!

Exercises

True/False. If the statement is false, replace it with a true statement.
1. A recursive algorithm to a problem is one where the algorithm invokes itself on a smaller

case of the problem.
2. A recursive algorithm should try to exploit the well-ordering property of the integers (Z).
3. The rows of Pascal’s triangle appear in many places, such as in the expansion of trinomials.

EXERCISES 208

4. Because Pascal’s triangle has only one recursion, there is no danger of encountering a RuntimeError.
5. The growth of a population of bunnies is one of the fundamental properties of mathematics.
6. Every recursive statement can be solved using an easily-implemented function.
7. If a problem can be solved by recursion, then implementing it by recursion is the best ap-

proach.
8. A very deep recursion can indicate that something has gone awry, like an infinite loop.
9. You can get around the delay in computing the 40th Fibonacci number by buying a faster

computer.
10. A cache is a local variable that stores the function’s previous results.
11. Sage provides a @cached_function decorator that automatically caches a function’s previous

results.
12. You can sometimes turn a recursive function into a loop, thereby avoiding penalties associ-

ated with recursion.
13. As the golden ratio is unique to the Fibonacci numbers, they are of purely theoretical interest.
14. Eigendecomposition allows us to rewrite a matrix M in terms of other matrices that are them-

selves related to vectors that M rescales.
15. You can obtain a radical representation of an algebraic number using the .radical_simplify()

method.

Multiple choice.
1. The well-ordering property applies to which of these sets?

A. N
B. Z
C. Q
D. R

2. Pascal’s triangle is a good example of recursion because:
A. It has many applications.
B. Each row can be defined in terms of the previous row.
C. It is one of the fundamental problems of mathematics.
D. It makes an effective critique of Descartes’ philosophy of systematic doubt.93

3. The Fibonacci numbers are a good example of recursion because:
A. They have many applications.
B. Each number can be defined in terms of previous numbers.
C. They relate to one of the fundamental problems of mathematics.
D. If you can get a sequence of numbers named after you, you have to be right — you just

have to!
4. Which proof technique is essentially a kind of recursion?

A. contradiction
B. contrapositive
C. induction
D. hypothesis testing

5. What happens in Sage if you accidentally program an infinite recursion?
A. the computer explodes
B. the program hangs
C. RuntimeError

93Gratuitous and irrelevant reference to modern philosophy included at no extra charge.

https://en.wikipedia.org/wiki/Mersenne_prime#History
https://en.wikipedia.org/wiki/Mersenne_prime#History

EXERCISES 209

D. RecursionError

6. Why is it actually a bad idea to implement the Fibonacci sequence with a naïve recursion?
A. A naïve implementation repeats the vast majority of its computations.
B. Except for base cases, every recursion doubles the number of computations needed.
C. The time required to compute the numbers grows about as fast as the numbers them-

selves.
D. All of the above.

7. Which of the following alternatives to recursion do you have to work out by analyzing the
algorithm, rather than using some combination of Sage commands or variables?
A. caching
B. finding a closed form
C. induction
D. looping

8. Which of the following best defines the ring of algebraic numbers?
A. AA

B. the set of all roots of polynomials with integer coefficients
C. the smallest field containing the roots of polynomials with integer coefficients
D. the smallest field containing all the irrational numbers

9. The best command or method to turn an algebraic number into an exact, but easy-to-read
numerical expression is:
A. .exactify()

B. .full_simplify()

C. .minpoly()

D. .radical_expression()

10. Which of the following best describes the meaning of an eigenvector?
A. a vector that is useful for finding closed forms of sequences
B. a vector that the matrix rescales, but leaves in the same direction
C. a vector that is linearly independent of other eigenvectors
D. a vector that can be used to decompose a matrix into a computationally useful form

Bonus. Given the recursive definition of a sequence of mathematical bunnies, the best way to find
a “closed form” to describe the sequence is to
A. acquire dogs
B. box them up
C. fence them in
D. dress them up
E. Enclose them in spacesuits, like Glenda:94

Short answer.

94Downloaded from Bell Labs’ Plan 9 website and used with permission (we think — the wording’s a tad vague).

http://plan9.bell-labs.com/plan9/glenda.html

EXERCISES 210

1. Why would pascals_row not have such trouble with recursion that the Fibonacci sequence did?
That is, what difference in the pseudocode (and, therefore, the Sage code) makes pascals_row
more amenable to recursion than the Fibonacci sequence?

2. Would a cache be as useful for pascals_row as it was for the Fibonacci sequence? Why or why
not?

3. Back on p. 76 we asked you to plot x, x2, log10 x, and e x and rank them in order from largest
to smallest. Recreate this graph on the interval [1,15], adding to it a curve whose points are
defined by the Fibonacci numbers from 1 to 15. Again, rank these functions according to
which grows fastest. Hint: Recall that the line() function graphs a “curve” defined by a finite
set of points. You may need to adjust ymax in order to view the plot well.

Programming.

1. Suppose y = x mq , where x does not divide q . For example, if y = 12 and x = 2, then we have
m = 2. We call m the multiplicity of x, and can compute it the using the following recursive
algorithm:

algorithm multiplicity
inputs

• x and y, two objects such that “x divides y” makes sense
outputs

• the number of times x divides y
do

if x does not divide y
result = 0

else
result = 1 +multiplicity(y/x)

return result

(a) Implement this as a Sage program. Check that it gives the correct results for the following:
(i) y = 12, x = 2
(ii) y = 12, x = 3
(iii) y = t , x = t 4+ t 2

(b) It is possible to solve this problem non-recursively, using a while loop. Write pseudocode
for such an algorithm, then implement it in Sage. Test your program on the same exam-
ples.

2. Rewrite pascals_row so that it uses a manual cache. Do not use Sage’s @cached_function capa-
bility; rather, use a list where the i th entry is also a list: the i th row of Pascal’s triangle.

3. We can count how complicated a function’s recursion is with a global variable called invocations.
We add two lines at the beginning of the recursive function that declare invocations to be
global and then add 1 to it. For instance, we could do this with funny_bunnies() as follows:

EXERCISES 211

sage: def funny_bunnies(n):

global invocations

invocations = invocations + 1

if n == 1 or n == 2:

result = 1

else:

result = funny_bunnies(n-1) + funny_bunnies(n-2)

return result

Now, every time we run it, we first set invocations to 0, then run the program, then print
invocations. For example:

sage: invocations = 0

sage: funny_bunnies(7)

13

sage: invocations

25

(This is not the same as the number of recursions.)
(a) Do this for the values n = 7, 8, 9, 10, and 11. Would you say that this sequence behaves

like the Fibonacci numbers, much as we saw with the number of recursions? If so, find a
recursive formula to describe the pattern in the numbers. If not, how would you describe
it?

(b) Modify the pascals_row program to compute the number of invocations, then run it for
a few values of n. Is the number of invocations in this case Fibonacci-like? If so, find a
recursive formula to describe the pattern in the numbers. If not, how would you describe
it?

4. John von Neumann showed that it is possible to represent every natural number in terms of
the symbols {} and ;:

0↔;
1↔{;}
2↔{;,{;}}
3↔{;,{;} ,{{;,{;}}}}

...

n↔{n− 1,{n− 1}}

As you can see from the last line especially, this is a recursive definition:

n = (n− 1)∪{n− 1} .

Implement this as Sage code.
Hint: This is not hard, but you have to be careful. First, the recursive nature of the algorithm
means the function must return a frozen set. To create a frozen set R that contains another
frozen set S, as well as other elements, first create R as a mutable set (R = set()), add S to it, add

EXERCISES 212

the other elements (using .add(), .update(), and so forth as appropriate), and finally convert
R to a frozen set.

5. Suppose you have a set of n objects, and you want to list its m-element subsets (that is, its
subsets with exactly m elements).95 The following algorithm would accomplish this for you:

algorithm combinations
inputs

• S, a set of n objects
• m, the number of objects you’d like to pick from S, with m ≤ n

outputs
• the subsets of S of size n

do
if |S |= m

let result = {S}
else

let result = ;
for s ∈ S

let U = S\s
add combinations(U, m) to result

return result

(a) Implement this as a Sage program.
Hint: This is not hard, but you have to be careful. First, the recursive nature of the algo-
rithm means result must be a frozen set. However, creating a frozen set that contains a set
S doesn’t work if you use frozenset(S), because that creates a frozen set whose elements
are the elements of S, in essence converting S from a mutable set to a frozen set, rather
than making a frozen set whose one element is S. To create a frozen set whose element is
another set, first create a mutable set, add a frozen set to it, then convert the mutable set
to a frozen set. Essentially, the one line of the first case of the pseudocode turns into three
lines of Sage code.

(b) Let S = {1,2,3,4,5,6,7,8} and evaluate the size of combinations(S, i) for each i = 0, . . . , 8.
The resulting sizes appear earlier in the text. Where?

(c) Do you think this is a freak accident, or does it hold in general? What makes you say this?

95This may seem like the sort of question only the purest of pure mathematicians would care about, but it’s
actually related to the reason you never seem to buy a winning ticket for PowerBall.

Making your pictures 3-dimensional

This chapter takes a look at the three-dimensional objects and graphs that you might use.
Many of the commands from two dimensions have a 3D extension, with some options car-

rying over as well. As before, we will not illustrate every option, expecting that options may
change in future versions of Sage.

Combining graphs is again done through addition, and the show() command also applies to
3D plots. For 3d plots, the show() command adds an option that allows you to select a “viewer”
or “renderer”:

• When using show() as a command, such as show(p, ...), use the renderer option to se-
lect one of ’webgl’ (fastest), ’canvas’ (may work better with transparency), or ’tachyon’.
This latter option gives a static image, whereas ’webgl’ and ’canvas’ are interactive.
• When using show() as a method, such as p.show(...), use the viewer option to select

one of ’jmol’ (requires Java), ’java3d’ (also requires Java), ’canvas3d’ (browser only,
uses JavaScript), and again tachyon’. Again, all but the last are interactive.

What do we mean by “interactive”? The new feature of 3D plots is that the graphs can manip-
ulated–you can change the point of view! You’ll do this by clicking to make it active and then
clicking and dragging to change the viewing angle. You can also zoom by scrolling. Other view-
ing options are available through a menu accessible by right-clicking; we’ll let you explore those.

3D objects

“Straight” stuff. Many of the 2D graphing functions that we studied previously have a cor-
responding function in 3 dimensions: point(), line(), arrow(), polygon(). Since all of these
require one or more points, Sage will recognize that the points are given in 3D and will graph
them appropriately. Many options carry over.

If we give the point() command one or more triples (rather than pairs). Lines are again
graphed with the line() command. In 3D, the line() command has an arrow_head option; if set
to True, the arrow head is only shown at the last point.

sage: pts = ((-2,1,3),(4,2,-1),(2,-3,1))

sage: p1 = point(pts,color=’red’,size=20)

sage: p2 = line(pts,color=’blue’,thickness=7,arrow_head=True)

sage: p1+p2

213

3D OBJECTS 214

Polygons are graphed in 3D as in 2D with the polygon() command, which requires a collec-
tion of points. The only options available in 3D are color and opacity. Here is a triangle:

sage: polygon([(1,0,2),(3,1,5),(4,2,1)],color=’orange’)

“Curvy” stuff. The circle function can also produce circles in 3 dimensions, again needing
a center point and a size. Circles graphed with the circle() command will be placed parallel to
the xy-plane; if you want other orientations, you’ll need to use other methods described later.
There are no edgecolor or facecolor options for circles in 3D. As in 2D, if you want a disk, set
the fill option to True.

sage: circle((2,1,3),4,thickness=10)

In 3D, the set of all points equidistant from a particular point is a sphere. We can graph
spheres using the sphere() command, which requires a center and a radius (size).

BASIC 3D PLOTS 215

sage: sphere(center=(1,2,.5),size=3)

Basic 3D plots

If you have taken multivariable calculus, didn’t you wish your handheld calculator could
have graphed those surfaces? Thankfully, Sage can! Many of the 2D graphing functions that we
studied earlier have a corresponding function in 3 dimensions. There are several ways to represent
3-dimensional relations:

• Cartesian coordinates with either
– z as a function of x and y;
– an implicit equation in terms of x, y, and z, but not necessarily a function;
– with x, y, and z in terms of a third variable t , a parameter;
– with x, y, and z in terms of two other parameters u and v;

• spherical coordinates; and
• cylindrical coordinates.

Generic Cartesian plots. The most familiar three-dimensional relation defines the value of
one variable (often z) in terms of two others (typically x and y). Unlike the 2D plot() command,
the plot3d() command has no option to detect poles and show asymptotes.

In the next few examples, we graph f (x, y) = −x/1+x2+y2 with two different styles of plots and
with various options.

sage: f(x,y) = -x/(1+x^2+y^2)

sage: plot3d(f(x,y), (x,-3,3), (y,-3,3), opacity=.8)

Setting the mesh option to True produces graphs with an xy-grid on the surface, like those in
many textbooks:

BASIC 3D PLOTS 216

sage: plot3d(f(x,y), (x,-3,3), (y,-3,3), opacity=.8, \

color=’lightblue’,mesh=True)

When part of the 3D graph is obscured, it may be easier to view the same surface using a “con-
tour plot.” Think of this plot as an aerial view of the graph, with points in the same color having
z-values within the same range, as shown on the color bar to the right. With the ’Spectral’ color
map used below, the lowest points are in red, and the highest points are in blue. The contour
levels (the z-value increments shown on the color bar) were determined automatically, but they
may be specified using a list for the contours option.

sage: contour_plot(f(x,y),(x,-3,3),(y,-3,3), cmap=’Spectral’, \

colorbar=True)

The boundaries between color regions are called “level curves,” meaning that f (x, y) = k for
some constant k. If you prefer, to see just the level curves, use the option fill=False. (You will
notice that many textbook authors use this option.)

sage: var(’y’)

sage: contour_plot(f(x,y), (x,-3,3), (y,-3,3), \

cmap=’Spectral’, fill=False, colorbar=True)

BASIC 3D PLOTS 217

Tangent planes: combining 3D plots. Let’s graph a function f (x, y) and the plane tangent to
f (x, y) at a point P0 = (x0, y0, z0). Recall that the tangent plane depends on the first partial deriva-
tives of f at P0 and is given by

z = fx(x0, y0)(x − x0)+ fy(x0, y0)(y − y0)+ z0,

where fx and fyare the first partial derivatives. We can easily write a Sage function to compute the
tangent plane and graph both f (x, y) and the tangent plane over the rectangular region [a, b]×
[c , d]:

sage: def plot_f_tanplane(f,pt,a,b,c,d):

f(x,y)=f

x0,y0=pt

fx = diff(f,x)

fy = diff(f,y)

z0 = f(x0,y0)

tanplane = fx(x0,y0)*(x-x0) + fy(x0,y0)*(y-y0) + z0

p1 = plot3d(f,(x,a,b),(y,c,d))

p2 = plot3d(tanplane,(x,a,b),(y,c,d), \

color=’limegreen’,opacity=.6)

p3 = point((x0,y0,z0),color=’red’,size=30)

return p1 + p2 + p3

Now we can produce graphs of tangent planes for any function where the partial derivatives are
defined. For example,

sage: var(’y’)

sage: plot_f_tanplane(1-x^2-y^2,(1,-2),-3,3,-3,3)

BASIC 3D PLOTS 218

Parameterizations in 3D. Another way to plot three-dimensional objects is through param-
eterization. Curves are parameterized in a single variable, often called t . We saw earlier that the
circle() command always plots a 3D circle parallel to the xy-plane. With parameterization, we
can orient circles in other ways, for instance, parallel to the x z-plane:

sage: var(’t’)

sage: parametric_plot3d((1,cos(t),sin(t)),(t,0,2*pi),thickness=10)

The default number of points to plot is 75, but it is often necessary to use more points to
smooth out the graph. Here is a “toroidal spiral” which doesn’t look especially spirally.

sage: var(’t’)

sage: p = parametric_plot3d(((4+sin(25*t))*cos(t), \

(4+sin(25*t))*sin(t), cos(25*t)), (t,0,2*pi), \

color=’red’, thickness=10)

sage: show(p,aspect_ratio=1)

BASIC 3D PLOTS 219

The reason is that it needs about 200 points to make it smooth.

sage: var(’t’)

sage: p = parametric_plot3d(((4+sin(25*t))*cos(t), \

(4+sin(25*t))*sin(t), cos(25*t)), (t,0,2*pi), \

color=’red’, thickness=10, plot_points=200)

sage: show(p,aspect_ratio=1)

We can use the same parametric_plot3d() command to graph parametric surfaces. Defining
parametric surfaces requires two independent variables, often called u and v. For example, we can
graph the surface defined by x = u3, y = u sin(v), z = u cos(v) for −4 ≤ u ≤ 4 and 0 ≤ v ≤ 2π
in Sage:

sage: var(’u v’)

sage: parametric_plot3d((u^3,u*sin(v),u*cos(v)), \

(u,-4,4), (v,0,2*pi), opacity=.8)

BASIC 3D PLOTS 220

Cylindrical and spherical coordinates. Surfaces given in cylindrical or spherical coordi-
nate systems can be viewed as special kinds of parameterizations. From cylindrical coordinates
(r,θ, z), we convert to rectangular coordinates by x = r cosθ, y = r sinθ, and z = z. Below is
the surface r = sin(z), for 0≤ θ≤ 2π and 0≤ z ≤ 2π.

sage: var(’u v’)

sage: show(parametric_plot3d((sin(u)*cos(v),sin(u)*sin(v),u), \

(u,0,2*pi), (v,0,2*pi)), aspect_ratio=1)

An alternative method uses plot3d()with a cylindrical transformation. The Cylindrical() com-
mand, as used below, will view the radius as a function of azimuth (θ) and height (z).

sage: S=Cylindrical(’radius’, [’azimuth’, ’height’])

sage: var(’theta, z’)

sage: show(plot3d(sin(z), (theta,0,2*pi), (z,0,2*pi), \

transformation=S, color=’purple’), aspect_ratio=1)

Both methods produce the same graph.

BASIC 3D PLOTS 221

The conversion from spherical coordinates (ρ,θ,φ) to rectangular coordinates is given by x =
ρ sinφcosθ, y = ρ sinφ sinθ, and z = ρcosφ. The surface defined by ρ= 1+ 1

6 sin(5θ) sin(6φ)
for 0≤ θ ≤ 2π and for 0≤ φ≤ π is known as a “bumpy sphere” and would be graphed in Sage
by

sage: var(’theta phi’)

sage: rho = 1+(1/6)*sin(5*theta)*sin(6*phi)

sage: parametric_plot3d((rho*sin(phi)*cos(theta), \

rho*sin(phi)*sin(theta), rho*cos(phi)), \

(theta,0,2*pi), (phi,0,pi), plot_points=[200,200], \

color=’limegreen’)

Again, we can form the same graph using the plot3d() command and an appropriate trans-
formation. The transformation is given by the Spherical() command, viewing the radius as a
function of the azimuth (θ) and inclination (φ).

sage: T = Spherical(’radius’, [’azimuth’, ’inclination’])

sage: var(’phi theta’)

sage: plot3d(1+(1/6)*sin(5*theta)*sin(6*phi), (theta,0,2*pi), \

(phi,0,pi), transformation=T, plot_points=[200,200], \

color=’limegreen’)

ADVANCED TOOLS FOR 3D PLOTS 222

Advanced tools for 3d plots

Sage offers a number of tools that assist in the production of special kinds of 3d plots in
Cartesian, cylindrical, or spherical coordinates.

Surfaces of revolution. A special kind of surface is a surface of revolution. It is possible
to graph these through parameterizations, but it is certainly helpful that Sage has a function
especially for such graphs. Use revolution_plot3d() to graph these based on just the function,
the axis of revolution, and the interval. Recall that if we revolve a function f (x) about the x-axis,
its surface area is given by

S =
∫ b

a
2π f (x)

Æ

1+ f ′(x)2d x

If f (x) =
p

3x − 2,we can ask Sage to its surface area and visualize both the curve f (x) and the
3D surface.

sage: f(x) = sqrt(3*x-2)

sage: integral(2*pi*f(x)*sqrt(1+diff(f,x)**2), x, 0, 5)

1/18*pi*(61*sqrt(61) - 1)

sage: show(revolution_plot3d(f, (x,0,5), parallel_axis=’x’, \

show_curve=True, opacity=0.7), aspect_ratio=1)

ADVANCED TOOLS FOR 3D PLOTS 223

Implicit plots in 3D. As in 2D, the most convenient way to describe some surfaces is im-
plicitly. This time, the equations may involve one or more of the variables x, y, and z. With
the implicit_plot3d() command, we need to specify an equation, as well as the maximum and
minimum values for all three variables. In this example, the implicit_plot3d() command is used
to produce a hyperboloid of one sheet:

sage: var(’x y z’)

sage: implicit_plot3d(x^2/2+y^2/2-z^2/3==1, (x,-4,4), (y,-4,4), \

(z,-4,4), opacity=.7, plot_points=200)

After all this, aren’t you ready for a wild cherry snowball?96

96Wild cherry because wedding cake will not show up.

ADVANCED TOOLS FOR 3D PLOTS 224

sage: var(’z theta r phi’)

sage: bh=4 # z-coordinate for base of cup

sage: th=8 # z-coordinate for top of cup

sage: br=bh/(th-bh) # radius of base of cup

sage: tr=th/(th-bh) # radius of top of cup

sage: a = .1 #straw radius

sage: cupside=parametric_plot3d((z*cos(theta)/(th-bh), \

z*sin(theta)/(th-bh),z), (theta,0,2*pi), \

(z,bh,th), color=’aliceblue’)

sage: cupbase=parametric_plot3d((r*cos(theta), r*sin(theta), bh), \

(theta,0,2*pi), (r,0,br),color=’aliceblue’)

sage: snow=parametric_plot3d((tr*sin(theta)*cos(phi), \

tr*cos(theta)*cos(phi), tr*sin(phi)+th), \

(theta,0,2*pi), (phi,0,pi/2),color=’red’)

sage: straw = parametric_plot3d((a*cos(theta),a*sin(theta),z), \

(theta,0,2*pi),(z,bh+.01,th+2*tr))

sage: show(cupside+cupbase+snow+straw,aspect_ratio=1)

Vector fields. A vector field assigns to each point in the domain (either R2or R3) a 2- or 3-
dimensional vector. Two-dimensional vector fields can be graphed with plot_vector_field().
Three-dimensional vector fields can be graphed with the plot_vector_field3d() command. In
the example below, we graph the vector field F(x, y, z) =−2xyi− 3zj+ zk

sage: plot_vector_field3d((2*x*y,-3*z,z),(x,0,2),(y,0,2),(z,0,2))

ASCENDING A HILL 225

Ascending a hill

What is the quickest way up a hill? You should start by looking immediately around you, find
the steepest path possible, proceed a little way in that direction. Then repeat this process, reeval-
uating your course after you go some small distance. Continue in this fashion and eventually
you reach the top of the hill. You only have to look immediately around your current position
at any point along the way. This strategy describes an important mathematical technique called
“gradient ascent.”97

As you know, the peak of the hill would be called a local maximum. Exact methods may
be able to find the coordinates of the local maximum. When exact methods fail, the method of
gradient ascent will give an excellent approximation. Better than that, it also approximates the
path of steepest ascent.

How do we know which direction to proceed in? The gradient of a function f (x, y) is the
vector function∇ f defined by

∇ f (x, y) =
∂ f
∂ x
−→
i +

∂ f
∂ y
−→
j .

(Here,
−→
i and

−→
j represent the canonical basis vectors along the x- and y-axes.) When evaluated

at a point (x0, y0), the gradient gives a vector in the the direction of the maximum rate of change.
For example, if f (x, y) = −x/1+x2+y2 as before, we can plots its 2D gradient vector field. Each
vector points in the direction of steepest ascent from its tail point.

sage: var(’y’)

sage: f(x,y)=-x/(1+x^2+y^2)

sage: cp = contour_plot(f(x,y),(x,-3,3),(y,-3,3), \

cmap=’Spectral’, fill=False,colorbar=True)

sage: vf = plot_vector_field(f.gradient(),(x,-3,3),(y,-3,3))

sage: show(cp+vf)

97After going up the hill, you may want to go back down — or perhaps you never wanted to climb it in the first
place! In this case, you can use the method of gradient descent. Want to guess how that works?

ASCENDING A HILL 226

Back to our gradient ascent: If we compute the gradient at our starting point, take a small
step in that direction, we can repeat the process from that next point until we are at the top of
the hill. The small steps are just gradient vectors scaled down using a small value of ε. From any
point (xn, yn), we move to the next point

�

xn+1, yn+1

�

by the formula

�

xn+1, yn+1

�

= (xn, yn)+ ε∇F (xn, yn) .

Since each point depends only on the previous point, an implementation needs to remember only
the current position in order to compute the next one. Rather than use subscripts as above, we
can rewrite the formula more simply using q as the current point and p as the previous point:

q= p+ ε∇F (p)

How do we know when we’ve reached the top? Near the local maximum, the magnitude of
the gradient vector will be nearly zero. (This means the tangent plane will be nearly horizontal.)
When this short gradient vector is scaled down by ε, adding the vector ε∇F (p) to p will keep q
very close to p. So we can say that we have reached the local maximum when our steps become
very small, i.e., when the distance between points p and q is smaller than some desired accuracy.
Since we cannot predict the number of steps before starting, we use a while loop for the repetition.

We can take advantage of the nature of the condition in the while loop by starting p and q
appropriately.

ASCENDING A HILL 227

algorithm gradient_ascent
inputs

• f (x, y), a differentiable function given as an expression or function
in x and y
• p, the point (x0, y0)
• d , the desired number of decimal places of accuracy
• ε, the scaling factor of a step

outputs
• a list L of the points along the approximate path of steepest ascent

do
convert p to a vector
let L= (p)
let q = p
add
−→
i to p

repeat as long as p and q are farther apart than the desired accuracy:
let p= q
let q= p+ ε∇ f (p)
append q to the list

return the list

This translates to the following Sage code:

sage: def gradient_ascent(f,p,eps,d):

p = vector(p).n()

L = [p]

q = p

p = p + vector([1,0])

grad = f.gradient()

while round(norm(p-q), d) > 0:

p = q

q = p + eps*grad(x=p[0], y=p[1])

L.append(q)

return L

Let’s add a visualization of our steps along the path. If we have a path as a list of (x, y) points
output from the gradient ascent algorithm, then we can graph those points on the 3d plot with
an arrow toward the last point. In order to know the dimensions of the plot of f (x, y), we will
need the minimum and maximum x- and y-values from all points on the path. A helper function
to find these values is given here:

ASCENDING A HILL 228

sage: def xyminmax(L):

xvals = [pt[0] for pt in L]

yvals = [pt[1] for pt in L]

xmin = min(xvals)

xmax = max(xvals)

ymin = min(yvals)

ymax = max(yvals)

return xmin, xmax, ymin, ymax

In our visualization, we will include the 3D plot of f (x, y) and the line segments with an
arrowhead. We extend the graph of f (x, y) to include a bit more beyond the minimum and
maximum x- and y-values.

sage: def visual_gradient_ascent3d(f,p,eps,d):

L = gradient_ascent(f,p,eps,d)

xmin, xmax, ymin, ymax = xyminmax(L)

xrange = xmax - xmin

yrange = ymax - ymin

g = plot3d(f, (x, xmin - .1*xrange, xmax+.1*xrange), \

(y, ymin - .1*yrange, ymax+.1*yrange), opacity=.5)

g = g + line3d([(pt[0], pt[1], f(x=pt[0], y=pt[1])) \

for pt in L], color=’red’, arrow=True, size=30)

show(g)

q = L[-1]

return q, f(x=q[0], y=q[1])

Starting from (1,1) on g (x, y) = 1−x
1+x2+y2 , the algorithm finds that 25 steps are needed for 3

decimal places of accuracy with ε = .2. The maximum value is approximately z = 1.2071 at
(−0.4141,0.00069), and the path has this shape:

EXERCISES 229

Exercises

True/False. If the statement is false, replace it with a true statement.
1. Parametric curves and parametric surfaces can be graphed using the same Sage command.
2. Every 3D graphing function in Sage has a corresponding 2D function.
3. In 3D, graphs are combined by appending them.
4. Sage’s detect_poles=True option will detect the asymptote in f (x, y) = 3/x2+y2.
5. If you want to graph ρ = θ/φ for π/12 ≤ φ ≤ π and 0 ≤ θ ≤ 6π, the easiest way is with the

plot3d() command.
6. The surface r = z sin(2θ) for 0 ≤ z ≤ 1 and 0 ≤ θ ≤ 2π is the same as for 0 ≤ θ ≤ 8π, so

Sage’s graph of plot3d(z*sin(2*theta), (theta,0,2*pi), (z,0,2), transformation=C) is
the same as that of plot3d(z*sin(2*theta), (theta,0,8*pi), (z,0,2), transformation=C),
after letting C=Cylindrical(’radius’, [’azimuth’, ’height’]),

7. The best way to graph the paraboloid y = x2 + z2 is to isolate z by taking the square root,
plot the positive and negative branches separately using plot3d(), and combine them using
addition.

8. If you want to see the level curves of f (x, y), you use plot3d() with the mesh=True option.
9. The domain of∇ f (x, y) is a subset of R2.
10. If the function has no local maximum, the gradient ascent algorithm returns the initial point
(x0, y0).

Multiple choice.
1. Suppose pts is a list of 3D points. If you want to use those vertices to plot an unfilled, outlined

polygon in 3D, what should you do?
A. polygon(pts, fill=False)

B. polygon(pts, color=None, edgecolor=’green’)

C. line(pts+[pts[0]])

D. ask your instructor
2. How many parameters are needed to parametrically define 3-dimensional curves?

A. 1
B. 2
C. 3
D. 4

3. How many parameters are needed to parametrically define 3-dimensional surfaces?
A. 1
B. 2
C. 3
D. 4

4. Compare a gradient vector to the level curve from which it originates.
A. The gradient vector is always tangential to the level curve.
B. The gradient vector is always perpendicular to the level curve.
C. The gradient vector has no relationship to the level curve.
D. The gradient vector always has the same color as the level curve.

5. The error produced by plot3d(sin(x*y)/(x*y), (x,5,-5), (y,-3,3)) is due to
A. the function being undefined at the origin
B. misplaced parentheses
C. the region not being square

EXERCISES 230

D. the reversal of xmin and xmax

6. If you are graphing a 3D surface with plot3d(), how many pairs of min and max values do
you need to give?
A. 1
B. 2
C. 3
D. 4

7. If you are graphing a 3D surface with implicit_plot3d(), how many pairs of min and max
values do you need to give?
A. 1
B. 2
C. 3
D. 4

8. To modify the gradient ascent algorithm to do gradient descent, we should let
A. q=−p+ ε∇ f (p)
B. q= p+ ε∇ f (−p)
C. q=−p− ε∇ f (p)
D. q= p− ε∇ f (p)

9. The gradient ascent algorithm could be modified to find a local maximum of functions of
how many variables?
A. 1
B. 3
C. 4
D. All of these

10. Which of the following best describes the meaning of the gradient?
A. a number that tells you whether you are at a local maximum
B. a number that tells you whether to ascend or descend
C. a vector-valued function that can be evaluated to tell you which direction to go to stay at

the same level
D. a vector-valued function that can be evaluated to tell you which direction to go to ascend

most quickly

Short answer.

1. Are different colors necessary for visualizing a vector field or could you still understand the
vector field if all vectors were shown in the same color?

2. What can go wrong with the gradient descent algorithm? Explore with various functions and
initial points. How might you modify the code to avoid these issues?

3. Plot the ellipsoid 2x2+ y2+ z2 = 3 with each of
(a) plot3d()

(b) implicit_plot3d()

(c) revolution_plot3d()

(d) parametric_plot3d().
Which produces the best graph, even with more plotted points? What issues do you see with
the others?

Programming.

EXERCISES 231

1. Write a Sage function that would graph line segments with arrow heads on all segments. Make
sure it works for collections of 2D or 3D points.

2. Rewrite the gradient descent algorithm (without plotting) recursively.
3. Rewrite the graphical gradient descent algorithm to plot on the surface using contour_plot()

rather than plot3d(). Also, include the plot of the gradient vector field in the visualization.
4. Rewrite your code from problem 3 to show an animation on the contour plot, where each

frame of animation contains one more step than the previous frame.
5. Write a Sage function to visualize the region whose area is computed by a line integral with

respect to arc length
∫

C
f (x, y)d s in the case that the curve C parameterized by x(t) and y(t)

for a ≤ t ≤ b . The graph should be formed by combining
• the boundary in blue–including vertical lines from the xy-plane to f at x = a and x = b

as well as the curve C , plotted on the xy-plane and projected onto the surface f (x, y),
• the interior of the region, not shaded, but displayed using at least 50 vertical lines, showing

any positive area with black lines and any negative area with red lines, and
• the graph of f (x, y) in a half-transparent aliceblue color.

For example, with 80 vertical lines, visualize_line_int(x+y, (t,t^2), -1, 1) should pro-
duce a graph like the one below.

Advanced Techniques

This last chapter introduces two techniques that the serious Sage-user will find useful, and
probably necessary, from time to time.

Making your own objects

Sage includes a lot of mathematics. — No, that’s not right. Sage includes

A LOT
of mathematics. You will probably never, ever need to use anything that is not in Sage.

Still, some mathematicians sometimes work with a group of objects that Sage does not offer
immediately. If you’re studying combinatorial games, which are nothing short of awesome98

then Sage does not immediately offer a way to perform what is called Nimber arithmetic.99 This
section introduces Nimber arithmetic and shows how you can create your own type to enable Sage
to do Nimber arithmetic.

Background. The basic idea of Nimbers is born from a game named Nim, first described in
a mathematical journal early in the 20th century. The rules are simple:

• The game is played with pebbles arranged in rows.
• Each player may take as many pebbles as desired from one row.
• The last player to remove a pebble wins.

For instance, suppose David and Emmy decide to play a game of Nim with three rows of pebbles,
where the first row has seven pebbles, the second row has five, and the last row has three.

David goes first; suppose he takes four pebbles from the first row.

98Hackenbush, Nim, Chomp, Ideal Nim, Dots, Sprouts, . . . see [3] or [2] for more information than you can
shake a stick at.

99. . . as of the version being used by the authors at the time of this writing. There has been some discussion of
including the Combinatorial Game Suite, which would probably fix that in a jiffy, and offer even more than nimbers:
even surreal numbers.

232

http://www.cgsuite.org

MAKING YOUR OWN OBJECTS 233

This was not a very smart move on David’s part, as Emmy can take all the pebbles from the
second row and leave this configuration.

David now sees that whatever move he makes in one row, Emmy can “mirror” that move in the
other row. In other words, he has already lost.

Nimber arithmetic. The idea of Nimber arithmetic flows from this observation that, once
the game works itself down to two rows that are visually symmetric, the game is essentially over.
The arithmetic works like this:

• The smallest Nimber is 0, followed by 1, 2,
• Given a set S of Nimbers, the smallest Nimber not in S is called the minimum excludant,

or mex for short.
• To add two Nimbers, write each as a sum of powers of 2, cancel identical powers, then

simplify.
• Subtraction is equivalent to addition.
• To multiply two Nimbers m and n, find mex{i n+m j + i j : i < m, j < n}.

So, for example, addition works like so:

0+ x = x
1+ 1= 0
1+ 2= 3
2+ 2= 0
1+ 3= 1+(1+ 2) = 2
2+ 3= 2+(1+ 2) = 1
3+ 3= 0

MAKING YOUR OWN OBJECTS 234

while multiplication works like so:

2× 3=mex{0× 3+ 2× 0+ 0× 0,1× 3+ 2× 0+ 1× 0,0× 3+ 2× 1+ 0× 1,

1× 3+ 2× 1+ 1× 1,0× 3+ 2× 2+ 0× 2,1× 3+ 2× 2+ 1× 2}
=mex{0,3,2}
= 1.

This is burdensome to do by hand, so it’s a good idea to automate it in Sage.
We could, of course, write a sequence of functions that simply perform the operations di-

rectly, but it’s also possible to give Sage a way of dealing with the numbers automatically, and
using them in a natural way. For instance, if we create functions nim_add() and nim_mult(), then
to add and multiply a× b + c × d , we’d have to type

nim_add(nim_mult(a,b),nim_mult(c,d)) .
This is hard to understand. It is much more natural to type

a*b + c*d

and then, so long as Sage recognizes a, b, c, and d as Nimbers, it performs the arithmetic auto-
matically.

Do it with class! The way to get Sage to do this is with a class. A class describes an object’s
type to a computer, and tells the computer what methods can be sent to an object of this type.
Classes allow us to organize programs around data and the things we can do with that data, and
help to keep things in one place. In Sage, the data associated to a class, also called its attributes,
are accessed inside the class using the self constant, which we must write as the first argument
to each of the class’s methods.100 You will see this in a moment.

To create a class, use the class keyword:

sage: class ClassName:

#list of functions associated with this class

As the colon suggests, the functions associated with this class should be indented. When the in-
dentation stops, so does the class. Each class should have at least one method named .__init__(),
which tells Sage how to initialize an element of the class. This method is called a constructor,
and is called silently whenever we create a new object of a class.101 This new object is called an
instance of the class.

Initialization: What information is proper to the class? We will define a class named Nimber.
A nimber is just a number whose arithmetic works differently than normal, so we can simply
initialize it with a number, which really ought to be an integer, so we’ll test for that and raise an
exception if not. In addition, Nimber arithmetic is based on powers of 2, so it would be a good
idea to keep track of the nimber’s representations in terms of powers of 2; we might as well put
that into the initialization code. Our .__init__() method should, therefore, initialize two items
of data with the class Nimber:

• self.value, the integer associated with this value; and
100We don’t actually have to use the name self; we could use a if we wanted, or this or me, but self is the

convention Sage inherits from Python.
101It is also possible to call it again after we create a new object a by typing a.__init__(...), though this should

be done sparingly, if at all.

MAKING YOUR OWN OBJECTS 235

• self.powers, the powers of 2 that sum to self.value.

To figure out which powers of 2 sum to self.value, we will test whether the number is divisible
by 2, then divide by 2 to remove powers, keeping only the quotient. For instance,

• 11 is not divisible by 2, so 1 is a power of 2 that sums to 11. If we divide 11= 1+ 2+ 8
by 2, we now have 5= 0+ 1+ 4.
• 5 is not divisible by 2, so 1 is a power of 2 that sums to 5. We had divided by 2, so 1×2= 2

is a power of 2 that sums to 11. If we divide 5= 0+1+4 by 2, we now have 2= 0+0+2.
• 2 is divisible by 2, so 1 is not a power of 2 that sums to 2. We had divided by 2 twice,

so 1×22 = 4 is not a power of 2 that sums to 11. If we divide 0= 0+0+2 by 2, we now
have 1= 0+ 0+ 1.
• 1 is not divisible by 2, so 1 is a power of 2 that sums to 1. We had divided by 2 three

times, so 1× 23 = 8 is a power of 2 that sums to 11. If we divide 1 = 0+ 0+ 1 by 2, we
now have 0= 0+ 0+ 0.

Once we hit 0, we are done, so the powers of 2 that sum to 11 correspond to divisions that gave
us remainder 1: that is, 1, 2, and 8.

That suggests the following initialization code.

sage: class Nimber:

def __init__(self, n):

check for valid type

if type(n) != Integer and type(n) != int or n < 0:

raise ValueError, \

’Nimbers must be nonnegative integers’

self.value = n

self.powers = set()

find powers of 2 that add to n

i = 1

while n != 0:

if n % 2 == 1:

self.powers.add(i)

n = n // 2

i = i * 2

If you are working with a worksheet, go ahead and type this into one cell. Later we will add more
methods, and you should type those into the same cell. If you are working from the command
line, it is easiest to write this as a script and attach it; as you add more methods to the class and
save the modified file, Sage will automatically re-load it.

Once we type the above and execute or attach it to Sage, how do we create a Nimber instance?
We use the class name as if it were a function, whose arguments are appropriate to pass to its
__init__() method.

sage: a = Nimber(4)

sage: b = Nimber(1/2)

ValueError: Nimbers must be nonnegative integers

MAKING YOUR OWN OBJECTS 236

So far, so good. Let’s look at a a little more closely.

sage: a

<__main__.Nimber instance at 0x161c9e5a8>

That’s not very helpful output, is it?
Representations of an object. To give more useful output, you can add a .__repr__() method.

Probably the best thing to do is print self.value. Sage wants __repr__() to return a string value,
and you can convert self.value to a string using the str() command:

sage: class Nimber:

...

def __repr__(self):

return str(self.value)

(Don’t forget that you need the .__init__() definition in the space indicated by the ellipses.)
Now when initialize a nimber, we can print its value:

sage: a = Nimber(4)

sage: a

4

On the other hand, it could be useful to see which powers of 2 the class has found that sum to the
number. The methods __init__() and __repr__() are called “special method names,” but there
isn’t a special method name that’s appropriate for an alternate, more detailed representation of
an object. For this we can define a method with a name of our own devising; we will call it
.power_repr(), and it will simply return self.powers.102

sage: class Nimber:

...

def power_repr(self):

return self.powers

We can now see how this works:

sage: a = Nimber(28)

sage: a.power_repr()

{4, 8, 16}

So far, so good.

102There is no need to surround power_repr with underscores, as this is not a “special method.” The purpose of
the underscores is to make sure people don’t accidentally redefine a special method.

MAKING YOUR OWN OBJECTS 237

Implementing arithmetic. What we really need, though, is a way to automate the addition
and multiplication of Nimbers — preferably in a way that allows us to use ordinary arithmetic
operators. Again, Sage offers us special methods for this; we will use .__add__() and .__mul__() .
But how will we implement them?

For addition, it should be a simple matter of choosing the powers of 2 that are not replicated
in both nimbers’ powers. There is an easy way to do this: since we kept the set of powers that
add to the number, we can use the .symmetric_difference() method to a set. For example, the
nimbers 14= 2+ 4+ 8 and 20= 4+ 16 should add to 2+ 8+ 16= 26. Applying the symmetric
difference to the sets of powers of 2 gives us that result:

sage: {2, 4, 8}.symmetric_difference({4,16})

{2, 8, 16}

Addition, therefore, is relatively straightforward to implement: return the Nimber defined by sum
of the symmetric difference.

sage: class Nimber:

...

def __add__(self, b):

return Nimber(sum(\

self.powers.symmetric_difference(\

b.powers \

)))

Let’s test this on our example:

sage: Nimber(14) + Nimber(20)

26

Excellent!
Multiplication is a little tougher, for two reasons. First, recall the definition of nimber mul-

tiplication:

m× n =mex{i n+m j + i j : i < m, j < n} .

This requires us to compute the mex of a set with a lot of numbers that we have to generate.
Building the set is actually not that hard: we can use a list comprehension to take care of that.
However, Sage does not have a built-in mex function, so we need to define a function to compute
it. This should not be part of the Nimber class, because while the mex works on nimbers, it is not
a property of a nimber. We will implement it as a separate function.

How should we implement the mex function? We have to find the smallest nimber that is not
in the set, so why not start with i = 0, test to see if i is in the set, and increasing and repeating if
so? This approach will work:

MAKING YOUR OWN OBJECTS 238

sage: def mex(S):

i = 0

while Nimber(i) in S:

i = i + 1

return Nimber(i)

sage: mex([Nimber(0), Nimber(2), Nimber(4)])

sage: 1

sage: mex([Nimber(0), Nimber(1), Nimber(2)])

sage: 3

This new function allows us to define multiplication for our class. The definition is recursive;
that is, we first have to compute the products of smaller pairs. Our recursion needs base cases;
we might as well use 0 and 1, as the definition of nimber multiplication shows that 0× x = 0 and
1× x = x for every nimber x:

sage: class Nimber:

...

def __mul__(self, b):

if self.value == 0 or b.value == 0:

return Nimber(0)

elif self.value == 1:

return b

elif b.value == 1:

return self

else:

return mex({self*Nimber(j) + Nimber(i)*b \

+ Nimber(i)*Nimber(j) \

for i in xrange(self.value)

for j in xrange(b.value)})

If you actually try this, you may encounter the following error:

sage: a, b = Nimber(4), Nimber(2)

sage: a*b

TypeError: ’builtin_function_or_method’ object is not iterable

PANIC!
. . .well, no, don’t. Let’s think about what might cause this.

Were you to experiment a little more, you would find deeper problems:

sage: a, b = Nimber(2), Nimber(2)

sage: a*b

0

MAKING YOUR OWN OBJECTS 239

The answer ought to be 3.103 What’s going on here? The basic problem is that .__mul__() creates
a set of nimbers, then sends that to mex(), which tries to find a minimum element. There are two
problems with this approach:

• Sage has no way to tell if two Nimber’s are equal, so we encounter replication in the set.
• Sage has no way to tell if one Nimber is less than another, so it can only guess at the set’s

minimum excludant.

To see this directly,

sage: S = {Nimber(0), Nimber(1), Nimber(2), Nimber(1), Nimber(2)}

sage: S

{0, 1, 1, 2, 2}

sage: mex(S)

0

sage: Nimber(2) == Nimber(2)

False

The replication of elements serves as a hint that Sage cannot tell that they are equal.
Comparing Nimbers. We can fix this. We have the technology. We can also fix the problem

with mex, by adding special methods that teach Sage how to compare Nimbers. These are:

.__eq__(self , other) tests whether self and other are the same

.__ne__(self , other) tests whether self and other are different

.__lt__(self , other) tests whether self is less than other

.__le__(self , other) tests whether self is less than or equal to other

.__ge__(self , other) tests whether self is greater than or equal to other

.__gt__(self , other) tests whether self is greater than other

We have to define all six, but fortunately this isn’t too hard, as we can simply compare values.

1032 × 2 = mex{0× 2+ 2× 0+ 0× 0,1× 2+ 2× 0+ 1× 0,0× 2+ 2× 1+ 0× 1,1× 2+ 2× 1+ 1× 1} =
{0,2,1} = 3. If you’re wondering why the last element of the set isn’t 5, remember that nimber addition is self-
canceling, so 1× 2+ 2× 1= 0.

MAKING YOUR OWN OBJECTS 240

sage: class Nimber:

...

def __eq__(self, b):

return self.value == b.value

def __ne__(self, b):

return self.value != b.value

def __lt__(self, b):

return self.value < b.value

def __le__(self, b):

return self.value <= b.value

def __ge__(self, b):

return self.value >= b.value

def __gt__(self, b):

return self.value > b.value

This at least allows us to do the following:

sage: Nimber(2) == Nimber(2)

True

sage: Nimber(2) == Nimber(3)

False

Unfortunately, sets still won’t work:

sage: S = {Nimber(0), Nimber(1), Nimber(2), Nimber(1), Nimber(2)}

TypeError: unhashable instance

Ouch. What’s a “hashable instance?”
An object is hashable when you can associate an integer (of int type, not Integer type) to it

that Sage then uses to create sets and dictionaries. This integer is called a hash and should never
change, as changing it would make things weird in sets and dictionaries. That means the object
itself should never change. Both of these criteria apply to Nimbers, as we have not created any
methods that change its data, and the value of a Nimber is an integer that will not change. To
create this as its hash, we simply set it up as the .__hash__() method:

sage: class Nimber:

...

def __hash__(self):

return int(self.value)

. . . and now sets work great:

CYTHON 241

sage: S = {Nimber(0), Nimber(1), Nimber(2), Nimber(1), Nimber(2)}

sage: S

{0, 1, 2}

Now that we have sets of Nimbers working, we can finally multiply Nimbers. How about a Nimber
multiplication table?

sage: for i in xrange(10):

for j in xrange(10):

print Nimber(i) * Nimber(j)

print

You may not have much luck getting it to print more than a few lines. Why? Once we get
beyond a certain point, the recursion in multiplication makes it very, very slow. Sage has a
@cached_method decorator that should work like the @cached_function decorator, only for class
methods. However, it doesn’t work in this situation, because the cache is bound to each object,
and our loop is constantly creating new Nimbers. A better approach would be to create a global
cache; we leave this as an exercise to the reader.

Stuff we’ve left out. We’ve omitted a number of things that classes allow us to do, with
inheritance and overloading being two major topics.

The idea of inheritance is to avoid code duplication by automatically inheriting methods for
one type that legitimately apply to another type, as well. For instance, the set of nimbers forms
a field; so, if Nimber were to inherit Sage’s Field class, it would automatically acquire meth-
ods that are pre-defined for Field. The downside to this is that a field is a rather abstract ob-
ject, so while Field provides a lot of methods, it doesn’t implement most of them, but raises
NotImplementedError when you try to access them. This means you have to implement that
yourself, which isn’t always easy. (For instance: How do you find a nimber’s multiplicative in-
verse?)

The idea of overloading is that we can implement a function with different types. For instance,
you might want to multiply a Nimber by a regular integer, rather than allow multiplication by
Nimbers alone. In this case, you’d have to modify the __mul__() function to test its inputs. In other
cases, a method might take two arguments sometimes, and three arguments other times. This is
accomplished in Sage by providing default values for some arguments and checking argument
types.

Cython

Sage is built on Python, an interpreted language. We spoke of the difference between inter-
preted and other kinds of code on p. 13; essentially, interpreting code incurs a penalty to translate
lines over and over again.

In addition, Python relies on what is called “dynamic typing.” That means Python does not
know a variable’s type until it assigns a value to it. For instance, in the .__mul__() method for
Nimber, Sage does not know what type b has until it actually executes .__mul__(). This means
that Sage must frequently stop to check a variable’s type before executing an operation; after all,
it cannot evaluate the expression b.value on an object b that lacks an attribute named value.

CYTHON 242

The other major approach to typing used in programming is “static typing.” In this approach,
the programmer must declare every variable’s type of before the program is run. This can be a
hassle to the programmer, but it saves the computer the trouble of checking each time whether
it actually has to do this. That can lead to massive increases in speed.

Test case: the Method of Bisection. To see what a difference this can make, we re-present
our method_of_bisection() function from page 160 and discuss how to time it.

sage: def method_of_bisection(a, b, n, f, x=x):

c, d = a, b

f(x) = f

for i in xrange(n):

compute midpoint, then compare

e = (c + d)/2

if (f(c) > 0 and f(e) > 0) or (f(c) < 0 and f(e) < 0)

c = e

elif f(e) == 0:

c = d = e

break

else:

d = e

return (c, d)

Recall that a and b are endpoints, n is the number of times to run the loop, f is a function, and
x the indeterminate. To get an idea of how to time the code, we’ll use a special function called
%timeit. This function repeats a statement that follows it several times, and returns the fastest of
those times.

sage: %timeit method_of_bisection(1, 2, 40, x**2 - 2)

100 loops, best of 3: 17 ms per loop

(You may get a number different from 17 ms; this is okay, as it depends on a lot of things besides
the program: CPU speed, bus speed,) What happened? Sage ran the program in three sets of
100 loops, something akin to this:

sage: for i in xrange(3):

for j in xrange(100):

method_of_bisection(1, 2, 40, x**2 - 2)

For each of those three sets, it recorded how long it took to perform all 100 loops, obtaining
three timings. Finally, it reported the best of those three timings: 17 milliseconds. In short, one
execution of method_of_bisection() took roughly .17 milliseconds, or 170 microseconds.

To see what effect compiling can have, type the following, either into a Sage cell or into a
script to attach to the command line. (If you use a worksheet, type %cython on the first line. If
you use the command line, save the script with the suffix .spyx instead of .sage .) Don’t worry
about the changes just yet; we’ll explain them in a moment.

CYTHON 243

from sage.symbolic.ring import SR

from sage.symbolic.callable import \

CallableSymbolicExpressionRing

def method_of_bisection_cython(a, b, n, f, x=SR.var(’x’)):

c, d = a, b

f(x) = f

f = CallableSymbolicExpressionRing([x])(f)

for i in xrange(n):

compute midpoint, then compare

e = (c + d)/2

if (f(c) > 0 and f(e) > 0) or \

(f(c) < 0 and f(e) < 0):

c = e

elif f(e) == 0:

c = d = e

break

else:

d = e

return (c, d)

When you execute this cell or attach this script, Sage will pause a moment to compile the code.
If you typed something wrong, you are likely to see one or more errors listed. In that case, look
through this list carefully and try to fix the errors. Once it successfully compiles (you’ll know
because Sage reports no errors), you can time it just as you did before.

sage: %timeit method_of_bisection_cython(1, 2, 40, x**2 - 2)

100 loops, best of 3: 16 ms per loop

The code has sped up a bit: 16/17 ≈ 94.1% as long, or a speedup of roughly 5%. We don’t blame
you if this doesn’t impress you. It is possible to do better in some cases; the Cython website gives
one such example.

Before describing how we can improve this code, let’s explain a bit about the differences in
the Cython code from the original Sage code.

• Cython needs us to “import” objects that Sage ordinarily provides for free.
The statements that do this use the keywords from and import. We had to import the

symbolic ring SR and a curious new type called CallableSymbolicExpressionRing that
we’ll discuss a little further down.
• Cython needs us to declare our indeterminates — even x!

. . . and to declare our indeterminates, we need the var() command, which is itself
not available immediately to Cython; we have access it as a method to SR.
• Cython needs us to define mathematical functions in a different way.

When Sage reads anything you type in a worksheet, on the command line, or in a Sage
script, it rewrites some of it from the convenient form we use to a form more convenient
to its Python foundation. One example is the declaration of a function; as you might
guess from the code above, the declaration f(x) = ... is a convenient shorthand for f

http://docs.cython.org/src/quickstart/cythonize.html

CYTHON 244

= CallableSymbolicExpressionRing([x])(...). Another example is the “carat” opera-
tor ^; this has a completely different meaning in Python, which considers the “double-
product” operator ** the true exponentiation operator. This is the reason we have always
advised you to use the double-product for exponentiation, but if habit were to trip us up,
and we type a carat, Sage will silently accept it as exponentiation – unless it appears in a
Cython script.

These changes are therefore necessary to make the code compile as Cython.

We can fix this. We have the technology. Remember how we mentioned that a lot of time
is wasted on checking the type of an object. What if we assign a type to the items that are reused
the most? The code spends a lot of its time working on computing f(c) and f(e), so perhaps
we would do well to compute them once, then store their values. Let’s change the program as
follows:

from sage.symbolic.ring import SR

from sage.symbolic.callable import \

CallableSymbolicExpressionRing

def method_of_bisection_cython(a, b, n, f, x=SR.var(’x’)):

c, d = a, b

f(x) = f

f = CallableSymbolicExpressionRing([x])(f)

for i in xrange(n):

compute midpoint, then compare

e = (c + d)/2

fc, fe = f(c), f(e)

if (fc > 0 and fe > 0) or \

(fc < 0 and fe < 0):

c = e

elif fe == 0:

c = d = e

break

else:

d = e

return (c, d)

This gives us a noticeable improvement in performance.

sage: %timeit method_of_bisection_cython(1, 2, 40, x**2 - 2)

100 loops, best of 3: 11.6 ms per loop

That’s an improvement of a little more than 25% over the previous version, so we’re doing better.
But! — the thoughtful reader will complain — we could have pre-computed those values without

Cython, as well. What difference does that make? It makes a healthy difference indeed. We won’t
show the code here, but if you modify method_of_bisection() to pre-compute those values, we
see a timing along these lines:

CYTHON 245

sage: %timeit method_of_bisection(1, 2, 40, x**2 - 2)

100 loops, best of 3: 12.7 ms per loop

That’s still slower than the pre-computing Cython version, but it’s faster than the first Cython
version! Again, you may find such a mild improvement less than impressive.

Fair enough, but we still have one trick up our sleeve.

Assigning static types. As we mentioned earlier, Python is a dynamically-typed language.
Cython is more of a hybrid. As we saw above, you don’t have to type anything, but you can type
some things. You’re about to see that this can have a significant effect.

In addition to computing f(c) and f(e) only once, let’s try assigning a type to them. What
type should they have? Some of the usual options are

• int and long, which correspond to the exact Python types for “smaller” and “larger”
integers;
• float and double, which correspond to the exact Python types for “smaller” and “larger”

floating-point numbers;
• Integer and Rational, which correspond to the exact Sage types for integers and rational

numbers.

There are many, many other types, some of which are very useful in various circumstances. Re-
member that you can generally find the type of an object by asking sage: type(2/3), for instance,
will give us <type ’sage.rings.rational.Rational’>. Make a note of that, as we’ll return to it
in a moment.

If you look back to where we introduced the Method of Bisection, we mentioned that it is a
kind of “exact approximation,” in that it specifies an interval (so, approximation) on which the
root certainly lies (so, exact). You’ll remember that the Method of Bisection gives us fractions,
which more or less rules out int, long, and Integer. Should we use float, double, or Rational,
then? Any one of them will work, and the first two are much, much faster than the third, but
the authors have a fondness for exact numbers in all their long, complicated glory, so we’ll opt
for that.

Recall that the type() command told us a Rational is sage.rings.rational.Rational. Of
those four words, the first three tell us from where we import, and the last tells us what we import.
We’ll add a line to our import list that takes care of this:

from sage.rings.rational cimport Rational

If you look carefully, you’ll notice we used the cimport keyword instead of the import keyword
as we did with the other two. This is because we are importing a type implemented as a class in
another Cython script. You cannot import types implemented as classes in Sage or Python scripts.

Once we have that, we add a line at the beginning of the code that defines fc and fe as
Rational. We then have to coerce the computations f(c) and f(e) to Rational, because they
are by default a mere Expression. These are all the changes we have to make, so we can list the
modified code below:

CYTHON 246

from sage.symbolic.ring import SR

from sage.rings.rational cimport Rational

from sage.symbolic.callable import \

CallableSymbolicExpressionRing

def method_of_bisection_cython(a, b, n, f, x=SR.var(’x’)):

cdef Rational fc, fe

c, d = a, b

f = CallableSymbolicExpressionRing([x])(f)

for i in xrange(n):

compute midpoint, then compare

e = (c + d)/2

fc, fe = Rational(f(c)), Rational(f(e))

if (fc > 0 and fe > 0) or (fc < 0 and fe < 0):

c = e

elif fe == 0:

c = d = e

break

else:

d = e

return (c, d)

The timing on this code is remarkably faster:

sage: %timeit method_of_bisection_cython(1, 2, 40, x**2 - 2)

100 loops, best of 3: 6.27 ms per loop

That’s almost half as fast as it was before, and definitely half as fast as the fastest Python time
we’ve seen. Altogether the code now takes about one-third as long as the original.

What if we add this type information to the Python script? — oh, wait. We can’t.

A caveat. Adding type information for the remaining variables does not improve perfor-
mance in any measurable way and in some cases it actually slows the program down. (We checked
to be sure.) If you find it necessary to go down the route of writing Cython scripts, then opti-
mizing them by adding type information, you will want to learn about profiling your code to see
what is taking longest. We give only a few brief hints here.

Sage offers a profiling tool called prun(). It counts the number of times each function is
called, measures the amount of time Sage spends in each function, and guesses from there which
functions would be best to compute. This works with both ordinary Sage/Python functions as
well as with Cython functions.

When writing this chapter, we tried prun() on the original Cythonized method_of_bisection()

as follows:

sage: prun(method_of_bisection_cython(1, 2, 30, f))

EXERCISES 247

Sage ran the program and immediately provided output in the form of a table, with each column
indicating

• number of calls (ncalls);
• total time spent in the function (tottime);
• average amount of time spent in each call (first percall);
• cumulative total time spent in that function and all functions it calls (cumtime);
• average cumulative time spent in each call (second percall); and
• the location of the call.

When we first ran it, three of the first four lines indicated that Sage made

• 106 calls to the substitute method for sage.symbolic.expression.Expression objects;
• 107 calls to callable.py:343(_element_constructor_); and
• 106 calls to callable.py:448(_call_element_).

Without having seen those lines before, it wasn’t hard to guess that Sage was spending a lot of time
computing the value of a function at a point. This motivated us to try avoiding re-computation
of f(c) and f(e). When that was done, the number of calls to these three functions was cut by
more than a third, respectively to 60, 61, and 60 again.

With that out of the way, the hint that we needed to assign a type to something would be
useful is that there were 209 calls to{isinstance}. That, along with mysterious invocations of
functions in the file complex_interval_field.py, indicated that a lot of type checking was going
on, and in fact the final version of the program reports only one innovation of {ininstance}, and
no invocations from complex_interval_field.py .

Deciding which precise variables need type information remains something of an art form
with skills acquired by experience and trial-and-error, which is why we classify it, along with the
creation of classes, under “Advanced Techniques.” If you go far enough into the wondrous world
of mathematics, you may find yourself needing them one day.

Exercises

True/False. If the statement is false, replace it with a true statement.

1. Most people who work with Sage will, at some point, need to make their own mathematical
objects.

2. Combinatorial games are nothing short of awesome.
3. Nimber addition is self-canceling; that is, x + x = 0 for any nimber x.
4. Nimber multiplication makes use of the maximum element of a set of numbers.
5. One reason to encapsulate Nimbers in a class is to write the arithmetic operations in a more

convenient and natural format.
6. A class’s attributes are variables that include data that is proper to the class.
7. Modification of a class’s basic behaviors is subject to special methods: __init__(), __repr__(),

__eq__(), and so forth.
8. In Sage, a set automatically figures out when two objects of a class are equivalent.
9. A hash is a technical term for an object whose class is too complicated to add to a set.
10. The angry dragon of recursion flies into this chapter and sets at least one class method aflame.
11. Cython allows us to speed up Sage programs by both compiling and assigning static types.
12. Dynamic languages know every object’s type before the program is executed; static languages

remain agnostic until the value is assigned.

EXERCISES 248

13. We can only make use of Cython from the worksheet, by placing the %cython statement
before a block of code.

14. We can “Cythonize” Sage code without having to worry about modifying it.
15. We cannot import types implemented as classes in Cython scripts, only types that are native

to Sage like int and Rational.

Multiple Choice.
1. The methods used to initialize the data proper to a class are called:

A. attributors
B. constructors
C. initializers
D. makers

2. The correct term to refer to a variable whose type is of class C is:
A. an attribute of C.
B. a constructor for C.
C. a descendant of C.
D. an instance of C.

3. The value of mex{1,2,4,5,7,8,9} is:
A. 0
B. 3
C. 6
D. 9

4. In Nimber arithmetic, the value of 3+ 10 is:
A. 0
B. 2
C. 9
D. 13

5. Why is Nimber multiplication difficult to do by hand?
A. it requires recursion
B. it’s new and different
C. self-cancellation of addition
D. it isn’t difficult to do by hand

6. The proper way to create a new instance of a class named C, whose constructor takes an integer
argument which we want to be 2, is by typing:
A. a = C(2)

B. a = new C(2)

C. a = new(C, 2)

D. a = C.__init__(2)

7. The term for the specially-named methods Sage expects for certain “natural” behaviors of a
class are:
A. attribute methods
B. magic methods
C. special methods
D. dot methods

8. An object is hashable when we can associate it with a value of what type?
A. any well-ordered type
B. hash

EXERCISES 249

C. Integer

D. int

9. Which keyword allows us to assign a type to a variable in Cython?
A. cdef

B. def

C. type

D. no keyword; just place the type before the variable name
10. What keyword(s) do we use to access Sage objects and types defined in other Cython files?

A. access. . .from. . .
B. from. . .import. . .
C. #include

D. PANIC!

Short Answer.

1. Summarize why it can be useful to create a class for a new mathematical object, rather than
implementing operations as functions with the names my_object_add(), my_object_mul(), and
so forth.

2. Summarize the similarities and differences between attributes and instance variables.
3. While Cython compiles Python statements to true machine code, the result cannot be run

independently of a Python interpreter (like Sage). Do you think this makes Cython a truly
compiled language? Why or why not?

4. The Method of Bisection can be run with float types instead of Rational types. Do you think
this will make it faster or slower? Try it and discuss how the result compares with your guess.

Programming.

1. Another special method for a class is __nonzero__(), which allows Sage to decide whether an
instance of a class is, well, “nonzero.” Implement this method for Nimber, returning True if
and only if self.value==0.

2. It is somewhat more correct in Python that __repr__() should return a string with which you
could re-create the object; that is, the following sequence of commands should actually have
the given output, not just 2.

sage: a = Nimber(2)

sage: a

Nimber(2)

(a) Modify Nimber’s __repr__() method to return the “proper” string. Hint: You can join
strings by “adding”.

(b) Python recommends that the __str__() method be used to return an “informal,” “more
convenient,” or “concise” representation of the object. This value is returned whenever
we use the str() function. Add a __str__() method to the Nimber class that returns what
we originally wrote for __repr__(). Once you’re done with this problem, the class should
work as follows:

EXERCISES 250

sage: a = Nimber(2)

sage: a

Nimber(2)

sage: str(a)

2

3. We said that Nimber multiplication could be improved by using a cache variable. Modify your
Nimber class to introduce a global variable named cached_multiplications, which is initialized
as an empty dictionary. Then modify Nimber’s .__mul__() method to do the following:
• Let c=self.value and d=b.value .
• If c < d, swap the two.
• Try to assign to result the value associated with the key (c,d) in cached_multiplications.
• If this raises an error, catch it, perform the multiplication in the usual way, assign its value

to result, and record it in the dictionary.
• Finally, return result.

Now try to generate the multiplication table that took too long in the text.
4. It is not unreasonable to imagine that someone might want to instantiate a Nimber using a set of

powers of 2, saving us the trouble of having the computer figure it out. Modify the __iter__()
function so that it tests n’s type. If n is not a tuple, list or set, it proceeds as before; otherwise, it
converts n to a set, assigns that value to self.powers, then computes self.value. The correct
implementation should provide the following results (using our original implementation of
__repr__(), not the one assigned in a previous exercise):

sage: a = Nimber({1, 4})

sage: a

5

sage: a.power_repr()

{1, 4}

Bonus: Add a check that the collection contains only powers of 2, so that the input {1, 3}

would raise a ValueError.

Useful LATEX

Many places of this text use LATEX, and quite a few exercises and labs direct you to use it.
This chapter summarizes all the commands you should need for what we do in this text, plus
a few extra if you want to experiment. It will not serve as a general introduction to LATEX, for
which there are many, much more appropriate texts whose entire purpose is to expound on this
wonderful tool.

Basic commands

Figure 24 gives a handy list of LATEX commands. To use them in a string of text, you must
enclose in dollar signs, e.g. $x \in \mathbb{R}$. You can also use \(and \) as delimiters; for
example, \(x \in \mathbb{R}\).

Delimiters

If you have a complex expression, you might want the delimiters (parentheses, brackets, etc.)
to grow with it. You can see this in the difference between

(x x x x x . . .

) and

x x x x x . . .

 .

To do this, place the command \left or the command \right immediately before the delimiter.
Every \left must match a \right, but if you only want one, you can place a dot after the
other to indicate that you want nothing.

The second expression above comes from typing:

$\left(x^{x^{x^{x^{x^{\iddots}}}}} \right)$.

You could obtain the interval
�

2ln5,∞
�

by typing the following:

$\left[2^{\ln5},\infty\right)$.

That will looks better than $[2^{\ln5},\infty)$ (which gives [2ln5,∞)), because in the first
example the delimiters stretched to match the height of the objects involved.

Matrices

It’s best to set matrix expressions on separate lines; we can do this using the delimiters \[

(“begin math display”) and \] (“end math display”).
251

MATRICES 252

LATEX notation concept represented example in LATEX result
{. . .} grouping see below see below
^ superscript x^2 x2

\sqrt square root sqrt{x^2+1}
p

x2+ 1
_ subscript x_{\mathrm{next}} xnext

\in element of x\in S x ∈ S
\{. . .\} a set containing . . . \{1,5,7\} {1,5,7}

\frac{a}{b} fraction of a over b \frac{2}{5}
2
5

\alpha, \beta, etc. Greek letters 2\pi 2π
\infty infinity (-\infty,\infty) (−∞,∞)

\sin, \cos, etc.
properly formatted

\sin(\frac{pi}{6}) sin(π6)functions
\rightarrow,

arrows \lim_{x\rightarrow2} limx→2
\leftarrow, etc.

\sum, \int, \prod

sum, \int_a^b f(x)dx
∫ b

a
f (x)d x

integral, \lim_

lim
n→∞

n
∑

i=1

f (xi)∆x104{n\rightarrow\infty}

product \sum_{i=1}^n f(x_i)

\Delta x

\leq, \geq ≤, ≥ a\leq b a ≤ b
\notin, \neq /∈, 6= a\not\in S a /∈ S

\subset, \not\subset ⊂, 6⊂ S\not\subset T S 6⊂ T

\ldots, \cdots . . ., · · · \mathbb{N} N= {1,2, . . .}
=\{1,2,\ldots\}

\cap, \cup intersection, union S\cap(T\cup U) S ∩ (T ∪U)
\mathrm{. . .} don’t italicize . . . \mathrm{next} next

\mathbb{. . .}
write . . . in

\mathbb{R} R
“blackboard bold”

\mathbf{. . .}
write . . .

a\mathbf{F} aF
in bold font

\mathcal{. . .}
write . . . in

\mathcal{S} S
calligraphic font

FIGURE 24. Useful LATEX markup for Sage

MATRICES 253

Matrices require a LATEX environment, called an array. We start a matrix using the command
\begin{matrix}{format}, and end it using the command \end{matrix}. For the format, we indi-
cate whether you want the columns of the matrix aligned left (l), center (c), or right (r). We do
this for each column, as you will see below.

Finally, we specify the entries of the matrix. Columns are separated by the ampersand (&),
while rows are separated by a double backslash (\\).

For example, we can obtain the matrix

cos x2− 1 x
e2x

x + 1 sin x2− 1
1− x e−2x

x

by typing the following:

\[\left(\begin{array}{clccr}

\cos x^{2}-1 & & & & x\\

& e^{2x}\\

x+1 & & & \sin x^{2}-1\\

& 1-x & & & e^{-2x}\\

& & & x

\end{array}\right) \]

Part 2

Encyclopædia Laboratorica

Prerequisites for each lab

The labs in this part are organized according to the general field of mathematics to which
they most apply. Here we indicate which chapters of the text are required for a student to be able
to complete that lab according to the approach we had in mind. If the instructor has a different
approach in mind, the prerequisites might not be so firm.

Various kinds of plots: This lab requires just the chapters “Basic computations” and “Pretty
(and not-so-pretty) pictures.”

Continued fractions: This lab requires the chapter “Repeating yourself inductively.”
An important difference quotient: This lab requires just a few basic computations from

the chapter of that name.
Illustrating Calculus: This lab requires calculus, which appears in the chapter “Basic com-

putations,” and plotting, which appears in the chapter “Pretty (and not-so-pretty) pictures.”
Simpson’s Rule: This lab requires calculus, which appears in the chapter “Basic computa-

tions,” interactive worksheets, which appear at the end of the chapter “Writing your own func-
tions,” and for loops, which appears in the chapter “Repeating yourself with collections.”

The Runge-Kutta method: This lab requires calculus, which appears in the chapter “Ba-
sic computations,” and the most basic loops, which appear in the chapter “Repeating yourself
definitely with collections.”

Maclaurin coefficients: This lab requires calculus, which appears in the chapter “Basic com-
putations,” and for loops, which appears in the chapter “Repeating yourself with collections.”

p-series: This lab requires plots and definite loops.
Maxima and minima in 3d: This lab requires solving equations from the chapter of that

name, creating 3d plots from the chapter of that name, and dictionaries, which appear in the
chapter “Repeating yourself with collections.”

One-to-one functions: This lab requires dictionaries, which appear in the chapter “Repeating
yourself definitely with collections.”

The Set Game: This lab requires collections, which appear in the chapter “Repeating yourself
definitely with collections.”

The number of ways to select m elements from a set of n: This project requires the chapter
“Repeating yourself inductively.”

Properties of finite rings: This lab requires just a few basic computations from the chapter
of that name. It would be easier with for loops, which appear in “Repeating yourself definitely
with collections,” but the numbers are kept small enough so that it’s not strictly necessary (be
warned, though, that your students may hate you for assigning it before covering loops).

The geometry of radical roots: This lab requires just a few basic computations from the
chapter of that name. It would be easier with for loops, which appear in “Repeating yourself def-
initely with collections,” but the numbers are kept small enough so that it’s not strictly necessary.
(Unlike another lab, they shouldn’t hate you if you assign this lab before covering loops.)

255

PREREQUISITES FOR EACH LAB 256

Lucas sequences: This lab requires the section “Eigenvalues and eigenvectors resolve a bunny
dilemma” from the chapter “Repeating yourself inductively.”

Introduction to Group Theory: This lab requires the chapters “Repeating yourself defi-
nitely with collections” and “Decision-making.”

Coding theory and cryptography: Most of this lab can be done after “Repeating yourself
inductively,” but the bonus requires the section on Cython from “Advanced techniques.”

Continued fractions: This lab requires the chapters “Repeating yourself definitely with col-
lections” and “Decision-making.”

General mathematics

257

VARIOUS KINDS OF PLOTS 258

Various kinds of plots

1. Create a new worksheet. Set the title to, “Lab: Various kinds of plots”. Add other information
to identify you, as necessary.

Part 1: Implicit plots.
2. Select a problem according to the following schema.

If your ID ends with. use this equation.

1,2 x3+ x = y2

4,5
�

x2+ y2
�2 = 25

4 xy2

6,7 x4− x2y + y4 = 1
other weird: see me

3. First, use at least 300 points to create and display an implicit plot of the equation on the region
[−2.25,2.25]× [−2.25,2.25]. The curve can be any color you like, as long as it’s black.105

4. Choose an x-value in the interval [−2,2]. Using your math skills (not Sage’s, nor anyone else’s
— getting help from me is okay) find the equation of a line tangent to the curve at that point.
Write the equation of this line in a text cell. Use basic LATEX commands to make sure it looks
nice. Note: There may be more than one y-value for that x-value, so there may be more than
one line tangent to the curve for that value of x, but you need plot only one. Don’t pick a
point where the tangent line is horizontal or vertical; that would be cheating.

5. Verify your claim by combining the plot of the curve with a plot of the tangent line. The line
should be red. Put a red dot at the point where the line and curve intersect. Make the dot large
enough to stand out; I don’t think the default dot size stands out.

Part 2: Parametric plots.
6. Plot a black Bézier curve. Remember that this involves four control points (x0, y0), (x1, y1),
(x2, y2), (x3, y3) and the equations

¨

x (t) = x0 (1− t)3+ 3x1t (1− t)2+ 3x2t 2 (1− t)+ x3t 3

y (t) = y0 (1− t)3+ 3y1t (1− t)2+ 3y2t 2 (1− t)+ y3t 3

where t ∈ [0,1]. You can choose the four control points at random, but don’t use any you’ve
seen before. Feel free to make a loop, if you can. Add red dashed lines that connect the 1st and
2nd control points (x0, y0) and (x1, y1), and the 3rd and 4th control points (x2, y2) and (x3, y3),
allowing the viewer to see how the control points relate to tangent lines.

7. Use your graph to write a short description of the relationship between the control points and
the lines.

Part 3: Animate!
8. Animate the Bézier curve:

• Change the values of the 2nd and 3rd points 12 times. (Don’t change them by very much,
only a little, so the curve doesn’t jump around too abruptly.)
• For each change, create a new graph. Each graph should be identical to the one you created

in step 6, except that the 2nd and 3rd control points are different.
• Animate all the graphs using the animate() command, and show() it.

105That’s a joke, but make it black, anyway. No apologies to Henry Ford.

VARIOUS KINDS OF PLOTS 259

Part 4: Make it look good!
9. Add text cells throughout the document that clearly delineate the parts. It should be clear

where each part begins and ends. In Part 1, a text cell should state specifically what value of x
you chose; in Part 2, a text cell should state specifically what control points you used; in Part
3, a text cell should state clearly the sequence of adjustments made to the 2nd and 3rd control
points. You should also add some explanatory text before each plot: “This is the first plot, with
points. . . ”, “This is the second plot, with points. . . ”, . . . and finally “This is the animation of
all the frames.” Use LATEX for mathematical expressions and statements; don’t forget the
reference of useful LATEX commands on the class website.

Calculus and Differential Equations

260

AN IMPORTANT DIFFERENCE QUOTIENT 261

An important difference quotient

1. Create a new worksheet. Set the title to, “Lab: An important difference quotient”.
2. Create a text cell (shift+click on blue line). Write your name, and this semester. Change it to

some color. You can choose any color you like, as long as it’s not black. — Or white. White
would be bad, too.

3. In the first computational cell, use the var() command to define variables x and h.
4. In the next few computational cells, have Sage expand the product (x + h)n for several values

of n. The expand() command was shown in the notes, and you should pick several sequential
values of n.

5. In a text cell that follows these computational cells, make a conjecture as to what the last two
terms of (x + h)n will always be, and what common factor the remaining terms always have.

6. In Calculus, you are told that
• the definition of d

d x f (x) is

lim
h→0

f (x + h)− f (x)
h

,

• and d
d x xn = nxn−1.

In a final text cell, explain why your answers to steps 4 and 5 demonstrate this fact.

ILLUSTRATING CALCULUS 262

Illustrating Calculus

1. Create a new worksheet. Set the title to, “Lab: Illustrating Calculus”. Add other information
to identify you, as necessary.

2. Select a problem according to the following schema.

If your ID ends with. use this function. over this interval.

0,1,2 f (x) = sin x
�

−π
3 , 2π

3

�

3,4,5 f (x) = cos x
�

−π
3 , 2π

3

�

6,7,8,9 f (x) = tan x
�

−π
6 , π3

�

Part 1: Derivatives.
3. Find the equation of the line tangent to f at x = π/4. Any computation that can be done

with Sage should be evident in your worksheet!
4. Combine the plots of both f and the line tangent to it over the interval given. The curve for

f should be black, and have a width of 2. The line should be blue, and have a width of 2.
5. Create an animation with at least 8 frames that shows the approach of the secant line to the

tangent line as x → π/4 from the left. Reuse the plots of f and the tangent line from above.
The secant lines should be red, and have a width of 1. You are free to choose any points you
like for the secant, just so long as x→π/4 from the left. When you are done, your animation
should resemble the one on the course syllabus: for instance, the secant line should proceed
back and forth, not just in one direction.

Part 2: Exact integrals.
6. Compute the area between f and g (x) = 1− x2 over the interval given.
7. Combine the plots of both f and g over the interval given. Fill in the area between f and g .

The curves for both f and g should be black, with a width of 2. The filling can be any color
you like, but make it half-transparent. Add a text label inside the filling which contains the
area. Use LATEX so that the text label looks nice.

Part 3: Approximate integrals.
8. Go back to your Calculus text and review the calculation of arclength with integrals. Write

the formula, and in a text cell explain briefly what tool from high school geometry is used to
derive the formula.

9. Use Sage to approximate the arclength of the ellipse x2/4+y2/9= 1. Limit the approximation
to 5 sample points, and round your answer to 5 decimal places.

10. Repeat problem 9, this time limiting the approximation to 10 sample points. What part of
the answer indicates that you have a more accurate answer?

Part 4: BONUS! (for those with exceptional time and/or motivation). Animate approx-
imations of the arclength, where each frame shows

• no axes;
• the ellipse, in black, with the curve’s width 2;
• six frames of 5 dashed line segments, then 6 dashed line segments, . . . , and finally 10

dashed line segments, in red, of width 1;

ILLUSTRATING CALCULUS 263

• a text label in each frame with the corresponding approximation to the arclength, at the
center of the ellipse, in black.

This bonus is worth as much as the entire assignment. If you wish, you may do Part 4 instead of
Parts 1–3. Be sure you know what you are doing; this can take a while.

SIMPSON’S RULE 264

Simpson’s Rule

In Calculus II you should have learned Simpson’s rule to approximate the value of an integral
over an interval.
1. In a text cell,

(a) state the formula for Simpson’s Rule;
(b) briefly summarize the idea that gives rise to the formula.

2. Write a Sage function that accepts as inputs an integrable function f , the endpoints a and b of
an interval, and a positive integer n, then uses Simpson’s Rule to estimate

∫ b
a

f (x) dx.
3. Write Sage function that accepts as inputs an integrable function f , the endpoints a and b of

an interval, and a positive integer n, then illustrates Simpson’s Rule with a plot of both f and
the figures whose areas are used to estimate the value of the integral. Have the function invoke
the solution to the previous question, and print the area as a LATEX’d label somewhere on the
curve.

4. Make an interactive function for the solution to the previous question. In addition to accepting
f , a, b , and n as inputs, the interactive function should allow the user to select the color for
the figures used to estimate the value of the integral.

THE RUNGE-KUTTA METHOD 265

The Runge-Kutta method

The Runge-Kutta method of approximating the solution to a differential equation is similar to
Euler’s Method. The following pseudocode describes Runge-Kutta:

algorithm Runge_Kutta
inputs

• d f , the derivative of a function
• (x0, y0), initial values of x and y
• ∆x, step size
• n, number of steps to take

do
let a = x0, b = y0
repeat n times

let k1 = d f (a, b)
let k2 = d f (a+∆x/2, b +∆x/2 · k1)
let k3 = d f (a+∆x/2, b +∆x/2 · k2)
let k4 = d f (a+∆x, b +∆x · k3)
add ∆x/6 (k1+ 2k2+ 2k3+ k4) to b
add∆x to a

return (a, b)

Implement Runge-Kutta in Sage code. Try it on the same differential equation and initial
condition we tried in Euler’s method, and compare the result.

MACLAURIN COEFFICIENTS 266

Maclaurin coefficients

In Calculus III you should have learned about Maclaurin expansions. Maclaurin coefficients are
the numerical coefficients of the terms in the Maclaurin expansion.
1. Write a function maclaurin_coeffs() that accepts as inputs a function f and a positive integer

d. It returns a list of the Maclaurin coefficients of f (x) up to and including degree d . Hint:
You should probably use the Sage functions taylor() and coefficient().

2. Test your function with known elementary functions such as e x , sin x, and cos x. Verify that
your answers correspond to those that appear in a calculus textbook.

3. Use your function to find the Maclaurin coefficients of f (x) = arcsin2 (x) up to degree 20.
4. Look at the nonzero Maclaurin coefficients of f (x) for degree 6 and higher. What common

factor do you see in the numerators?
5. Using your answer to the previous problem, modify your invocation to

maclaurin_coeffs(arcsin(???)**2, 20)

so that all numerators are 1. Save this list as L1. Why does it make sense that you can do
this?

6. From L1, use a list comprehension to make L2, a list of the reciprocals of the nonzero coeffi-
cients.

7. What is the smallest nontrivial common factor of the elements of L2? Write another list com-
prehension to create L3, which contains the elements of L2, but divided by this common factor.

8. Look up this new list at the Online Encyclopedia of Integer Sequences. What number se-
quence do you find?

9. Work backwards through your last few steps to answer the original problem:

arcsin2 x =
∞
∑

k=1

??? .

(We haven’t proved that this is the correct series; we’ve only conjectured it based on a few
coefficients.)

http://www.oeis.org

p-SERIES 267

p-series

In the following, dxe denotes the ceiling of x, and bxc denotes the floor of x.
1. Write code to compute the sum

n
∑

k=1

1
k p

,

and use loops to generate lists of the first 50 sums, for p = 1,2,3.
2. Generate plots of these sums for p = 1,2,3 by plotting the step functions

sp(x) =
dxe
∑

k=1

1
k p

on the interval [1,50]. Using your plots, guess whether or not the p-series
∞
∑

k=1

1
k p

converges, for p = 1,2,3.
3. Generate plots of the sequences for p = 1,2,3 by plotting the functions

fp(x) =
1
bxcp

, gp(x) =
1

x p
, hp(x) =

1
dxep

together (using different colors) on the interval [1,10].
4. What do these plots suggest about

n
∑

k=2

1
k p

,
∫ n

1

1
x p

d x, and
n−1
∑

k=1

1
k p

,

and what do they suggest about
∞
∑

k=1

1
k p

and
∫ ∞

1

1
x p

d x ?

5. Using your answers to problem 4, determine whether or not

∞
∑

k=1

1
k p

converges, for p = 1,2,3.

MAXIMA AND MINIMA IN 3D 268

Maxima and Minima in 3D

1. Write a function named critical_points() which accepts as input a twice-differentiable func-
tion f in two variables x and y, and returns a list of points (xi , yi) that are critical points of f .
Make sure you find only real-valued critical points; you can use the imag_part() function to
test each point.

2. Write a second function, second_derivs_test(), which accepts as input a twice-differentiable
function f in two variables x and y, as well as a critical point (x, y), and returns one of the
following:
• ’max’ if the point is a maximum;
• ’min’ if the point is a minimum;
• ’saddle’ if the point is a saddle point; and
• ’inconclusive’ if the second derivative test is inconclusive.

3. Write a third funciton, plot_critical_points(), which accepts as input a twice-differentiable
function f in two variables x and y, and returns a 3-dimensional plot of the following:
• f (x, y) in the default color;
• local maxima in red;
• local minima in yellow;
• saddle points in green;
• other critical points in black.

Use a dictionary to look up the appropriate color for the points. Use Sage’s max() and min()

functions to determine the plot’s minimum and maximum x- and y-values to make sure that
all the critical points appear in the plot.

Linear Algebra

269

ALGEBRAIC AND GEOMETRIC PROPERTIES OF LINEAR SYSTEMS 270

Algebraic and geometric properties of linear systems

This lab requires linear algebra, which appears in the chapter “Solving equations.”

A system of equations.
1. Suppose your university ID is ab cd e f . For instance, if your ID is 123456, then a = 1, b = 2,

. . . , f = 6. Use that to define the following system of equations:
¨

ax + b y = c
d x + e y = f

2. Plot each equation on the x-y plane. Make one line blue, the other red. (It doesn’t matter
which is which.) In all likelihood, the two lines will not be parallel, but will intersect at exactly
one point. Adjust the x and y axes so that this intersection is visible. If the lines are parallel or
coincident, modify one of a, b , . . . , f so that the lines intersect at exactly one point.

3. Use Sage to find the exact solution to the system of equations. This should be a point (x0, y0).
Create a new plot with both lines (still different colors) and a big, fat yellow point on top of
their intersection. (Not too fat, but fat enough to see.) Make sure the point lies on top of the
lines.

An invariant.
4. Define variables for a, b , . . . , f . Use that to define the following system of equations without

any numbers at all:
¨

ax + b y = c
d x + e y = f

5. Solve the system above for x and y.
6. You may have noticed that the solution has a common denominator. (If you didn’t notice it,

this would be a good time to notice.) What is sort-of-amazing, but not-really-that-amazing
about that denominator?
Hint: Think about some basic matrix operations on the matrix that corresponds to the left
sides of the original equations. It’s something you should have computed in high school alge-
bra, and definitely would have computed in linear algebra.

7. Suppose that a and b have known, concrete values. Use your answer to #6 to explain why
the existence of a solution dependes entirely on d and e — and has nothing to do with c and
f !!!
Hint: I’m asking about the existence of a solution, not the value of the solution once it exists.
The value most certainly depends on c and f , but the existence depends only on d and e .
So the question asks you to use the previous answer to explain this question of existence, not
value.

8. Let a and b have the same values they had in #1. Let g (x) be the denominator of the solution
found in #6. Substitute these values of a and b into g (x). You should get a linear function
in two variables, d and e . Change d to x and e to y.

9. Plot the line determined (no pun intended) by this function, which has y-intercept 0. Also
plot the original equation ax+ b y = c . How are these two lines related? (It may not be clear
unless you use the plot option aspect_ratio=1 to make it clear.)

ALGEBRAIC AND GEOMETRIC PROPERTIES OF LINEAR SYSTEMS 271

10. Would this relationship between the two lines hold regardless of the values of a and b? That
is, if the only thing you changed were a and b in both the line and the function g (x), would
the line ax + b y = c still have the same relationship to the corresponding value of g (x)?

A point at infinity.
11. We return to your original system of equations. Define lists D and E so that the values in D

move in 10 steps from d almost to a and the values in E move in 10 steps from e almost to
b . (The difference between the final values and a or b should be miniscule.) For instance, if
your original system is

¨

1x + 2y = 3
4x + 5y = 6

then you could have something like D = (4,3,2,2.5,2.1,2.01,2.001,2.0001,2.00001,2.000001)
and E = (5,4,3,2.5,2.1,2.01,2.001,2.0001,2.00001,2.000001).

12. Loop through the lists D and E to create a plot for each system
¨

ax + b y = c
di x + ei y = f

.

(Here, di and ei refer to the i th elements of D and E , respectively.) Combine the plots into
a sequential animation. Animate it.

13. Describe the eventual relationship between the lines, especially if you let di → a and ei → b .
14. The field of projective geometry introduces a new point so that all lines, even parallel lines,

intersect at least once. Use the animation to explain why it is appropriate to call this point a
“point at infinity.”
Hint: You may want to adjust the minimum and maximum x- and y-values of your animation
to see this more clearly.

Transformation matrices

This lab requires linear algebra, which appears in the chapter “Solving equations.”

Define two symbolic variables a and b. Let

A=
�

cosa sina
− sina cosa

�

and B =
�

cos b sin b
− sin b cos b

�

.

1. Compute AB in Sage. Use your knowledge of trigonometry to specify a simpler form than
what Sage gives. Use LATEX to write this simpler form in a text box below the computation of
AB .

2. Extract, and give a name to, the entry in the first row and column of AB .
�

this one not this one
nor this one certainly not this one

�

Try to give it a meaningful name, not just x, which is a bad idea, anyway.
3. In a new computational cell, type the name you just created for that entry. Then, type a dot

(period). Then press tab. Look through the names that pop up for a command that might
reduce the trigonometric expression to something simpler. Use that command to confirm
your result in part (b).

4. Define a new matrix, C , obtained by substituting the value a = π/3 into A.
5. Let v be the vector defined by (5,3).
6. Compute the vectors C v, C 2v, C 3v, C 4v, C 5v.
7. Plot the vectors v, C v, C 2v, C 3v, C 4v, C 5v in different colors (your choice). Plot them as

arrows or points, but not as step functions. Please combine them into a single plot, rather
than making six different plots.

8. What is the geometric effect of multiplying v by the matrix C repeatedly? What do you predict
C 60v would look like? What about C 1042v?

Visualizing eigenvalues and eigenvectors

This lab requires linear algebra, which appears in the chapter “Solving equations.”

Let M be the 2× 2 matrix defined by the first four numbers in your student ID.
1. Use Sage to find the eigenvalues and eigenvectors of M . There should be two distinct eigen-

vectors, but it’s possible you’ll get only one, with a multiplicity of 2. In that case, modify the
entries of your matrix very slightly so that it produces two distinct eigenvectors.

2. Extract the eigenvectors and name them v1 and v2.
Hint: For full credit, extract them using the bracket operator; do not define new vectors.

3. Let K be the list of vectors obtained from the 10 products M i v1 for i = 1,2, . . . , 10. Use a for
loop to define this list; you will lose the vast majority of points on this part if you do them
one at a time.
Hint: Be careful. The expressions range(10) and xrange(10) commands start at 0; you want
to start at 1.

4. Let L be the list of vectors obtained from the 10 products M i v2 for i = 1,2, . . . , 10. Use a for
loop to define this list; you will lose the vast majority of points on this part if you do them
one at a time.

5. Define p=Graphics() and q=Graphics(). (This defines an “empty” plot.)
6. Use a for loop to add a plot of each vector in K to p. The first vector should be red; successive

vectors should shift increasingly towards blue, until the last one is completely blue. Here’s
how I’d suggest shifting from red to green:
for i in xrange(len(L)):

p += plot(L[i],color=((10-i)/10,i/10,0),zorder=-i)

7. Use a for loop to add a plot of each vector in L to q. Vectors should shift from purple (red and
blue) to yellow (red and yellow).

8. Show p in one cell; show q in another.
9. Describe how the result is consistent with what we said in class about eigenvalues and eigen-

vectors. If it isn’t clear what I mean, try adjusting the xmin, xmax, ymin, ymax values to see a
smaller portion of the graph.

Least squares averaging

This lab requires linear algebra, which appears in the chapter “Solving equations.”

A system of two linear equations in two variables will find an exact solution for exact data.
Unfortunately, the real world often lacks exact data, so scientists and engineers compensate by
collecing extra data and “averaging” the results. For instance, in the case of two unknowns x and
y, we might take m measurements that correspond to the system

x + a1y = b1

x + a2y = b2

...

x + amy = bm.

The best solution (x0, y0)minimizes the error; that is, it minimizes

b1
...

bm

−

x0+ a1y0
...

x0+ amy0

2

= [b1− (x0+ a1y0)]
2+ · · ·+[bm − (x0+ amy0)]

2 .

We can minimize this in the following way: let

A=

1 a1
...

...
1 am

, X =
�

x
y

�

, B =

b1
...

bm

.

The system of equations above translates to

AX = B .

If we multiply both sides on the left by AT , we have
�

AT A
�

X =AT B .

The product of AT and A is a square matrix, hopefully invertible. If it is invertible, we can solve
it by multiplying on both sides:

X =
�

AT A
�−1

AT B .
It can be shown that this X minimizes the error (though we will not show it).
1. Write pseudocode for a function that accepts two lists of corresponding measurements a1, . . .am

and b1, . . . , bm and solves for x1, . . . , xm.
2. Implement the pseudocode as a Sage function named least_squares_2d().
3. Write a Sage function that accepts two lists of corresponding measurements a1, . . .am and

b1, . . . , bm, plots each point (ai , bi), and plots the line that lies along the solution vector (x0, y0).
Optionally, the function should accept two additional arguments color_points and color_line,
which respectively indicate the colors of the points and the color of the line. Be sure to use
Sage’s min() and max() commands to set ymin, ymax, xmin, and xmax appropriately.

Bareiss’ Method

This lab requires linear algebra, which appears in the chapter “Solving equations.”

The Bareiss method to compute a determinant can be describe in pseudocode as follows:

algorithm Bareiss_determinant
inputs

• an n× n matrix M
outputs

• det M
do

let D be a copy of M
let a = 1
for k ∈ {1, . . . , n− 1}

for i ∈ {k + 1, . . . , n}
for j ∈ k + 1, . . . , n

let di , j =
di , j dk ,k−di ,k dk , j

a
let a = dk ,k

return Dn,n

1. Implement this pseudocode as a Sage program, and test it on the following matrices. When
it produces a result, is the result actually correct? If it doesn’t produce a result, what exactly
does it do? In this latter case, study the entries of the matrix to see what goes wrong.

(a) M =

3 2 1
5 4 3
6 3 4

(b) M =

1 −4 1 2
−1 4 4 1

3 3 3 4
2 5 2 −1

(c) M =

1 2 3 4
0 1 1 1
1 2 1 2
1 1 3 3

2. As with the Gaussian method, we can salvage a computation of the Bareiss algorithm when one
encounters failure — and in more or less the same way. Modify your Bareiss implementation to
take this into account, then test it on the three matrices again to make sure it behaves correctly.

Dodgson’s Method

This lab requires linear algebra, which appears in the chapter “Solving equations.”

Dodgson’s Method is an “intuitively easy” way to compute a determinant.106 The following
pseudocode describes it precisely. (Here, numbering of rows and columns starts at 1, rather
than at 0 as in Sage.)

algorithm Dodgsons_method
inputs

• M , an n× n matrix
outputs

• det M
do

let L be an (n− 1)× (n− 1)matrix of 1’s
for i ∈ {1, . . . , n− 1}

let m be the number of rows of M
let N be an (m− 1)× (m− 1)matrix
for j ∈ {1, . . . , m− 1}

for k ∈ {1, . . . , m− 1}
let N j ,k = (M j ,k×M j+1,k+1−M j+1,k×M j ,k+1)/L j ,k

let L be the (m− 2)×(m− 2) submatrix of M starting in row 2, column 2
replace M with N

return M

1. Implement this pseudocode as a Sage program, and test it on the following matrices. (Some-
thing will go wrong with one of them.)

(a) M =

3 2 1
5 4 3
6 3 4

(b) M =

1 −4 1 2
−1 4 4 1

3 3 3 4
2 5 2 −1

(c) M =

1 2 3 4
0 1 1 1
1 2 1 2
1 1 3 3

2. When it produces a result, is the result actually correct?
3. If it doesn’t produce a result, what exactly does it do?
4. In this latter case, try to perform the computation by hand. Explain what goes wrong.107

106Named for its inventor, Charles Lutwidge Dodgson, a deacon of the Church of England who also held a chair
in mathematics. He is better known for a pair of children’s books he wrote under the pen name “Lewis Carroll,”
Alice and Wonderland and Alice Through the Looking Glass.

107Don’t pursue the temptation to fix it unless you want a challenging research project.

Discrete Mathematics

277

One-to-one functions

In this lab, we view a dictionary as a map or function from a set A, the domain, the set of the
dictionary’s keys, to another set B , the range, sometimes called the codomain. The range may
actually contains more elements than those than appear in the dictionary’s values.
1. Write a Sage function which accepts a dictionary D as input and returns True if D is a one-to-

one function and False otherwise.
2. Write a Sage function which accepts a dictionary D as input and returns True if D is a one-to-

one function; if not, it returns both False and a counterexample.
3. Write a Sage function which accepts a dictionary D and a set B as inputs and returns True if D

is onto B , and False otherwise. In the latter case, it should also return all elements of B that
are not values of D .

4. Write a Sage function which accepts a dictionary D and a set B as inputs and returns True if
D is both one-to-one and onto B , and False if not. In the latter case, it prints (not returns!)
which property fails and the appropriate counterexample.

The Set Game

The game Set consists of 81 cards, each of which has four properties:
• The number of objects on the card is 1, 2, or 3.
• The color of the object(s) is identical: red, green, or purple.
• The shading of the object(s) is identical: solid, striped, or empty.
• The shape of the object(s) is identical: diamonds, ovals, or squiggles.

Notice that each property has 3 possibilities, explaining why there are 81= 34 cards.
The object of the game is to identify as many “sets” there are in a group of cards. A “set” is

any collection of cards in which each property is the same or different.
1. Write a Sage function make_cards() which creates and returns a list of all the cards. Each card

should be a tuple of four integers, where each integer indicates the property. Thus, (1,1,3,2)
would represent a card with 1 red empty oval.

2. Write a Sage function is_set() which accepts one argument, L, which is a list of 3 cards. It
returns True if L forms a set, and False otherwise. You may want to have this function call
other functions which test whether a property is the same among all cards or different among
all cards.

3. In a new cell, type import itertools. Write a Sage function has_set() which accepts one
argument, B, a list of at least 3 cards, and returns True if B has a set, and False otherwise.
You can use the command BI = itertools.combinations(B,3) to create an iterator that will
choose all possible combinations of 3 cards from B. You can then loop over BI using a for loop.

4. Write a Sage function prob_set_in(N) which takes an integer of at least 3 and returns the
probability that a randomly selected board of size N contains a set. You will not want to try
this on a large value of N , as it will take a very long time to run. Test it only with N = 3
(a few seconds, max) and N = 4 (a couple of minutes, max). You can use the command CN =

itertools.combinations(CL,N) to create an iterator that will choose all possible combinations
of N cards from a list CL (in this case, a list of cards).

The number of ways to select m elements from a set of n

Suppose you have a bag with n distinct objects, and you want to select m of them. Such a choice
of balls is called a combination, as opposed to a permutation where order matters. There are many
applications where we want to count the number of ways to select m balls from a bag of n distinct
objects.108 We write this as nCm or

�n
m

�

. The formula for this value is
�

n
m

�

=
n!

m! (n−m)!
.

1. Write a Sage function that accepts as input n and m and computes
� n

m

�

.
2. Use your function to compute

�n
m

�

for n = 2,3, . . . , 8 and m = 0, . . . , n.
3. Do you notice any pattern to the numbers? Hint: Look back at Pascal’s Triangle.
4. Describe how one could use combinations to implement a function that computes Pascal’s

Triangle without using recursion.

108For instance, the PowerBall lottery awards prizes according to whether one selects the same five numbered
balls out of 69 total balls as are selected on a TV show, not necessarily in the same order. (There’s another criterion
as well, but at the very least one has to know the number of ways to select 5 of 69 balls.

Algebra and Number Theory

281

Properties of finite rings

1. Create a new worksheet. Set the title to, “Lab: Properties of finite rings”. Add other informa-
tion to identify you, as necessary.

Reread the Section on “Algebra” in Lecture 2, “Introduction to Sage.”
2. Create a section labeled, “Modular arithmetic: demonstration,” then:

(a) Define a ring R to be Z10, the finite ring of 10 elements.
(Hint: The revised notes show a simpler way to do this than the in-class demonstration.)

(b) Define m to be the value of 2 in R, and compute 1×m, 2×m, 3×m, . . . , 10×m.
(Hint: If your answer to the last product is 20, you’re doing it wrong. You have to con-
vert 2 to a value of the ring R. The notes show how to do that.)

(c) Define n to be the value of 3 in R, and compute 1× n, 2× n, 3× n, . . . , 10× n.
(d) Define r to be the value of 5 in R, and compute 1× r , 2× r , 3× r , . . . , 10× r .
(e) Define s to be the value of 7 in R, and compute 1× s , 2× s , 3× s , . . . , 10× s .
(f) Define t to be the value of 9 in R, and compute 1× t , 2× t , 3× t , . . . , 10× t .

3. For the following, write your answer into a text box at the end of the worksheet. The top of
the textbox should have the heading, “Modular arithmetic: analysis.”
(a) Notice that 10× 2= 10× 3= · · ·= 10× 9 in this ring. Why does that make sense? (Your

answer should address what I said in class about arithmetic in Zn, illustrated on slide 44
with Z7.)

(b) Which of m, n, r, s , t lists all the numbers from 0 to 9?
(c) What property do the numbers you listed in (b) share that the other numbers do not?

The geometry of radical roots

REMARK. In this assignment, we view all solutions as complex numbers a+ b i , where i 2 =
−1. When you are asked to “plot a+ b i on the complex plane,” plot it as the point (a, b). So, for
instance, a plot of the complex number 2+ 3i would give you the point (2,3):

2 +3i

1. Create a new worksheet. Set the title to, “Lab: The geometry of radical roots”. Add other
information to identify you, as necessary.

2. Use Sage to solve the equation x2− 1 = 0. Plot all solutions on one complex plane. It’s not
very interesting, is it?

3. Use Sage to solve the equation x3− 1 = 0. Plot all solutions on one complex plane, not the
same as before. This is a little more interesting.

4. Use Sage to solve the equation x4− 1= 0. Plot all solutions on a third complex plane. This
might be a little boring, again.

5. Use Sage to solve the equation x5 − 1 = 0. Plot all solutions on a fourth complex plane.
(You will probably need to use real_part() and imag_part() here.) This figure should be
arresting, especially if you connect the dots, but don’t do that; just plot the points, note the
result, and move on.

6. Can you guess? Yep, use Sage to solve the equation x6 − 1 = 0. Plot all solutions on yet
another complex plane. This is probably getting boring, if only because you can probably
guess the result not only of this one, but also of. . .

7. Use Sage to solve the equation x7 − 1 = 0. Plot all solutions on another complex plane. If
you understand the geometric pattern, move on; if not, complain. Or, if you want to save
time, you can probably guess that I’ll tell you to plot the solutions for a few more examples
of xn − 1= 0, only with larger values of n. Sooner or later, you should perceive a geometric
pattern.

8. In a text cell, explain why the geometric pattern of the images justifies the assertion that the
solutions to xn − 1 all have the form

cos
2πk

n
+ i sin

2πk
n

.

Be sure to explain what on earth k and n have to do with it. If it helps, look first at the
parametric plot of cos (2πt)+ i sin (2πt) for t ∈ [0,1], remembering as before that you plot
a+ b i as (a, b).

Before you raise your hand in panic, take a moment, then a deep breath, and think back
to the meaning of sine and cosine. Look in a textbook if you have to. You can do this, honest!

Likewise, don’t ask me how to create a parametric plot. We went over it, so if you don’t
remember, look it up in the notes.

9. Define ω = cos 2π
6 + i sin 2π

6 . Using a for loop in Sage, compute ω, ω2, . . . , ω6. Plot each
number on the complex plane, and describe how the result is consistent with your answers
to #6 and #8.

10. Now supposeω = cos 2π
n + i sin 2π

n . By hand, work out an explanation why

(1) ωk = cos
2πk

n
+ i sin

2πk
n

.

Type this explanation in your Sage worksheet, using LATEX to make it all purty-like. If you
know proof by induction, that will work. Otherwise, take the following approach:
• Explain why equation (1) is true for k = 1.
• Expandω2 and use some trigonometric identities you’re supposed to remember to sim-

plify to the value of equation (1) for k = 2.
• Do the same forω3.
• Finally, point to a pattern in the previous two steps that you can repeat ad infinitum, so

that if equation (1) is true for some value of k, it’s also true for the next value of k.
11. Time to up our game.109 Experiment with xn− a for some nice values of a and a sufficiently

large value of n. What do you see? Formulate a conjecture as to the geometric form of these
solutions.

(The term “nice values of a” it can mean one of two things. First, it can mean numbers
of the form a = b n; for instance, if n = 6, then you could let b = 3, and you would have
a = 36 = 729. You’d then work with the equation x6− 729, which is not as scary as it looks.
Honest! Second, you could take the Bob Ross approach, in which case any number is a nice
value because, really, all numbers are nice, happy numbers. That’s harder, though.)

12. As before, make it all look nice, with sectioning, commentary in text boxes, at least a little
LATEX, etc.

109I’d rather say, “Let’s generalize,” as “up our game” just don’t roll off the tongue in the same pleasant way, but
They tell me that “up our game” is more current. Don’t ask who They are, and don’t look at me like I’m crazy. Of
course I am.

http://en.wikipedia.org/wiki/Bob_Ross

Lucas sequences

The Fibonacci sequence is defined as

f1 = 1, f2 = 1, fn+2 = fn + fn+1.

The Fibonacci numbers are one example of what mathematicians now call a Lucas sequence.
(More information at the link.) We usually define Lucas sequences recursively, but you can find
a “closed formula” in a manner similar to what we did in class for the Fibonacci sequence.

Let a, b , c , and d be the first two numbers of your student ID. If any two numbers are the
same, change them so that all four numbers differ. The sequence

`1 = a, `2 = b , `n+2 = c`n + d`n+1

is a Lucas sequence that we’ll call the “[insert your last name here] sequence.”
1. In a Sage text cell, state the definition of the [insert your last name here] sequence. Use LATEX!
2. In the same cell, list the first five numbers of the [insert your name here] sequence.
3. Define a matrix L and a vector v which generate the sequence. For instance, if the first four

digits of your ID are 1, 2, 8, and 9 then

L=
�

9 8
1 0

�

and v=
�

2
1

�

.

Compute Lv, L2v, L3v, L4v, and L5v in Sage, and compare the results to #2. If they differ,
either #2 or #3 is wrong. Or I have a typo. Ask me, and/or fix it before continuing.

4. Compute L’s “eigendata.” Extract the eigenvectors and eigenvalues and have Sage convert them
to radical form. (Numbers should no longer end in question marks.)

5. Construct matrices Q and Λ such that L=QΛQ−1. Use Sage to verify that L=QΛQ−1.
6. Construct the matrix M =

�

QΛQ−1
�n.

Hint: The lecture notes discuss this; it requires some knowledge of linear algebra.
7. Use the product of M and v to find the closed form of the [insert your name here] sequence.

Hint: Again, the notes should come in handy here if you need help.
8. Use the closed form to compute the first five numbers of the [insert your name here] sequence,

and compare your results to what you found in #2 and #3. If they differ, you have a problem
or I have a typo; ask me and/or fix it!

https://en.wikipedia.org/wiki/Lucas_sequence

Introduction to Group Theory

Background.

DEFINITION. If a set S and an operation ⊗ satisfy the closure, associative, identity, and
inverse properties, then we call S a group under⊗. These properties are defined in the following
way:

• closure: x ⊗ y ∈ S for all x, y ∈ S;
• associative: x ⊗ (y ⊗ z) = (x ⊗ y)⊗ z for all x, y, z ∈ S;
• identity: we can find ι ∈ S such that x ⊗ ι= x and ι⊗ x = x for any x ∈ S;
• inverse: for any x ∈ S, we can find y ∈ S such that x ⊗ y = y ⊗ x = ι.

EXAMPLE. The integers Z form a group under addition, because
• adding any two integers gives you an integer (x + y ∈Z for all x, y ∈Z);
• addition of integers is associative;
• there is an additive identity (x + 0= x and 0+ x = x for all x ∈Z); and
• every integer x has an additive inverse that is also an integer (x +(−x) = (−x)+ x = 0).

EXAMPLE. The integers Z do not form a group under multiplication, for two reasons:
• 0 has no multiplicative inverse 0−1; and
• the other integers a have multiplicative inverses 1/a, but most are not integers. A group

only satisfies the inverse property if it contains the inverses of each element.

In this lab you will use pseudocode to write code to test whether a finite set is a group under
multiplication. You will then test it on three sets, two of which succeed, and one of which does
not. A complication in this project is that the function has to depend on the operation, so you
can’t just write a function for one operation, only.

Pseudocode.
Closure. We must check every pair x, y ∈ S. We can test whether this is true for “every”

element of a finite set using definite loops.

algorithm is_closed
inputs

S, a finite set
outputs

true if S is closed under multiplication; false otherwise
do

for s ∈ S
for t ∈ S

if s t 6∈ S
print “fails closure for”, s , t
return false

return true

Associative. We must check every triplet x, y, z ∈ S, requiring definite loops. The pseudocode
is an exercise.

Identity. We can test whether “we can find” an identity using a special variable called a flag
with Boolean value (sometimes called a signal). We adjust the flag’s value depending on whether a
candidate continues to satisfy a known property. When the loop ends, the flag indicates whether
we’re done (i.e., whether we’ve found an identity). The quantifiers’ structure (“we can find. . . for
any. . . ”) requires the pseudocode to presume an identity exists until proved otherwise.

algorithm find_identity
inputs

S, a finite set
outputs

an identity, if it can find it; otherwise, ;
do

for s ∈ S
let maybe_identity = true

for t ∈ S
if s t 6= t or t s 6= t

let maybe_identity = false

if maybe_identity = true

return s
print “no identity”
return ;

Inverse. We are looking for an inverse for each element. Here, again, we use a flag a flag, as
the logic requires us to find an inverse. Unlike the previous pseudocode, we presume an inverse
does not exist until proved otherwise; this is because the order of the quantifiers is switched (“for
any. . . we can find. . . ” instead of “we can find. . . for any. . . ”). This pseudocode also requires
that we identify the set’s identity in the input.

algorithm has_inverses
inputs

S, a finite set
ι, an identity of S under multiplication

outputs
true if every element of S has a multiplicative inverse; false otherwise

do
for s ∈ S

let found_inverse = false

for t ∈ S
if s t = ι and t s = ι

let found_inverse = true

if found_inverse = false

print “no inverse for”, s
return false

return true

Putting them together. This pseudocode tests whether a set is a group under an operation by
invoking all four algorithms defined above.

algorithm is_a_group
inputs

S, a finite set
outputs

true if S is a group under multiplication; false otherwise
do

if is_closed(S) and is_associative(S)
let ι = find_identity(S)
if ι 6= ; and has_inverses(S, ι)

return true

return false

Your tasks. Use LATEX in your Sage worksheets wherever appropriate. Two of the sets in
3–5 are groups; one is not.
1. Study the pseducode for closure, and write pseudocode for an algorithm named is_associative

that tests whether a set S is associative under multiplication. You essentially modify the pseu-
docode for is_closed with a third loop, and change the condition for the if appropriately.

2. Write Sage code for each of the five algorithms defined above in pseudocode. You will test
them on the following sets.

3. Define a ring R to be Z101, the finite ring of 101 elements. (You will want to revisit Lab #2 if
you forgot how to do this.) Let S = {1,2, . . . , 100}(R; that is, S should include every element
of R except 0. Be sure to define S using elements of R, and not plain integers. (Again, you will
want to revisit Lab #2 if you forgot how to do this.) Test your Sage code on S; is S a group
under multiplication? If not, which property fails?

4. Redefine the ring R to be Z102, the finite ring of 102 elements. Let S = {1,2, . . . , 101}(R; that
is, S should include every element of R except 0. Be sure to define S using elements of R, and
not plain integers. Test your Sage code on S; is S a group under multiplication? If not, which
property fails?

5. Define the matrices

I2 =
�

1 0
0 1

�

i=
�

i 0
0 −i

�

j=
�

0 1
−1 0

�

k=
�

0 i
i 0

�

and the set
Q = {I2,−I2, i,−i, j,−j,k,−k} .

Test your Sage code on Q; is Q a group under multiplication? If not, which property fails?

REMARK. This set is sometimes called the set of quaternions.

6. Using the matrices of problem #4, define the set

S = {I2,−I2, j,−j} .

(a) You’ve probably noticed that S ⊆Q. Is S also a group? If so, we call S a subgroup of Q.
If not, which property fails?

(b) The set S actually consists of matrices of the form A from Lab #6, Problem #1. Indicate
in a text cell the correct value of a for each matrix.

Coding theory and cryptography

Two applications of algebra and number theory are coding theory and cryptography:
• The aim of coding theory is transmit information reliably, detecting errors and, when

possible, correcting them.
• The aim of cryptography is to transmit information securely, so that an eavesdropper can

neither understand nor work out the meaning of the transmission.
To apply these mathematical ideas, both require a preliminary stage of transforming text into
numbers, and vice versa. You will write two or more functions to do help someone this; one will
be interactive.

When transforming text into numbers, it is necessary first to group the text into conveniently-
sized blocks. For instance, the phrase

GET OUT OF DODGE

can be grouped several different ways. One way is to group it into blocks of two:
GE TO UT OF DO DG EX

and another is to group it into blocks of four:
GETO UTOF DODG EXXX .

In both cases, the message’s length does not divide the group’s length evenly, so we pad the mes-
sage with X’s.

How does one do this? Python has a command that lets you convert each character into a
number. (If you’ve forgotten it, it appears in the book, and you used it in a previous assignment,
so it would be good to review that, as I might ask about it on the exam!) This command would
convert our phrase into the numbers

71, 69, 84, 79, 85, 84, 79, 70, 68, 79, 68, 71, 69 .
You’ll notice I’ve removed the spaces, and haven’t yet created the groups. How do we then group
them? First, turn them into the numbers 0–25 by subtracting the number corresponding to A.
That gives us

6, 4, 19, 14, 20, 19, 14, 5, 3, 14, 3, 6, 4 .
To group them, we reason the following:

• We don’t need lower-case letters or punctuation to get our meaning across.110

• Thus, every value to encode lies between 1 and 26.
• We can use a base-26 number system to encode any group of letters.

So, to encode a group of four letters with numerical values a, b , c , d , we can compute

m = a+ 26b + 262c + 263d .

In general, to encode a group of n letters with numerical values a1, a2, . . . , an, compute

m = a1+ 26a2+ 262a3+ · · ·+ 26n−1an .

To decode an encoded group m of n characters, do the following n times:
• determine the remainder of dividing m by 26, and call it a;
• convert a back into a character; and finally,
• replace m by m−a/26.

110Related trivia: Ancient written languages typically used all upper-case letters with no punctuation or even
spacing.

You need to write at least two functions.
1. The first function, encode(), takes two inputs: an integer n, and a list L of characters. It

converts each character into a number, organizes the numbers into groups of n characters,
then converts each group into one number using the formula above. It returns a list M of
numbers, one for each group. You may assume that n divides the length of L. (It’s a bit
harder if you have to figure out the padding.)

2. The second function is interactive. It offers the user a text box and a slider. In the text box, the
user inputs a message. In the slider, the user selects from 2 to 6 characters. The function takes
these values and sends them to encode, then prints the list numbers that encode() returns.

For extra credit, you can also:
3. Implement a third function, decode(), takes two inputs: an integer n, and a list M of integers.

It converts each integer into a group of n integers, then converts each integer into a character.
4. You can Cythonize either encode() or decode(). At least one variable’s type must be declared.

Continued fractions

A continued fraction representation of a number has the following form:

a0+
1

a1+
1

a2+
1

a3+
1
...

.

Continued fractions have a number of fascinating properties, some of which you will explore in
this lab. The following pseudocode will compute a continued fraction up to m places:

algorithm continued_fraction
inputs

• b , a real number
• m, the number of places to expand the continued fraction

outputs
• a list (a0,a1, . . . ,am) listing the entries of the continued fraction

do
let L be a list of m+ 1 zeros
let i = 0
while i ≤ m and b 6= 0

set Li to the floor of b
let d = b − Li
if d 6= 0

replace d by 1/d

let b = d
add 1 to i

return L

1. Implement this pseudocode as a Sage function. Hint: Sage’s floor() function could prove
useful here.

2. Use your code to compute the continued fraction approximations to at most 20 places for 12/17,
17/12, 4/15, 15/4, 729/1001, and 1001/729.

3. Write down at least two properties you notice about the continued fractions above. Explain
why these properties make sense.

4. Use your code to compute the continued fraction approximations to at most 20 places forp
41, 1/p41, 1+

p
5/2, 2/1+

p
5, 1+

p
7/p3, and

p
3/1+

p
7.

5. Write down at least two properties you notice about these continued fractions. One of the
properties may be the same as with the rational numbers, but the other definitely should not.

6. Use your code to compute the continued fraction approximations to at most 20 places for e ,p
e , and 3

p
e .

7. Write down any patterns you notice about these continued fractions. (It is unlikely you find
one that is common to the previous numbers, but finding one would well be interesting.)

Bibliography

[1] Douglas Adams. The Hitchhiker’s Guide to the Galaxy. Harmony Books, New York, 1979.
[2] Michael H. Albert, Richard J. Nowakowski, and David Wolfe. Lessons in Play. AK Peters, Ltd., Wellesley,

Massachusetts, 2007.
[3] Elwyn Berlekamp, John Conway, and Richard Guy. Winning Ways for Your Mathematical Plays. A K Peters /

CRC Press, second edition, 2001.
[4] Anna M. Bigatti. Computation of Hilbert-Poincaré Series. Journal of Pure and Applied Algebra, 119(3):237–253,

1997.
[5] Anna M. Bigatti, Massimo Caboara, and Lorenzo Robbiano. Computing inhomogeneous Gröbner bases. Jour-

nal of Symbolic Computation, 46(5):498–510, 2010.
[6] Alberto Damiano, Graziano Gentili, and Daniele Struppa. Journal of Symbolic Computation, 45:38–45, January

2010.
[7] Vladimir Gerdt and Yuri Blinkov. Involutive Bases of Polynomial Ideals. Mathematics and Computers in Simu-

lation, 45(5–6):419–541, March 1998.
[8] Maxima. Maxima, a Computer Algebra System. Version 5.38.1. http://maxima.sourceforge.net/, 2016.
[9] Marin Mersenne. Cogitata Physica-Mathematica. 1644.
[10] Diophantus of Alexandria. Arithmetica. 1670. With marginal notes by Pierre de Fermat.
[11] Euclid of Alexandria. Elements. c. 300 BC.
[12] Jamie Uys. The Gods Must Be Crazy, 1980. film distributed by 20th Century Fox.

293

Index

AA, 205
absolute value, 27
.add(), 115
algebraic numbers, see also AA

algorithm, 92
alpha, 52, 55
animate(), 68
.append(), 114
arc(), 58
argument, 80, 82

default value, 85
mandatory, 82

arguments
optional, 85

arrow(), 52, 60
assume(), 39

forget(), 40
AttributeError

... has no attribute ..., 116

.base_ring(), 141

caching, 199
C, see complex numbers
CC, 43, 139
.change_ring(), 141
circle(), 57
class, 234

attribute, 234
instance, 234
method, 22
special methods

arithmetic, 237
comparison, 239
.__hash__(), 240
.__init__(), 234
.__repr__(), 236

.clear(), 116
coefficient(), 266
collection, 51, 109

indexing, 109, 110
membership in, see in
mutable, 109

color, 52
complex number

real and imaginary parts, see real_part() and
imag_part()

complex numbers, see also CC

complex field, 43
complex plane, 136
complex_point(), 136
norm, 45

comprehensions, 123
constant, 29
constructor, 234
copy(), 143
cosine, 59
.count(), 113
Cylindrical(), 220

def, 80
definite loop, 106
.degree(), 132, 134
DeprecationWarning

Substitution using function-call syntax, 34,
84

Unnamed ranges for more than one variable, 74
derivative, 36
diagonal_matrix(), 142
dict(), 110
dictionary, 110, 114

commands shared with all collections, 112
methods, 116

diff, 36
.difference(), 115
.difference_update(), 115
division

ratio, quotient, and remainder, 27
domain, 118

e, 28
eigenvalue, 149
eigenvector, 149, 204
ellipse(), 58
equation, 31

left- or right-hand side, see .rhs(), .lhs()

294

requires two equals signs, 31, 138
system, 140

Euler’s Method, 105
except, 162
expand(), 31
exponentiation, 27
expression

as distinct from equation, 31
.extend(), 114

factor(), 31
factorial, 130
False, 27
Fibonacci sequence, 195–197
field, 42
find_root(eq, a, b), 138
floor(), 292
forget(), see assume()
frozen set, see set
frozenset(), 110

Gaussian integers, 182
division, 183–187

global variable, 90, 199
golden ratio, 206

.has_key(), 116
hash, 240

I, 28
identifier, 30
identity_matrix(), 142
imag_part(), 44
implicit_plot(), 71
implicit_plot3d(), 223
in, 112
indefinite loop, 106
IndentationError

expected an indented block, 81
unindent does not match any outer

indentation level, 96
indeterminate, 29

resetting a name, 30
.index(), 113
IndexError

list index out of range, 117, 182
indexing, 110

numbering, 111
inequality

solving, 137
infinite loop, see infinite loop
Infinity

unsigned_infinity, 37
infinity

+Infinity, 28

-Infinity, 28
input, 92
.insert(), 114
instance, 234
integers, see also ZZ, see also Gaussian integers

integer ring, 43, 145
modulo n, 46

integral, 36
integrate, 36
integration

approximate, 41
exact, 38–40

@interact, see interactive worksheets
interactive worksheets, 97–101

available interface objects, 98
.intersection(), 115
.intersection_update(), 115
IOError

did not find file ... to attach, 96
.is_immutable(), 143
.is_mutable(), 143
.isdisjoint(), 115
.issubset(), 115
.issuperset(), 115
iteration, 106

KeyError, 115, 118
keyword, 31, 80

break, 160
cimport, 245
def, 80
elif, 157
else, 157
except, 162
for, 107, 108, 118
from, 243
global, 90, 200
if, 157
import, 243
print, 81
raise, 164
return, 90
try, 162
while, 177

language
interpreted v. compiled v. bytecode, 13

LATEX, 61–63, 251
.leading_coefficient(), 132
len(), 112
.lhs(), 134, 138
lim, 36
limit, 36
line break, 26

line(), 52
linear independence, 149
linestyle, 52, 57, 60
list, 109, 111, 112

commands shared with all collections, 112
commands shared with tuple, 113
methods, 112, 114

list(), 109
local variable, see variable, global v. local
loop, 106

definite, 106
indefinite, 106
infinite, see infinite loop
loop variable, 118
nesting, 120–121
pseudocode, 106

matrices, 141–150
changing the base ring, 141
construction, 141, 142
mutability, 143

matrix(), 141
max(), 112
message

error message, see the particular error
method, see class method, 234
method of bisection, 154
min(), 112
modular arithmetic, see integers
modularity, 79, 89
multiplication, see also expand(), 31

NameError

global name ... is not defined, 90, 201
name is not defined, 31

natural numbers, 45
well-ordering property, 187, 193

nesting, 120–121, 163
Newton’s Method, 176
Nim, 232
Nimber arithmetic, 233–234
N, see natural numbers
norm(), 44
numerical_integral(), 41

-oo, see infinity
oo, see infinity
output, 92

PANIC!, 21, 37, 47, 88, 111, 145, 169, 238, 249
parametric_plot(), 66
parametric_plot3d(), 219
Pascal’s triangle, 193–195
π, 28
pi, 28

plot(), 65
plot3d(), 215
plot_vector_field3d(), 224
point(), 52
polar_plot(), 67
polygon(), 55
polynomial

finding the degree, 132
finding the the leading coefficient, 132

.pop(), 114–116

.popitem(), 116
power, 27
print, 81
pseudocode, 92

other examples, 92
our standard, 93

Q, see rational numbers
QQ, 43, 145
.quo(), 46
quotient, 27

range(), 116
rational numbers, see also QQ

rational field, 43, 145
real numbers, see also RR

real field, 43
real_part(), 44
remainder, 27
.remove(), 114, 115
repeat, 106
reserved word, 80
reset(), 30
return, 90
.reverse(), 114
revolution_plot3d(), 222
.rhs(), 134, 137, 138
ring, 42, 139

changing a matrix’s base ring, 141
root, 133
roots(), 136, 139
round(), 31
R, see real numbers
RR, 43, 139
RuntimeError

f appears to have no zero on the interval,
139

maximum recursion depth exceeded while

calling a Python object, 198, 201
no explicit roots found, 139

sequence
closed form, 203

set, 109, 114
commands shared with all collections, 112

elements must be immutable, 110, 143
frozen, 110, 114
methods, 115
operations on, 115

set(), 109
.set_immutable(), 143
Shameless reference to The Six Million Dollar Man

which today’s students will never, ever catch,
147, 239, 244

show()

animation, 68
graphics object, 64

simplify(), 31
sine, 59
solve

approximate solutions, 138–140
exact solutions, 133–138
systems of equations, 140

solve(), 133
solvability by radicals, 138

.sort(), 114
sorted, 112
sorting, 112, 114
Spherical(), 221
square root, 27
str(), 236, 249
substitution, 33–35

dictionary, 33, 110
sum(), 125
symmetric_difference(), 115
symmetric_difference_update(), 115
symmetric_difference.symmetric_difference(), 237
SyntaxError

can’t assign to operator, 31
invalid syntax, 26, 31, 81, 157
keyword can’t be an expression, 138

tab completion, 22, 113, 132, 144, 205
taylor(), 266
text(), 60
theorems

Division Theorem for Gaussian Integers, 183
Division Theorem for Integers, 183
Eigendecomposition Theorem, 204
Intermediate Value Theorem, 154

True, 27
try, 162
tuple, 109, 111, 112

commands shared with all collections, 112
commands shared with list, 113
methods, 112

tuple(), 109
type

dynamic v. static, 241

type(), 43
TypeError

’builtin_function_or_method’ object is not

iterable, 238
’set’ object does not support indexing, 117
’tuple’ object does not support item

assignment, 117
’xrange’ object does not support item

assignment, 116
Attempt to coerce ..., 45
can only concatenate list (not ”tuple”) to

list, 117
can only concatenate tuple (not ”list”) to

tuple, 117
Cannot evaluate symbolic expression to a

numeric value., 139
Multiplying row by Rational Field element

cannot be done over Integer Ring, use

change_ring or ..., 145
mutable matrices are unhashable, 143
no canonical coercion from Symbolic Ring to

Rational Field, 206
...object is not callable, 33
... takes at most ... argument (...

given), 117
... takes exactly ... argument (...

given), 83
unhashable instance, 240
unhashable type: ..., 110
unsupported operand type(s), 33

und, 37
.union(), 115
unsigned_infinity, 37
.update(), 115, 116

ValueError

Assumption is inconsistent, 39
Computation failed since Maxima requested

additional constraints, 39, 40
Integral is divergent., 38, 40
Nimbers must be nonnegative integers, 235
The name ... is not a valid Python

identifier, 27
the number of arguments, 34

variable, 29
global v. local, 90
loop variable, 118
resetting a name, 30

vector, 141, 146
eigenvector, 204

verbose

WARNING: When plotting, failed to evaluate

function at ... points., 71

http://en.wikipedia.org/wiki/The Six Million Dollar Man

WARNING, see verbose
well-ordering property, 187, 193

xrange(), 116

zero_matrix(), 142
ZeroDivisionError

Rational division by zero, 168
Symbolic division by zero, 164

zorder, 52, 53
Z, see integers, integer ring
ZZ, 43, 145

	Acknowledgments
	Preface
	Why did you write this text?
	No, really, why did you write this text?
	What instructional value does this text offer?
	Aren't there already some good references on Sage?
	How do you typically run this course?
	Why this approach?
	Any last words?

	Part 1. A Hitchhiker's Guide to Advanced Mathematics
	Background
	Is this just another programming textbook?
	What is this Sage thing you keep yapping about?
	How do I get going with Sage?
	Worksheet or command-line?
	Getting help
	Exercises

	Basic computations
	Yer basic arithmetic
	Constants, variables, and indeterminates
	Expressions, and commands to manipulate them
	Basic Calculus
	Mathematical structures in Sage
	Exercises

	Pretty (and not-so-pretty) pictures
	2D objects
	2D plots
	Animation
	Implicit plots
	Exercises

	Writing your own functions
	Defining a function
	Arguments
	An end to dysfunctional communication
	Pseudocode
	Scripting
	Interactive worksheets
	Exercises

	Repeating yourself definitely with collections
	How to make a computer repeat a fixed number of times?
	How does this work? or, an introduction to collections
	Repeating over a collection
	Comprehensions: repeating in a collection
	Animation again
	Exercises

	Solving equations
	The basics
	One equation or inequality, for one indeterminate
	Mistakes or surprises that arise when solving
	Approximate solutions to an equation
	Systems of equations
	Matrices
	Exercises

	Decision-making
	The method of bisection
	Boolean logic
	Breaking a loop
	Exceptions
	Exercises

	Repeating yourself indefinitely
	Implementing an indefinite loop
	What could possibly go wrong?
	Division of Gaussian integers
	Exercises

	Repeating yourself inductively
	Recursion
	Alternatives to recursion
	Exercises

	Making your pictures 3-dimensional
	3D objects
	Basic 3D plots
	Advanced tools for 3d plots
	Ascending a hill
	Exercises

	Advanced Techniques
	Making your own objects
	Cython
	Exercises

	Useful LaTeX
	Basic commands
	Delimiters
	Matrices

	Part 2. Encyclopædia Laboratorica
	Prerequisites for each lab
	General mathematics
	Various kinds of plots

	Calculus and Differential Equations
	An important difference quotient
	Illustrating Calculus
	Simpson's Rule
	The Runge-Kutta method
	Maclaurin coefficients
	p-series
	Maxima and Minima in 3D

	Linear Algebra
	Algebraic and geometric properties of linear systems
	Transformation matrices
	Visualizing eigenvalues and eigenvectors
	Least squares averaging
	Bareiss' Method
	Dodgson's Method

	Discrete Mathematics
	One-to-one functions
	The Set Game
	The number of ways to select m elements from a set of n

	Algebra and Number Theory
	Properties of finite rings
	The geometry of radical roots
	Lucas sequences
	Introduction to Group Theory
	Coding theory and cryptography
	Continued fractions

	Bibliography
	Index

	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PauseLeft:
	1.PlayLeft:
	1.PlayPauseLeft:
	1.PauseRight:
	1.PlayRight:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PauseLeft:
	2.PlayLeft:
	2.PlayPauseLeft:
	2.PauseRight:
	2.PlayRight:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:

