
2016-01-20-part2-finite-fields

William A. Stein

1/20/2016

1 Finite Fields

1.1 William Stein

1.2 Jan 20, 2016 (part 2)

A finite field is a field that is finite. The most basic slightly nontrivial mathematical facts about
finite fields are:

• Theorem: There exists a unique, up to isomorphism, finite field pn of each prime power order.

• Theorem: The automorphism group of pn is cyclic of order n, generated by the Frobenius
map x 7→ xp.

Finite fields are incredibly useful, and frequently arise natural in algebraic number thoery as
quotient rings of the form OK/p, where p is a nonzero prime ideal in the ring of integers of a
number field.
Sage is extremely powerful at working with finite fields (for state-of-the-art research). Sage builds

on several very fast/powerful C/C++ libraries for finite field arithmetic, and polynomial arithmetic
over finite fields, including Givaro, Singular, FLINT, Pari, and NTL. Different libraries are used for
different field sizes.
In practice, some computational issues that arise when you work with finite fields are mainly:

• Choosing a “nice” or “canonical” polynomial f (x) to define the finite field, pn ≈p [x]/(f).
There are many competing issues here. E.g., cryptographers care desparately about arithmetic
speed, especially when p = 2; others care about different people agreeing easily on a common
choice efficiently (I remember Lenstra et al. getting deeply obsessed with this problem a few
years ago). Still others, care about

• Working with the lattice of extensions of p. If you end up with elements in a choice of
a ∈p2 and b ∈p3 , and and then suddenly want to work with a + b what to do? This can get
very subtle and interesting. I first encountered using such a thing in Magma and was very
impressed. For example, there is a frustrating paper about how Magma magically does this,
in which they talk about how awesome their approach is, but seem to actually not tell you
what it is (and Magma is closed source). I think David Roe and others figured out something
just as good that is in Sage.

1

http://givaro.forge.imag.fr/
https://www.singular.uni-kl.de/
http://flintlib.org/
http://pari.math.u-bordeaux.fr/
http://www.shoup.net/ntl/

1 Finite Fields

• Performance: Make computing a+b and a ·b in pn very, very fast. This is extremely interesting,
with a wide range of techniques depending on p and n. For example, if pn is really small, just
make a lookup table (that is in cache).

• Arithemetic over finite fields, e.g., with polynomials. This is huge: linear algebra, all polynomial
arithmetic, Groebner basis, etc., all over finite fields. Implementations (in Sage) can easily
have little to do with how basic arithmetic is implemented (e.g., large degree polynomial
multiplication might be done via a Fourier transform, and matrix multiplication may be done
by breaking matrices up into blocks and multiplying them using floating point numbers!).

ASIDE: Sage-devel post that appeared right when I write this complaining about the requirment
when creating finite fieldsthat you explicitly name the generator

1.3 Making finite fields directly

The Sage documentation explains how you can make finite fields either by directly defining them, or
by constructing them as a quotient of the ring of integers of a number field by a prime ideal. I’ll
show you how to do both below.

1.3.1 The basics

Write GF(pn,′ a′)or FiniteField(pn,′ a′)tomakethe(uniqueuptoisomorphism)finitefieldofthatsize.

R.<x> = GF(3)[]
GF(x^2 + 2, 'a')

Error in lines 2-2
Traceback (most recent call last):

File ‘‘/projects/sage/sage-6.10/local/lib/python2.7/site-
packages/smc_sagews/sage_server.py’’, line 905, in execute

exec compile(block+'\n', '', 'single') in namespace, locals
File ‘‘’’, line 1, in <module>
File ‘‘sage/structure/factory.pyx’’, line 364, in

sage.structure.factory.UniqueFactory.__call__
(/projects/sage/sage-6.10/src/build/cythonized/sage/structure/factory.c:1245)

key, kwds = self.create_key_and_extra_args(*args, **kwds)
File ‘‘/projects/sage/sage-6.10/local/lib/python2.7/site-

packages/sage/rings/finite_rings/constructor.py’’, line 428, in create_key_and_extra_args
order = Integer(order)

File ‘‘sage/rings/integer.pyx’’, line 662, in sage.rings.integer.Integer.__init__
(/projects/sage/sage-6.10/src/build/cythonized/sage/rings/integer.c:5805)

set_from_Integer(self, otmp(the_integer_ring))
File ‘‘sage/rings/polynomial/polynomial_element.pyx’’, line 1091, in

sage.rings.polynomial.polynomial_element.Polynomial._integer_ (/projects/sage/sage-6.10/sr
c/build/cythonized/sage/rings/polynomial/polynomial_element.c:11994)

raise TypeError(‘‘cannot coerce nonconstant polynomial’’)
TypeError: cannot coerce nonconstant polynomial

2

https://groups.google.com/forum/#!topic/sage-devel/MeuOjHf3vCw
http://doc.sagemath.org/html/en/reference/finite_rings/index.html
http://doc.sagemath.org/html/en/reference/finite_rings/sage/rings/finite_rings/residue_field.html

1 Finite Fields

GF(3^2, modulus=x^2+1, names='a')

Finite Field in a of size 3^2

1.3.2 A Prime finite field (so n = 1)

GF(3)

Finite Field of size 3

F = GF(3)
list(F)

[0, 1, 2]

type(F)

<class
'sage.rings.finite_rings.finite_field_prime_modn.FiniteField_prime_modn_with_category'>

2*2

4

F(2) * F(2)

1

Arithmetic in small finite fields is reasonably fast.

a = F(2)
%timeit a*a

625 loops, best of 3: 99.2 ns per loop

%timeit a+a

625 loops, best of 3: 109 ns per loop

Exercise: How many additions/multiplications with elements of GF(3) can you do in one second?
Memorize the answer to this question it will help you a lot when thinking about how long things

should take.

figure it out now here --

For comparison try Sage number field elements:

K.<a> = NumberField(x^2 - 2)
%timeit a*a
%timeit a+a

625 loops, best of 3: 969 ns per loop
625 loops, best of 3: 832 ns per loop

3

1 Finite Fields

Quick Exercise: Easy how many number field operations per second?

Also one with big p.

GF(next_prime (10^100))

Finite Field of size 100
00000000000000000000000000000267

1.3.3 Non-prime finite fields, so n > 1

Expected to get error , as Nathann complains about above ...
GF(9)

Error in lines 2-2
Traceback (most recent call last):

File ‘‘/projects/sage/sage-6.10/local/lib/python2.7/site-
packages/smc_sagews/sage_server.py’’, line 905, in execute

exec compile(block+'\n', '', 'single') in namespace, locals
File ‘‘’’, line 1, in <module>
File ‘‘sage/structure/factory.pyx’’, line 364, in

sage.structure.factory.UniqueFactory.__call__
(/projects/sage/sage-6.10/src/build/cythonized/sage/structure/factory.c:1245)

key, kwds = self.create_key_and_extra_args(*args, **kwds)
File ‘‘/projects/sage/sage-6.10/local/lib/python2.7/site-

packages/sage/rings/finite_rings/constructor.py’’, line 479, in create_key_and_extra_args
raise ValueError(‘‘parameter 'conway' is required if no name given’’)

ValueError: parameter 'conway' is required if no name given

F.<a> = GF(9) # create the finite field -- just like making a \
number field

print F

Finite Field in a of size 3^2

list(F)

[0, a, a + 1, 2*a + 1, 2, 2*a, 2*a + 2, a + 2, 1]

type(F) # uses Givaro , which probably uses a lookup table ot make \
this fast for small cardinality

<class 'sage.rings.finite_rings.finite_field_givaro.FiniteField_givaro_with_category'>

(2+a)^5

2*a + 1

(2+a)^3

2*a

4

1 Finite Fields

((2+a)^3)^3

a + 2

F.modulus ()

x^2 + 2*x + 2

a.minimal_polynomial ()

x^2 + 2*x + 2

a^2 + 2*a + 2

0

Exercise: Is arithmetic in GF(9) in Sage “fast”? How does it compare to GF(3) above?

Bonus: surprisingly , this works :-)
GF(3)[sqrt (2)]

Finite Field in sqrt2 of size 3^2

1.3.4 Lattice of finite fields

F2.<a> = GF(3^2)
F3. = GF(3^3)
a + b # bummer , sage doesn't do this ...

Error in lines 3-3
Traceback (most recent call last):

File ‘‘/projects/sage/sage-6.10/local/lib/python2.7/site-
packages/smc_sagews/sage_server.py’’, line 905, in execute

exec compile(block+'\n', '', 'single') in namespace, locals
File ‘‘’’, line 1, in <module>
File ‘‘sage/structure/element.pyx’’, line 1651, in

sage.structure.element.RingElement.__add__
(/projects/sage/sage-6.10/src/build/cythonized/sage/structure/element.c:15852)

return coercion_model.bin_op(left, right, add)
File ‘‘sage/structure/coerce.pyx’’, line 1069, in

sage.structure.coerce.CoercionModel_cache_maps.bin_op
(/projects/sage/sage-6.10/src/build/cythonized/sage/structure/coerce.c:9736)

raise TypeError(arith_error_message(x,y,op))
TypeError: unsupported operand parent(s) for '+': 'Finite Field in a of size 3^2' and
'Finite Field in b of size 3^3'

%magma /* magma does */
F2<a> := FiniteField (3^2);
F3 := FiniteField (3^3);
a + b

5

1 Finite Fields

$.1^297

F2.<a> = GF(3^2)
F3. = GF(3^3)
F6.<c> = GF(3^6)

Sadlly , there is no "embeddings" command to produce all finite \
field morphisms from

one field into another , which would be EASY to write (see below):
F2.embeddings

Error in lines 3-3
Traceback (most recent call last):

File ‘‘/projects/sage/sage-6.10/local/lib/python2.7/site-
packages/smc_sagews/sage_server.py’’, line 905, in execute

exec compile(block+'\n', '', 'single') in namespace, locals
File ‘‘’’, line 1, in <module>
File ‘‘sage/structure/parent.pyx’’, line 855, in sage.structure.parent.Parent.__getattr__

(/projects/sage/sage-6.10/src/build/cythonized/sage/structure/parent.c:8043)
attr = getattr_from_other_class(self, self._category.parent_class, name)

File ‘‘sage/structure/misc.pyx’’, line 253, in
sage.structure.misc.getattr_from_other_class
(/projects/sage/sage-6.10/src/build/cythonized/sage/structure/misc.c:1667)

raise dummy_attribute_error
AttributeError: 'FiniteField_givaro_with_category' object has no attribute 'embeddings'

v = F2.polynomial ().roots(ring=F6); v

[(2*c^5 + 2*c^3 + c^2 + 2*c + 2, 1), (c^5 + c^3 + 2*c^2 + c + 2, 1)]

phi = Hom(F2, F6)(v[0][0])
phi

Ring morphism:
From: Finite Field in a of size 3^2
To: Finite Field in c of size 3^6
Defn: a |--> 2*c^5 + 2*c^3 + c^2 + 2*c + 2

phi(a)

2*c^5 + 2*c^3 + c^2 + 2*c + 2

psi = Hom(F3, F6)(F3.polynomial ().roots(ring=F6)[0][0])
psi

Ring morphism:
From: Finite Field in b of size 3^3
To: Finite Field in c of size 3^6
Defn: b |--> 2*c^5 + 2*c^4

psi(b)

6

1 Finite Fields

2*c^5 + 2*c^4

Finally , compute the sum in F6:
phi(a) + psi(b)

c^5 + 2*c^4 + 2*c^3 + c^2 + 2*c + 2

However, Sage does support working in p, which is possibly very nice and solves the same problem.

Fbar = GF(3).algebraic_closure ()
Fbar

Algebraic closure of Finite Field of size 3

g2 = Fbar.gen(2); g2
g3 = Fbar.gen(3); g3
g2 + g3

z2
z3
z6^5 + 2*z6^4 + 2*z6^3 + z6^2 + 2*z6 + 1

(g2+g3).minpoly ()

x^6 + x^4 + 2*x^3 + x^2 + x + 2
Exercise: Whenever you try anything in software you should be very worried that the implemen-

tation sucks. You should run some basic benchmarks and compare with what you know. Never
trust anything (especially do not use closed source software). Is Fbar slow or fast? Try some simple
benchmarks right now.

Next time, finite fields from number fields.

7

