{{{id=107| # trac 22801 on top of ... version() /// }}} {{{id=45| Parallelism().set(nproc=1) /// }}} {{{id=1| var('rho12,rho13,rho23', domain='real') assume(rho12>0, rho13>0, rho23>0) var('r12,r13,r23', domain='real') var('m1 m2 m3', domain='real') var('mu12,mu13,mu23', domain='real') assume(m1>0, m2>0, m3>0) #m1=1; m2=1; m3=1 # m3 = m2 #Extra constraint for 2 electrons # N.B.: If all {m1,m2,m3} are in SR and no two are equal, G.simplify_full() will seg-fault. # mu12 = 1/m1+1/m2; mu13 = 1/m1+1/m3; mu23 = 1/m2+1/m3; rho12 = r12^2; rho13 = r13^2; rho23 = r23^2 /// }}} {{{id=2| Ginv = matrix([[1/mu12, 1/m1*(rho12+rho13-rho23)/(2*r12*r13), 1/m2*(rho12+rho23-rho13)/(2*r12*r23)],\ [1/m1*(rho12+rho13-rho23)/(2*r12*r13), 1/mu13, 1/m3*(rho13+rho23-rho12)/(2*r13*r23)],\ [1/m2*(rho12+rho23-rho13)/(2*r12*r23), 1/m3*(rho13+rho23-rho12)/(2*r13*r23), 1/mu23]]) Ginv /// }}}
Feed the following into the metric tensor: M.metric().set() seems to require the covariant form.
Begin manifold creation
{{{id=38| M = Manifold(3,'R^3',field='real',start_index=1) # The following choice seems not to matter. The code always goes through manifolds/utilities.py where it calls simplify_trig(), which dives down the rat-hole. ### M.set_calculus_method('SR') # N.B. 'sympy' fails w/ nproc>1 (above) ### U = M.open_subset('U') /// }}} {{{id=39| Rho.